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Abstract: This paper presents a solution to the tracking control problem of robotic systems in
the presence of exogenous disturbances and model uncertainty with partial state information.
The solution yields a Linear Matrix Inequalities (LMIs) based tracking output feedback
controller. The main contribution of this paper lies in its particular approach which facilitates
an application of the linear H∞ control theory without linearizing the underlying system.
This yields a relatively simple and elegant design procedure. In addition, a relatively low gain
controller is achieved. Simulation results of application this control algorithm in a two-degree
of freedom robot demonstrates the design procedure feasibility.

1. INTRODUCTION

This paper introduces a solution to the trajectory tracking
control of robotic manipulators which is based on the H∞

control and LMI methods. It is assumed that only a noisy
partial state information is available, and that a model
uncertainty and exogenous disturbances are present.

There are numerous papers which present studies of this
subject, see, e.g. [1]-[7] for a state feedback utilization,
and [8], [9], [10] for output feedback applications. Studies
of this subject which deal with model uncertainty and as-
sume partial information while using adaptive and robust
control may be found in [11], [12], [13].

To the best of our knowledge all the studies (exclud-
ing those that take the H∞ approach) do not assume
the presence of exogenous disturbances, neither a plant
noise, nor a measurement noise. The works of Acho et.
al ([26]) and Zasadzinski et. al ([10]) which take the H∞

approach, although they assume a presence of exogenous
disturbances they do not consider model uncertainty as
the theories they develop do not account for it.

The novelty of this paper is in its particular approach and
in its extent of generality. In particular: 1. the results
achieved in this work apply to robotic systems with
model uncertainty and with exogenous disturbances that
include both, noise associated with the plant and noisy
measurements. 2. A particular choice of a storage function
which facilitates an application of the linear H∞ control
theory and the LMI methods without linearizing the
underlying system.

In view of the theory of nonlinear H∞ control (see,
e.g. [17]-[21]), we formulate the tracking problem as an
H∞ control problem, and use the interrelations among
the the l2-gain property, dissipativity and the Hamilton-
Jacobi Inequality (HJI) to derive an output feedback
controller, first for the case of absence of uncertainty, and
then utilizing these results, we develop a controller that

accounts for model uncertainty, achieves L2-gain< γ for
a prescribed γ, and a semi-global asymptotic stability. As
mentioned above, all this is facilitated by the particular
choice of a storage function that takes an advantage of
some certain structural properties the underlying system
enjoys. This yields sufficient conditions, in terms of certain
LMIs for the semi-global asymptotic stability and for the
L2-gain property to hold. The advantage of these sufficient
conditions is that they turn to be exactly as the usual ones
for an appropriate linear system (see, e.g [14]-[16]). We also
introduce an example which demonstrates the algorithm
performances by an application in a two-degree of freedom
robot where gravity and the model-parameters are only
approximately known, while relatively large uncertainties
are assumed.

2. PROBLEM FORMULATION: NO MODEL
UNCERTAINTY

In this section we consider the tracking problem of an n-
link robot manipulator with no model uncertainty.

In section 2.1 below we introduce a convenient state space
representation of the underlying system. The nonlinear
H∞ control problem is formulated in section 2.2, while
the solution to the nonlinear HJI is introduced in section
2.3.

2.1 The System dynamics

The dynamical equations of an n-link robot manipulator
with exogenous disturbances is commonly described by the
following (see, e.g. Spong and Vidyasagar [1])

M(q)q̈ + (C(q, q̇) + H)q̇ + G(q) = τ + ω (1)

where q ∈ ℜn is the robot’s joint angular position,
M(q) ∈ ℜn×n is the symmetric positive definite inertia
matrix, C(q, q̇)q̇ is the centripetal and coriolis forces, Hq̇
represents the linear frictional forces, G(q) consists of the
gravitational forces, τ is the torque applied to the various
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links at the corresponding joints by means of electrical
motors and ω represents exogenous disturbances, which
are assumed to be in L2, that is

∫ ∞

0
||ω(t)||2dt < ∞.

The objective is a design of an output feedback which
drives the system’s states along a desired trajectory qr(t)
starting at a given initial position. For this we define the
following error vector:

e =

[

e1

e2

]

=

[

q − qr

q̇ − q̇r

]

(2)

We take:

τ =M(qr)q̈r + (C(qr, q̇r) + H)q̇r + G(qr) + u (3)

where u is defined in section 2.2 below. Define

∆W =[M(q)−M(qr)]q̈r+[C(q, q̇r)−C(qr, q̇r)]q̇r+

[G(q)−G(qr)]. (4)

Using these in (1), yields the following tracking problem.

