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Abstract: SOPAVent (Simulation of Patients under Artificial Ventilation) is a blood gas model able to 
simulate patient ventilatory parameters subject to mechanical ventilation in the intensive care unit (ICU). 
In this paper, the SOPAVent model is further developed into a continuously updated model of patient 
ventilatory condition. The extended version of the model is used as the core component for a goal-directed 
optimisation strategy which aims to provide adaptive decision support for ventilatory therapy. Two 
objective functions are aggregated in an effort to interpret medical goals into an optimisation problem. The 
settings of the optimisation strategy are fine-tuned based on medical-goals and medical prioritization rather 
than mathematical optimality of solutions. The final decision support system is tested via a series of 
closed-loop simulations by assuming different clinical scenarios. Results show that the decision support 
system provides the correct advice for ventilator settings following adequate prioritization of competing 
medical goals. 

 

1. INTRODUCTION 

Mechanical ventilation is an important part of intensive care 
therapy as it aims to ensure sufficient patient oxygenation and 
also prevent the build-up of excessive carbon dioxide, which 
can lead to acidosis. However, meeting these goals 
simultaneously often leads to excessive airway pressure and 
tidal volume, which can cause lung injury. Therefore, the 
management of mechanical ventilation often requires the 
optimisation of ventilator settings to achieve the best 
compromise among such competing goals. 

The need for a mechanical ventilation management decision 
support system (DSS) has long been recognized and many 
systems were designed (Rutledge et al., 1993; Laubscher et 
al., 1994; Dojat et al., 1997; McKinley et al., 2001). 
However, only a few of these designs employed model-based 
techniques. Compared with knowledge-based systems, 
model-based systems can provide more objective decisions 
and also support clinicians to understand better the patient’s 
physiological state. 

A totally non-invasive ventilated patient hybrid model was 
previously developed by our group (Wang et al., 2007) based 
on an earlier mathematical model called SOPAVent (Goode, 
2001).  By having such a patient model, patient states 
responding to different ventilator settings can be predicted. If 
clinical goals for mechanical ventilation can be described by 
objective functions, then optimal ventilator settings can be 
found via optimisation. 

In this paper, the design and validation of such a model-based 
goal-directed mechanical ventilation management decision 
support system are presented. The paper is organised as 
follows: first, the SOPAVent model is described, including 
the extension of the model to simulate patients with evolving 

clinical conditions; second, the design of the model-based 
DSS using aggregated multi-objective optimisation is 
described; third, the closed-loop validation of the DSS is 
presented and finally, conclusions are drawn in relation to the 
overall study.  

2. SOPAVent MODEL 

SOPAVent (Simulation of Patients under Artificial 
Ventilation) describes the blood gas exchange and transport 
together with lung mechanics based on respiratory 
physiology and mass balance equations. The model uses a 
compartmental structure (see Fig. 1), where the circulatory 
system is represented by lumped arterial, tissue, venous and 
pulmonary compartments. The lung is sub-divided into three 
compartments; (1) an ideal alveolus, where all gas exchange 
takes place with a perfusion-diffusion ratio of unity; (2) a 
dead space representing lung areas that are ventilated but not 
perfused, and (3) a shunt that is a fraction of cardiac output, 
representing both anatomical shunts and lung areas that are 
perfused but not ventilated. The descriptions of the model 
equations can be seen in the Appendix of this paper.  

The inputs to the model are the ventilator settings (FiO2, 
PEEP, Pinsp, Vrate, Tinsp) and the outputs from the model 
are the arterial blood gases (PaO2, PaCO2 and pHa) and tidal 
volume (VT). A group of model parameters are required from 
the patient to enable the model to be patient-specific. In order 
to use SOPAVent to design an adaptive decision support 
system for mechanical ventilation management, significant 
improvements have been included in the original SOPAVent. 
These are as follows: 
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Fig. 1. Schematic diagram of the SOPAVent model. 

