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Abstract: Bitumen extraction from oil sands is the core process in the production of oil
from oil sands. This floatation process is carried out in large vessels called separation cells.
Optimal control of the interface between Bitumen froth and Middlings in these cells can result
in a significant improvement in Bitumen recovery and increase process efficiency downstream,
resulting in large economic benefits. The major impediment in the implementation of such a
control system is the lack of safe and reliable sensors for interface level detection. Traditional
instruments such as nuclear gauges, capacity probes etc. are either unsafe or do not give reliable
estimates. This work describes a novel sensor for interface level detection, developed using
computer vision techniques on video frames captured from a sight glass camera. Specifically,
State-space model based Particle filtering is used to provide estimates of the interface level and
its quality. It is shown that the algorithm is robust to lighting changes and process abnormalities.
Industrial results show highly improved control performance when estimates of the sensor are

used for feedback control.

1. INTRODUCTION

The Athabasca oil sands reserve in Alberta, Canada is the
second largest oil reserve in the world [Govt.of.Alberta,
2007]. Crude oil extraction from oil sands is a billion
dollar industry and currently it accounts for almost half
of total crude oil production in Canada and 10% of North
American oil production [Govt.of.Alberta, 2007].

The oil sands are a mixture of Sand, Clay, Water and
Bitumen. Bitumen is extracted from these sands using a
Water Based Extraction Process(WBEP), which is carried
out in separation cells. Typically three layers form as
shown in Fig.1. Of particular interest is the interface level
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Fig.1. Separation cell
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between the Bitumen-froth and the Middlings layer, which
is known to affect the froth quality and Bitumen recovery
and thus heavily influence process economics. For example,
when this level is too high, fines (fine sand particles) escape
into Bitumen-froth degrading its quality and when it is
too low, Bitumen is lost to the Tailings ponds causing
environmental problems. A good regulation of the interface
level also reduces the variability of the process downstream
and leads to optimal operating conditions[Jain, 2006] .
Hence, there has been much interest in the oil sands
industry to control this interface at an optimum level for
Bitumen recovery.

The problem in implementing an automatic control sys-
tem is the lack of safe and reliable instruments for in-
terface level measurements. Traditional instruments such
as Pressure transducers and Capacitance probes give very
low resolution and unreliable estimates. Other expensive
sensors such as Nuclear density profilers were abandoned
because of issues of concern over their safety.

In the absence of precise interface level estimates, the
interface level is currently controlled using low resolution
Capacitance probe measurements. As these measurements
are not accurate, operators frequently watch the sight glass
video and adjust the interface level set point manually. The
changes in the set point are done so as to negate the effect
of inaccuracies in the Capacitance probe measurements. A
typical image from such a video sequence observed by the
operators is shown in Fig.2.
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Fig.2. Sight view glass showing the interface between the
Bitumen froth(dark surface) and the Middlings(light
surface)

A novel idea to improve the accuracy of interface level
measurements, is to detect the interface level by vision
methods on video obtained from the sight glass video
camera. The schematic in Fig 3 gives a birds eye view of
the desired control system. The interface level estimated
from the camera video is transmitted to the Distributed
Control System (DCS) which in turn manipulates the
pump speed to maintain the interface level at a given set
point. The Application server hosts the automatic level
detection program (vision sensor) and the Control room
monitor displays the video images (shown in Fig.2) for the
operators.
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Fig.3. Overall schematic

The problem of interface level detection is a special case
of a general problem of contour tracking, with the contour
being approximated by a horizontal line. Contour tracking
has been studied extensively in computer vision literature
[Blake and Isard, 2000, Isard and Blake, 1998]. The meth-
ods studied there represent the contour by a parametric B-
spline and use the Particle filtering algorithm to estimate
the future values of these parameters based on obser-
vations collected from images and a State space model
over the parameters. Particle filtering [Arulampalam et al.,
2002, Doucet et al., 2001] is used because of its ability
to maintain multiple hypothesis, i.e. being able to handle
non-Gaussian type of state as well as measurement noise.

The current work is based on similar but simpler grounds.
Bitumen-froth and Middlings interface is parametrized by
a single scalar level value instead of a B-spline and the
state model used for the interface is a simple random
walk. For modelling edge observations extracted from the
images, the model described in [Isard and Blake, 1998] is
used. The output of the designed filter is a (posterior)

probability distribution of the interface level and the
desired interface level value is then estimated from first
order statistics of this distribution.