ė = A(q, q̇, q̇r)e + B(q)(u − ∆W + ω) (5)

where

A(q, q̇, q̇r)=

[

0n×n In×n

0n×n−M−1(q)(C(q, q̇)+C(q, q̇r)+H)

]

B(q) =

[

0n×n

M−1(q)

]

(6)

2.2 Nonlinear H∞ control problem

Consider the nonlinear system:
{

ė = A(q, q̇, q̇r)e + B(q)(u − ∆W ) + B(q)ω
y = C2e + D21ω
z = C1e + D12u

Where e ∈ ℜ2n, u ∈ ℜm, y ∈ ℜs and ω ∈ ℜd are the
state, the control input, the measurement output and
disturbances, respectively, while z ∈ ℜh is an objective
variable (controlled output).
The H∞ output-feedback control objective is a synthesis
of an output-feedback that renders the underlying system
L2-gain< γ. In order to achieve this goal the following
controller structure is assumed

{

ξ̇ = T (q)
−1

[Akξ + Bky]
u = Ckξ + Dky

(7)

where ξ ∈ ℜ2n, T (q) is a 2n× 2n matrix, and Ak, Bk, Ck,
Dk are constant matrices. Let

x =

[

e
ξ

]

(8)

Thus the closed-loop system admits
{

ẋ = Acl(q, q̇, q̇r)x − Bcl(q)∆W + B1cl(q)ω
z = Cclx + Dclω

(9)

where
[

Acl(q, q̇, q̇r) B1cl(q)
Ccl Dcl

]

=





A(q, q̇, q̇r)+B(q)DkC2 B(q)Ck B(q)(DkD12+I)
T (q)−1BkC2 T (q)−1Ak T (q)−1BkD21

C1+D12DkC2 D12Ck D12DkD21



 (10)

and

Bcl(q) =

[

B(q)
0 2n×n

]

. (11)

2.3 Solution To The Nonlinear Hamilton-Jacobi Inequality
(HJI)

Consider the nonlinear system (9) with the following
storage function

So(x, q) =
1

2
xT Po(q)x (12)

where Po(q) ∈ ℜ4n×4n is a positive C1 matrix, (note that
Po(q) is not necessarily a symmetric matrix). Define,

Ms(q) = blockdiag{In×n,M(q)} (13)

where M(q) is the inertia matrix and blockdiag{·} denotes
a diagonal block matrix. The notation * will be used
frequently in the sequel and will denote a symmetric entry
of a matrix.

We have now the following theorem, the proof of which is
omitted for the lack of space.

Theorem 1. Given δ > 0. Assume Po(q) has the following
structure:

Po(q) = Po.cMo(q) (14)

where

Mo(q)=blockdiag{Ms(q), T (q)},

(15)

Ms(q) given in (13) and Po.c ∈ ℜ4n×4n is a positive sym-
metric matrix that is to be determined. Then the closed-
loop system (9) is L2-gain < γ, and the controller (7)
renders the closed-loop system semi-global exponentially
stable if the following LMI’s

LMI (1) :














Po.cAcl + AT
clPo.cPo.cB1cl C

T
cl Po.cBcl ∆W̃

∗ −γ2I DT
cl 0 0

∗ ∗ −I 0 0

∗ ∗ ∗ −
1

2
δI 0

∗ ∗ ∗ ∗ −δ−1I















< 0

(16)

LMI (2) :

Po.cMo(q) + (Po.cMo(q))
T > 0 (17)

hold for e2 ∈ Br with an arbitrarily fixed r > 0 and for all
q, where

[

Acl B1cl

Ccl Dcl

]

=





A+BDkC2 BCk B(DkD12+I)
BkC2 Ak BkD21

C1+D12DkC2D12Ck D12DkD21



,

∆W̃ = blockdiag{∆W̃1, 02n×2n},

∆W̃1 = blockdiag{bmcgIn×n, bc̃In×n}, bmcg, bc̃ > 0
(18)

and

Bcl =

[

B
0 2n×n

]

, B =

[

0n×n

In×n

]

A =

[

0n×n In×n

0n×n −H

]

. (19)

Remark 1. The L2-gain< γ means in this theorem that
for any initial state x0 there is a neighborhood Bx0

⊂ L2

of 0 such that
∫ ∞

0

||z(t)||2dt < γ2{||x0||
2 +

∫ ∞

0

||ω(t)||2dt}, ∀t ≥ 0.
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Theorem 2 below provides sufficient conditions for Theo-
rem 1 to hold.