First, SOPAVent was improved to become a totally non-
invasive model after developing new estimation methods for 
the following model parameters: shunt, relative dead space 
(Kd), CO2 production (VCO2), oxygen consumption (VO2) 
and cardiac output (CO). CO is estimated by using a 
population median method (Kwok et al., 2004a). VCO2 and 
Kd are estimated using two data driven models. VO2 is then 
derived based on VCO2 and a fixed respiratory quotient 
(RQ). Shunt is estimated via the secant method based on 
model tuning (Wang et al., 2007). 

Second, SOPAVent was extended to simulate patients from a   
stable clinical state to an evolving clinical condition. 
Following consultation with expert ICU clinicians, the model 
parameters relating to shunt, Kd, VCO2, VO2 and airway 
resistance (Raw) were all deemed to be important indicators 
of the patient clinical states. From the SOPAVent model 
sensitivity analysis (Goode, 2001), these parameters are also 
the most sensitive ones to the model predictions. Therefore, a 
continuously updated SOPAVent model was designed by 
continuously updating these five key model parameters. 

From the Kd, VCO2, VO2, shunt and Raw estimation 
methods, it can be seen that, in order to update these 
parameters continuously, the PaO2, PaCO2, ventilator 
settings, EtCO2 and VT measurements from the patients are 
required. These parameters are all routinely measured 
continuously in ICU except PaO2 and PaCO2. Therefore, the 
model predicted PaO2 and PaCO2 are used for parameter 
estimation so that the five key model parameters can be 
updated at the same frequency. It is worth noting that the 
PaO2 and PaCO2 data are replaced by real measurements 
once they are measured. The model updating frequency was 
taken to be 30 minutes. The updated model structure is 
shown in Fig. 2. 

The continuously updated SOPAVent model was validated 
using five patients data collected from the patient data 
management system (PDMS) located in the Sheffield Royal 
Hallamshire Hospital general ICU (UK). The model 
predictions were compared with the measured blood gas and 
tidal volume. The estimated model parameters, i.e. Kd and 
VCO2, were also compared with the measured ones. One 
typical patient validation result is shown in Fig. 3. Because 
the blood gases are neither measured frequently nor regularly, 
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Fig. 2. The structure of the continuously updated SOPAVent 
model. 

the sub-figures in the second row represent the specific model 
predictions, whose time were closest to the measured blood 
gas and yet were prior to it, with the measured data. The 
summary of the five patients validation results are presented 
in Table 1.    
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Fig. 3. The continuously updated model validation results. ‘o’ 
indicates the predicted results while ‘*’ stands for the real 
measurements. 

 

As can be seen from the validation results, the continuously 
updated model can simulate the patient condition 
continuously and provide good patient state (blood gas and 
tidal volume) predictions subject to the patient clinical state 
changes and different ventilator settings. The model 
parameter estimations seem to agree with the measurements 
generally. The relatively large Kd estimation error reflects the 
current limitations of the Kd model which are due to the 
model inputs unavailability and its complex physiological 
interactions.  

The successful development of this non-invasive 
continuously updated ventilated patient model has formed the 
basis for developing an adaptive model-based decision 
support system for mechanical ventilation management in 
general ICU. 
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Table 1. The continuously updated model validation 
results (Mean Absolute Error (%))  

Patient PaO2 PaCO2 pH VT Kd VCO2 

One 15.76 14.35 0.98 10.35 16.25 10.09 

Two 7.15 10.89 0.62 4.93 14.62 7.95 

Three 11.54 17.05 1.13 12.18 17.57 21.22 

Four 12.28 3.66 0.61 3.83 21.77 10.21 

Five 11.94 11.18 0.80 4.44 15.93 10.78 

Mean 11.73 11.43 0.83 7.15 17.23 12.05 

 