The main contributions of this paper are twofold:

(1) Development of a particle filter based vision sensor
for interface level detection and

(2) Use of this sensor in a feed back loop for maintaining
the interface at a desired level for optimum Bitumen
recovery

The rest of the paper is organized as follows: Section 2
discusses the Particle filter along with the core algorithm
used in this paper. Section 3 shows the simple image
processing steps performed and the extraction of salient
edge features. The state and observation models for in-
terface level detection are developed in section 4. Section
5 focuses on the implementation aspects of the Particle
filter and also discusses the quality estimation step. Section
6 presents the results followed by concluding remarks in
section 7.

2. PARTICLE FILTERS

Consider the following discrete time state space model:-

o = f(Tp—1) + wp—1 (1)
2k = g(xg) + vk (2)

where w and v are random processes representing state and
measurement noises respectively and whose statistics are
assumed to be known. The aim of filtering is to estimate
the following posterior distribution

p(xk|211227"'7zk) (3)
The posterior distribution contains all the information
about the state zjp that can possibly be obtained from
the set of noisy measurements 21, 22, ..., zx. Any estimate
of the state xp can be obtained (e.g. mean or mode
estimate) once this distribution is known. For real time
implementation of the algorithm it is important that
the posterior distribution be computed recursively. The
following assumptions are made for recursive estimation :

p(zk|21, 22, .oy i—1) = p(@k|TH—1) (4)

p(zla 22y eny Zk;lel y L2, .’L'k) = Hp(zz|$1 y L2y eny .’L'k) (5>
i=1
Based on the assumptions above the following can be
derived using Bayes theorem:

p($k|21, 22, "'7Zk) X p(Zk|Ik)p($k|Zl, R2y weey Zkfl) (6)

This equation is expressed as

posterior « likelihood * prior (7)

The prior is the information about the state before the
arrival of the new observation zj. The observation z; up-
dates the prior through the likelihood function resulting in
the posterior. It is to be noted that if the mappings f and g
are linear and the state/measurement noises are Gaussian,
the prior and the posterior distributions are also Gaussian
and hence characterized only by their first and second
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moments(mean and variance). In such cases, the analytical
recursive solution for the mean and variance is given by
the Kalman filter algorithm. In the general case (linear
or nonlinear systems affected by non-Gaussian noise pro-
cesses), the distributions cannot be evaluated analytically
and Monte Carlo simulation methods are resorted to. Also,
the recursive nature of (6) makes it possible to estimate
these distributions sequentially. These methods are called
sequential Monte Carlo methods or particle filters. One
such method used frequently is the Sampling Importance
Resampling (SIR) algorithm described below:-

Sampling Importance Resampling(SIR) algorithm

SIR is a Monte Carlo technique used to generate samples
from distributions which are difficult to sample from and
which are known only up to a proportionality constant.
Let p(y) be such a distribution. Consider any (impor-
tance) distribution ¢(y) which is easy to sample from and
generate the samples [y1,y2, ..., yn]. Compute the weights

Z g’g and sample from the discrete distribution

which places weights w; at y; N times. It can be shown
that as N — oo the discrete distribution tends to the
original distribution p(y)[Fearnhead, 1998]. Hence the N
samples represent samples(particles) from p(y). If the prior
is assumed to be the importance density and we desire
to generate samples from the posterior, from (6) it can
be seen that the weights are given by p(zx|xi), where z%
represent samples from the prior. These prior samples are
generated by passing the samples from the posterior at
the previous time step through the state equation. This is
described in the complete SIR algorithm below:

w; =

e Assume [z} ;i =1: N] are generated from
p(xr—1]21, 22, ..y 2Zk—1)

e Generate samples [$Z‘k_1;i =1:N] by
;v}'clk_l = f(z% ) 4+ wi—1. These represent samples
from the prior p(zx|z1, 22, ..., 2k—1)

e Calculate the weights p(zg|zr = $7c|k—1)

e Resample from the discrete distribution which
places the weights p(zg|zx = 332\1@—1) at x;ﬂk—l’ these
represent samples from p(xg|z1, 22, ..., 2k)

As p(z) is known the assumption in step one is valid for
the first iteration and hence all the posterior distributions
can be computed recursively.

3. EDGE FEATURE EXTRACTION

Edge features are extracted from the input images using
simple image processing techniques. Initially, the region
is smoothed using a Gaussian 3x3 kernel of variance
0.5. Horizontal edge detection is then performed on the
smoothed image using the simple mask [-1 0 1]7. From
the resulting image the strongest M pixels in each column
are selected. A sample transformation of the image in Fig.2
is shown in Fig.4 (with M = 5).