Theorem 2. Fix δ > 0, γ > 0, r > 0. Assume the following
LMI’s

LMI 1 :



















Φ11 Φ12 Φ13 Φ14 XB ∆W̃1

∗ Φ22 Φ23 Φ24 B Y ∆W̃1

∗ ∗ −γ2I 0 0 0
∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ −
1

2
δI 0

∗ ∗ ∗ ∗ ∗ −δ−1I



















< 0 (20)

Φ11=AT X+XA+B̂kC2+CT
2 B̂T

k , Φ12=Âk+AT+CT
2 D̂T

kBT

Φ13=XB+B̂kD21, Φ14=CT
1 +CT

2 D̂T
k DT

12

Φ22=Y AT+AY+ BĈk+ĈT
k BT , Φ23=B+BD̂kD21

Φ24=Y CT
1 +ĈT

k DT
12

LMI 2 :

[

XM (j)
s + M (j)

s X M (j)
s

∗ M (j)
s Y + Y M (j)

s

]

> 0 (21)

hold for some symmetric positive definite matrices X, Y ∈
ℜ2n×2n and for some Âk ∈ ℜ2n×2n, B̂k ∈ ℜ2n×n, Ĉk ∈

ℜn×2n, D̂k ∈ ℜn×n, where each M
(j)
s is the Ms(q) evalu-

ated at the vertex j of the polytope generated by Ms(q).
Then the closed-loop system (9), with the controller (3),
(7), is L2-gain< γ, and semi-global exponentially stable,
where T (q) is given by

T (q) = −M−1XMs(q)Y N−T (22)

If a solution to these LMIs exist, the output feedback gains
are given by

Âk =XAY+MAkNT+XBCkNT+MBkC2Y+XBDkC2Y

B̂k =MBk+XB2Dk

Ĉk = CkNT +DkC2Y

D̂k =Dk (23)

3. PROBLEM FORMULATION WITH MODEL
UNCERTAINTIES

This section deals with the tracking problem of an n-link
robot manipulator with model uncertainties.
In section 3.1 below we introduce the state space equa-
tions. The nonlinear H∞ control problem is formulated
in section 3.2, while the solution to the nonlinear HJI is
introduced in section 3.3.

3.1 The System Dynamics

Generally, in addition to external disturbances, there are
uncertainties present in the system’s model which must
be accounted for. Let M̂(q) denote an estimate of M(q),

Ĉ(q, q̇) an estimate of C(q, q̇), Ĥ an estimate of H and

Ĝ(q) an estimate of the gravitational forces G(q).

The inverse dynamics control law for the nominal system
(1) is given by

τ =M̂(qr)q̈r + (Ĉ(qr, q̇r) + Ĥ)q̇r + Ĝ(qr) + u. (24)

Substituting (24) into (1) and subtract M(q)q̈r + (C(q, q̇) +

H)q̇r from both sides of the equation we obtain

M(q)ė2+(C(q, q̇) + H)e2 =u + ω + [M̂(qr) − M(q)]q̈r+

[Ĉ(qr, q̇r)−C(q, q̇)+Ĥ−H]q̇r + [Ĝ(qr) − G(q)]. (25)

It is easy to show now that (25) may now be expressed as

M(q)ė2 + (C(q, q̇) + C(q, q̇r) + H)e2 = u + ω+

[M̂(qr) − M(q)]q̈r + [Ĉ(qr, q̇r) − C(q, q̇r)]q̇r+

[Ĥ−H]q̇r + [Ĝ(qr) − G(q)]. (26)

from which one obtains

M(q)ė2 + (C(q, q̇) + C(q, q̇r) + H)e2 = u + ω+

Y1(qr, q̇r, q̈r)Po.c − ∆W. (27)

where p̃= p̂−p is the parameter error vector, Y1(qr, q̇r, q̈r)
is the regressor matrix and ∆W given by (4). Thus, the
state space can be written as

ė = A(q, q̇, q̇r)e + B(q)(u + ω + Y1(qr, q̇r, q̈r)p̃ − ∆W )
(28)

where A(q, q̇, q̇r), B(q) are given in (6).