There are two main reasons for adopting the procedure
above instead of thresholding the edge image

Fig.4. Edge image (based on transformation of the image
shown in Fig.2)

e Choosing a hard threshold for edge detection can
result in the algorithm being susceptible to lighting
changes

e With a hard threshold, the number of edge points in
each column would not be constant and hence the
likelihood model p(zi|zx) will not be known before
21 is observed (c.f Section 4)

4. STATE AND OBSERVATION MODELS
4.1 State model

Modelling the dynamics of the Bitumen-froth and Mid-
dlings interface from first principles is difficult because
it is governed by several complex physical and chemical
interactions between Bitumen, Sand, Clay, Water and
reagents (e.g. Caustic is added to hasten the separation
process) as well as flow rates of process utilities like hot
water. In addition to these complexities, the addition of
feed from the top of the cell causes a slushing effect inside
the separation cell resulting in very fast dynamics. In fact,
this phenomenon is the main contributor to the observed
dynamics of the Bitumen-froth and Middlings interface.
Unfortunately, this slushing effect cannot be modelled
satisfactorily. Thus, even emperical laws for interface level
dynamics (based on feed quality and input, output flow
rates of all streams) cannot be reliably estimated. Hence,
the interface level dynamics is modelled as a simple ran-
dom walk process:

T = Tp—1 + Wg (8)

where 1z represents the interface level at time k. wy
represents a Gaussian process with a small variance ~2.
A justification of the model is based on:

(1) Temporal continuity - the fact that level at time k
would not be very different from level at time k — 1
especially if the frame rate of the camera is as high
as 30fps.

(2) Level dynamics of a pumped tank are captured by an
integrating process

4.2 Observation model

To form the observation model, the edge image obtained
after the image processing described above is transformed
into an observation vector zi. This is done as follows: let
2, represent the vector of M measurements obtained from
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the i*" column of the edge image, where the elements of
zr, are the heights of the edge points(from the base of the
image) in that column. Then the overall zj is constructed
by stacking all zp, i.e. zx = [2k,, Zhys--Zke)’ where C
represents the total number of columns in the edge image,
so the dimension of z; is MC. In the case of perfect
measurements (i.e. no noise in the edge image) and with
M = 1 all the elements of z; will be equal to xj for a
one pixel thick edge. So, in the presence of noise vy, the
observations can be modelled as:-

2k = lyoxr + vk (9)

where 1p;c represents a vector of ones of dimension
MC'. The measurement noise model p(v) is the same as
p(zx|zr) except for a mean value (from (9)). The choice of
p(zk|zk) is the most crucial step and it has been found that
if it is taken to be a Gaussian density, the filter is caught
between the noise and the actual interface level. This is
because uni-modal densities cannot represent the type
of noise observed in Fig 3. The non-Gaussian likelihood
described in [Isard and Blake, 1998] can be chosen for this
purpose:

P(zk)Tr) = P(2kys Zhos oo 2 | Th)

| J D)

jzl y
:H Zexp —(z ].—J?k) /%)) (12)
j=1 i=1

where z,ij represents the elements of z, and o is akin
to the measurement noise variance. The assumption here
is that the edge points in each column are independent
of each other given the level. Other likelihood functions
which are not bound to this assumption can be used, e.g.

P(2klTk) = D(2kys Zhas o) Zhe [TH) (13)
C
= pla, ) (14)
.
=3 eap(—(z, —ax)*/0®)  (15)

I
-

J =1

which gives a high likelihood to the state(zj) which
minimizes the sum of the distances between the edge
points observed and xy, but it has not been found to
give any significant improvement to the algorithm. So, the
likelihood function (12) is used here. When this likelihood
function is observed as a function in zj rather than zy, it
can be seen that the peaks of the function will be located
at z,ij, this makes the likelihood function multi-modal.
As noted earlier such a likelihood function is essential for
robust tracking as it can handle more general types of noise
distributions. The value of M reflects the thickness of the
interface (edge), the model (9) gives good results only for
medium values of M, typically 3-6. If M is too small, only
noise may be captured in the measurements and if M is
too high the edge image contains too many spurious edges
and the filter will be confused in both the cases. A value
of M = 5 has been found to give good results.

Using the state and observation models described above,
the basic particle filter obtained is demonstrated in Fig.5.
In each of the two frames, the posterior probability density
is shown on the left and the extracted edges are shown on
the right. The posterior density is multimodal in the left
frame, owing to the large extent of spurious edges present
on the top part of the edge image. As new images are
obtained in time, the filter rejects the spurious peak in
favour of the actual interface as shown in the right frame.

5. IMPLEMENTATION ISSUES

The particle filter is initialized by modelling p(zg) as a
uniform distribution between the upper and lower limits
of the view glass area. P = 300 particles are generated
from this distribution and subsequently updated according
to the SIR filtering algorithm shown earlier using the
state and observation models in (8) and (9). With the
parameters 7 = 3 pixels,o = 5 pixels the particle filter
is able to track the interface level quite well under normal
operating conditions.

To handle process abnormalities, a quality estimate of the
input image is also computed. This estimate is used, for
example, to switch to manual control when the quality is
bad for a sustained period of time. Two cases where the
quality estimate is useful are:

(1) The interface between Bitumen-froth and Middlings
layers is blurry.

(2) The interface is not visible in the image because it is
above or below the sight view glass area

The quality estimate is computed in a straight forward
way by considering the support of the posterior p.d.f.
Under normal operating conditions (with clear interface)
the particles are a maximum of 6 — 9 pixels apart and
this support increases as the interface becomes blurry.
Hence, there is a direct correlation between visual quality
of the interface and the support of the posterior p.d.f.
This is shown more clearly in Fig.8. A threshold of 15
pixels on the support is used currently to distinguish
between the bad(quality = 0) and good(quality = 1)
quality input images. To avoid cases where the interface
level is not present in the view glass area, alarms are
anounced whenever the interface level crosses 10% and
90% bounds for operator intervention.

The final algorithm operates at 9fps and these filter
outputs are averaged over one second and communicated
to the Distributed Control System(DCS). The software
used for image processing is Intel Integrated Performance
Primitives for Windows 5.1 and OpenCV is used for
display purposes. Matrox Meteor II frame grabber card
is used for image transfer from the analog camera to the
PC.

6. RESULTS

Fig 6. shows the output of the filter on good quality frames
from a video sequence. The black line superimposed on
the image is the mode of the posterior probability density
function. For each image the support of the posterior
distribution is also given. Fig 7 shows frames along with
the edges detected. Note that even though there are
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Second Frame

A later Frame

Fig.5. Two frames from a tracked video sequence

Support = 7 pixels

Support = 8 pixels

Support = 8 pixels

Fig.6. Tracker output on good quality frames.

Fig.7. Edge Images. The white pixels are the strongest edges detected in each column

spurious edges the filter is able to detect the interface very
well.

Fig 8. shows frames with changed lighting conditions. In
these frames the posterior probability distribution is also
shown next to the superimposed line. In all these frames
the support very closely reflects the visual quality of the
interface. The last frame in this figure is an example of
a bad quality interface(support greater than 15 pixels).
Support of the posterior p.d.f is dependant not only on the
current video frame but also on o and ~. Increase in any of
these increases the support but also affects the robustness
of the filter. In the last frame of Fig.8 the support is
smaller than what can be observed visually because of
the particular choice of ¢ and v which tries to maintain
robustness of the filter.

Fig.9 highlights the stability of the filter. For example, in
the first frame three interfaces are visible but because of
the temporal continuity constraint in the state model, the
filter is undisturbed. The second frame highlights a similar
concept in the case of partial obstruction of camera view.

Fig 10. compares results when estimates from the Capac-
itance probe and the current image based sensor are used

in closed loop control of the interface level. The figure on
the left shows the control achieved with the Capacitance
probe measurements (and the manual set point changes
by the operators) whereas the figure on the right shows
the control achieved by the vision based sensor. From the
descriptive fifteen hour time trend shown on the left it
can be seen that the variance in the interface level and
the pump speed is clearly very high. Note that there is no
unique interface level set point shown as it is constantly
manipulated by the operators. With the control based on
the vision sensor however, the interface level closely follows
the set point (Note the change in scale in the y axis). This
interface level is also not affected by rapid feed surges and
the pump speed is also relatively constant, pointing to a
smooth operation of the control system.

Finally, using approximately three weeks of laboratory
data (one week of camera control, two weeks of Capac-
itance probe control), it has been calculated that the
Bitumen losses in Tailings dropped by 53.6%. A similar re-
duction of 29.12% has also been noticed in Bitumen losses
to Middlings. The laboratory data indicates increased eco-
nomic benefit and reduced environmental losses. Process
data collected for the same duration also indicated signifi-
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Fig.8. Change of lighting conditions

_—

Multiple interfaces

Partial obstruction

Fig.9. Stability of the filter
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Fig.10. Closed loop control results

cant reduction in the variance of process variables around
the separation cell (Interface level, Tailings pump speed,
Tailings flow rate, Froth temperature, etc.) resulting in
a steadier process operation benefiting the downstream
processes. Plant personnel attribute the gains to tighter
control achievable using the interface level obtained from
the camera images and the feed forward component used
in the controller.
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