3.2 The Nonlinear H∞ control problem

Consider the nonlinear system:
{

ė = A(q, q̇, q̇r)e+B(q)(u+Y1(qr, q̇r, q̈r)p̃−∆W )+B(q)ω
y = C2e + D21ω
z = C1e + D12u

(29)

In order to obtain an adaptive H∞ output-feedback control
objective our goal is to compute a dynamical output-
feedback controller in the same form as given in (7),i.e

{

ξ̇ = T̄ (q)
−1

[Akξ + Bky]
u = Ckξ + Dky

(30)

where ξ ∈ ℜ2n, T̄ (q) is a 2n×2n matrix (to be determined
below) and Ak, Bk, Ck,Dk are constant matrices.

In addition, we choose the parameter estimator of the form
˙̃p = Ax(qr, q̇r, q̈r)x (31)

where x given by (8) and Ax(qr, q̇r, q̈r) will be determined
later. Let x̃ be defined by

x̃ =

[

x
p̃

]

. (32)

Then the closed-loop system admits
{

˙̃x=Ãcl(q, q̇, q̇r)x̃+B̃cl(q)(Y1(qr, q̇r, q̈r)p̃−∆W )+B̃1cl(q)ω
z=C̃clx̃ + D̃clω

(33)

where




Ãcl(q, q̇, q̇r)B̃1cl(q)

C̃cl D̃cl



=





Acl(q, q̇, q̇r)0r×rB1cl(q)
Ax(qr, q̇r, q̈r)0n×r 0r×d

Ccl 0h×r Dcl





B̃cl(q) =

[

Bcl(q)
0r×n

]

. (34)

and Acl(q, q̇, q̇r), Bcl(q), Ccl,Dcl, B1cl(q) are given in (10,11)
with T̄ (q) instead of T (q).

3.3 Solution To The Nonlinear HJI

Consider the nonlinear system (33) with the following
storage function

S̄o(x, p̃, q) =
1

2
{xT P̄o(q)x + p̃T Λp̃} (35)

where Λ is a positive definite weighting matrix and P̄o(q)
is a positive C1 matrix, (note that P̄o(q) is not necessary
a symmetric matrix).
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Theorem 3. Given δ > 0. Assume the following structure
for P̄o(q):

P̄o(q) = Po.cM̄o(q) (36)

where

M̄o(q)=blockdiag{Ms(q), T̄ (q)},

(37)

Ms(q) given in (13) and Po.c ∈ ℜ4n×4n is a positive
symmetric matrix to be determined. Then the closed-loop
system (33) is L2 − gain ≤ γ, and the controller (30)
renders the closed-loop system semi-global asymptotically
stable if the following LMI’s

LMI (1) :














Po.cAcl + AT
clPo.cPo.cB1cl C

T
cl Po.cBcl ∆W̃

∗ −γ2I DT
cl 0 0

∗ ∗ −I 0 0

∗ ∗ ∗ −
1

2
δI 0

∗ ∗ ∗ ∗ −δ−1I















< 0

(38)

LMI (2) :

Po.cM̄o(q) + (Po.cM̄o(q))
T > 0 (39)

hold for e2 ∈ Br with an arbitrarily fixed r > 0 and for all
q, where

[

Acl B1cl

Ccl Dcl

]

=





A+BDkC2 BCk B(DkD12+I)
BkC2 Ak BkD21

C1+D12DkC2D12Ck D12DkD21



,

∆W̃ = blockdiag{∆W̃1, 02n×2n},

∆W̃1 = blockdiag{bmcgIn×n, bc̃0In×n}, bmcg, bc̃0 > 0
(40)

and

Bcl =

[

B
0 2n×n

]

, B =

[

0n×n

In×n

]

A0 =

[

0n×n In×n

0n×n0n×n

]

. (41)

In what follows we utilize the algorithm introduced in
[16] in order to solve the LMI’s of Theorem 3 via LMI’s
optimization toolbox in MATLAB.

The following notations will be used in the sequel

M(q) =







m11(p, q) · · · m1n(p, q)

∗
. . .

...
∗ ∗ mnn(p, q)







where mik(p, q) are bounded, with known bounds. It is
well known that the parameters vector p is a function
of the physical system’s parameters like: masses, lengths
etc.. We take fi to be the i-th physical parameter of the
system, therefore if we assume that the system has −l−
physical parameters then the vector p may be written as
p = F(f1, f2, ..., fl). We denote the upper bound of fi by
f+

i (i.e. fi ∈ [f−

i , f+
i ]) and the lower bound of fi by f−

i

and define the following: Let fav
i be the average physical

parameter of fi, and pav be the average vector parameter
of p which are given by:

fav
i =

1

2
(f−

i + f+
i ) ∀i = 1, ..., l.

pav = F(fav
1 , fav

2 , ..., fav
l ). (42)

Remark 2. Note that if the uncertainty range of fi shrinks
to zero then pav → p.

Define,

Mav(q) =







m11(p
av, q) · · · m1n(pav, q)

∗
. . .

...
∗ ∗ mnn(pav, q)






(43)

where Mav(q) is the average matrix of the inertia matrix
M(q). Obviously, by the above definition of Mav(q), this
matrix agrees with assumption A1. Finally we define the
matrix

Mav
s (q) = blockdiag{I2n×2n,Mav(q)} (44)

We have now the following result.

Theorem 4. Consider the closed-loop system (33) with the
storage function (35) where

T̄ (q) = −M−1XMav
s (q)Y N−1 (45)

Given the scalars δ > 0, γ > 0, r > 0, ε > 0, there
is an output-feedback controller given by (30) with
the parameter update process given by (31), where

Y T
1 (qr, q̇r, r̈r)B

T
clP̃

T
o (q) = Ax(qr, q̇r, q̈r). If the following

LMI’s

LMI 1 :



















Φ11 Φ12 Φ13 Φ14 XB ∆W̃1

∗ Φ22 Φ23 Φ24 B Y ∆W̃1

∗ ∗ −γ2I 0 0 0
∗ ∗ ∗ −I 0 0

∗ ∗ ∗ ∗ −
1

2
δI 0

∗ ∗ ∗ ∗ ∗ −δ−1I



















≤ 0 (46)

Φ11=AT X+XA+B̂kC2+CT
2 B̂T

k , Φ12=Âk+AT+CT
2 D̂T

kBT

Φ13=XB+B̂kD21, Φ14=CT
1 +CT

2 D̂T
k DT

12

Φ22=Y AT+AY+ BĈk+ĈT
k BT , Φ23=B+BD̂kD21

Φ24=Y CT
1 +ĈT

k DT
12

LMI (2) :








Ψ11 M (j)
s (q) X(M (j)

s −Mav(j)
s ) 0

∗ Ψ22 0 Y
∗ ∗ εI 0
∗ ∗ ∗ ε−1I









> 0 (47)

Ψ11 = XM (j)
s (q)+M (j)

s (q),

Ψ22 = M (j)
s (q)Y+Y M (j)

s (q)

hold for some symmetric positive definite matrices X,Y ∈
ℜ2n×2n and for some Âk ∈ ℜ2n×2n, B̂k ∈ ℜ2n×n, Ĉk ∈

ℜn×2n, D̂k ∈ ℜn×n, where each M
(j)
s ,M

av(j)
s are the

Ms(q),M
av
s (q) (given by (13),(44) respectively) evalu-

ated at the vertex j of the polytope generated by
Ms(q),M

av
s (q), respectively. If a solution to these LMIs

exists, then the closed-loop system (33) has L2-gain≤ γ
(from ω to z) and the tracking error e → 0 as t → ∞
semi-globally.
In this case, the output-feedback is given by (24,30,23)
with the parameter update process

p̂(t) =p̂(0)+Ax(qr(t), q̇r(t), q̈r(t))xI(t)−
∫ t

0

Ȧx(qr(σ), q̇r(σ), q̈r(σ))xI(σ)dσ (48)

where
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xI(t) =

∫ t

0

x(τ)dτ =

















∫ t

0

e1(τ)dτ

e1(t)





∫ t

0

ξ(τ)dτ













(49)

(50)

4. EXAMPLE

The feasibility of the design of the foregoing sections is
demonstrated via simulations of a two-link manipulator.
The system is assumed to have known parameters and
external disturbances. The H∞ tracking control is then de-
signed according to the proposed procedure. The system’s
parameters are: the links’ masses: m1,m2(kg), the links’
lengths: l1, l2(m), masses’ centers: lc1, lc2, the angular po-
sitions: q1, q2(rad), q1, q2(rad), the viscosity coefficient :
h(kgm2) and the applied torques: τ1, τ2(Nm). By (1) we
have:

M(q)=

[

m1l
2
c1+m2l

2
1+Izz1+Izz2 m2l1lc2cos(q1−q2)+Izz2

m2l1lc2cos(q1−q2)+Izz2 m2l
2
c2+Izz2

]

C(q, q̇) = m2l1lc2sin(q1 − q2)

[

0 q̇2

−q̇1 0

]

G(q) =

[

−(m1lc1 + m2l1)gsin(q1)
−m2lc2gsin(q2)

]

H =

[

h 0
0 h

]

(51)

where q ∈ ℜ2 and τ ∈ ℜ2. The nominal parameters
of the manipulator are taken to be: m1 = 1(kg),m2 =
5(kg), l1 = l2 = 0.2(m), lc1 = lc2 = 0.1(m), g =
9.8(ms−2), h = 5((kgm2)) where Izz1 = Izz2 = 1

3mil
2

(i=1,2) and the initial conditions are q1(0) = 30◦, q2(0) =
100◦, q̇1(0) = 0, q̇2(0) = 0. The desired position is: qr1 =
30◦sin(2πt), qr2 = 60◦sin(2πt). The exogenous distur-

bances ω =

[

ω1

ω2

]

are chosen to be square wave with

period 2π, that is

ω1 =

{

1 , 0≤ t<π
0 , π≤ t<2π

, ω2 =

{

0 , 0≤ t<π
−1 , π≤ t<2π

(52)

For the purpose of simulations, C1 and D12 were chosen
as:

C1 =2

[

I2×2 02×2 02×1 02×1

02×2 I2×2 02×1 02×1

]T

,D12 =0.001

[

01×201×210
01×201×201

]T

and

∆W̃1 =

[

25I2×2 02×2

02×2 I2×2

]

, δ = 10−6

In this case:

M (j)=

[

m1l
2
c1+m2l

2
1+Izz1+Izz2m2l1lc2 · δj+Izz2

m2l1lc2 · δj+Izz2 m2l
2
c2+Izz2

]

j=1, 2, δ1=1, δ2 =−1

By applying Theorem 2 we obtain γmin = 4.0467. How-
ever, γ = 4.05 was selected to avoid an undesirable high-
gain controller design corresponding to γ which is close to
the optimum. (see Fig.1).
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Appendix A. PROPERTIES AND ASSUMPTIONS

A 1. The matrix M(q) is symmetric positive definite and
there exists some positive number σm and σM such that

σmI ≤ M(q) ≤ σMI (A.1)

A 2. There exist some positive constants σ1 and σ2 such
that

σ1 ≥ sup
q∈ℜn

‖g(q)‖ (A.2)

σ2 ≥ sup
q∈ℜn

∥

∥

∥

∥

∂g(q)

∂q

∥

∥

∥

∥

(A.3)

P 1. The representation of the matrix C(q, q̇) is unique
and it can be obtained by the entries of the inertia matrix
M(q). Let the ij-th element of the inertia matrix M(q) be
denoted by mij , and let the ik-th element of the matrix
C(q, q̇) be given by

Cik(q, q̇) =
n

∑

j

cijk(q) (A.4)

where

cijk(q) ≡
1

2

(

∂mik(q)

∂qj

+
∂mjk(q)

∂qi

−
∂mij(q)

∂qk

)

(A.5)

are the Christoffel symbols of the first kind. Then the
property

Ṁ(q) = C(q, q̇) + CT (q, q̇), ∀q, q̇ (A.6)

holds. ( The proof can be found in [1]).

P 2. The matrix C(v1, v2) is bounded in v1 and linear in
v2, then

C(v1, v2)v3 = C(v1, v3)v2, ∀v1, v2, v3 ∈ ℜn (A.7)

‖C(v1, v2)‖ ≤ σ4‖v2‖, for some σ4 > 0, ∀v1, v2 (A.8)

P 3. The system can be parameterized as follows

M(q)q̈ + C(q, q̇) + Hq̇ + G(q) = Y1(q, q̇, q̈)
T p (A.9)

where p ∈ ℜp is a vector of constant parameters and
Y1(q, q̇, q̈) ∈ ℜp×n is called regressor matrix (see [1]).

P 4. Define

∆W=[M(q)−M(qr)]q̈r+[C(q, q̇r)−C(qr, q̇r)]q̇r+

[G(q)−G(qr)], e1 = q − qr (A.10)

where (qr, q̇r, q̈r) is the desired trajectory, which is
bounded. Therefore, there is a positive number bmcg such
that ‖∆W‖ ≤ bmcg‖e1‖,∀e1, (see [2]).
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