3. A DECISION SUPPORT SYSTEM 

3.1 Background 

As already stated, mechanical ventilation must optimise 
oxygenation levels and carbon dioxide build up. Oxygenation 
is usually indicated by PaO2 and carbon dioxide level is 
usually reflected through PaCO2. However, the ventilation 
strategies that only meet PaO2 and PaCO2 targets are not 
always the optimal ones. Meeting the targets PaO2 and 
PaCO2 often requires an excessive airway pressure, tidal 
volume and FiO2, which could in turn be harmful to the 
patient (ARDSnetwork, 2000). Therefore, any optimal 
ventilation strategy should represent a compromise between 
maintaining the PaO2 and PaCO2 within their acceptable 
ranges and minimizing the side effects of mechanical 
ventilation.  

3.2 Method 

Based on the medical goals relating to mechanical ventilation 
management, finding an optimal ventilation therapy is truly a 
multi-objective optimisation problem. Using the SOPAVent 
model, the patient outcomes for different ventilator settings 
can be predicted. Therefore, the desired ventilator settings are 
those that lead to the smallest error with the ventilation 
management targets. However, because the targets are 
competing, a compromise must be achieved. In this study, the 
aggregated multi-objective optimisation method is used. It 
uses the weight parameters to define the relative 
importance/prioritisation of each objective and sums the 
competing objectives into one objective function. Therefore, 
the solution can be found using a single objective 
optimisation method. After allocating the suitable weight 
parameters, the optimal ventilator settings are then derived by 
searching within the ventilator settings input range and the 
settings that generate the minimal objective function value 
will be provided as the decision support system outputs. In 
the following, the details of the designing of the objective 
function based on the medical goals and medical 
prioritisation are described.  

The current DSS is designed to only provide FiO2, Pinsp and 
Vrate setting advice because of the unproven SOPAVent 
model prediction performance on PEEP and Tinsp. Because 
FiO2 mainly affects the oxygenation of the patient while 
Pinsp and Vrate mainly influence the minute volume 
ventilation, it was decided to divide the DSS into the FiO2 
and Pinsp/Vrate subsystems. In order to generate a clinically 
meaningful ventilator setting advice, the FiO2, Pinsp and 
Vrate search ranges are as defined in Table 2.  

Table 2. The ventilator setting input range 

 FiO2 (%) Pinsp (cmH2O) Vrate  

Input range [30 100] [5 40] [4 20] 

 

Following consultation with expert ICU clinicians, the PaO2, 
PaCO2, PIP and VT control targets were chosen as those 
shown in Table 3 where it can be seen that in clinical 
practice, a compromise among the many competing goals 
must be achieved. 

Table 3. The targets of ventilator management for general 
ICU patients during the acute phase 

 PaO2 
(kPa) 

PaCO2 
(kPa) 

PIP 
(cmH2O) 

VT(ml/body 
weight (kg)) 

Normal 
range 

11-13 5 - 6 �  30 �  7  

Acceptable 
range 

10-14 4 - 7 �  35 �  8 

 

Pinsp / Vrate subsystem 

In the Pinsp / Vrate subsystem, the main goals are to maintain 
the patient PaCO2 within the normal range while avoid 
excessive airway pressure (PIP) and tidal volume (VT).  
Using the aggregated multi-objective optimisation method, 
the objective function for Pinsp / Vrate subsystem is designed 
as follows: 

2
2

2
1 )

max_
_

()
max_2

2_2
(

VT
VTtVT

PaCO
PaCOtPaCO

J
−⋅+−⋅= λλ             (1) 

Subject to: 

5 � Pinsp � 40, 4 � Vrate � 20; 

Where,  

PaCO2_t = 5 kPa (PaCO2 target); 

PaCO2_max =20 kPa;  

VT_t  =7 ml / kg (VT target); 

VT_max = 1500 ml;  

�1 � 0; �2 � 0;  

PaCO2, VT are the SOPAVent predictions. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9065



     

Objective function (1) consists of the weighted square sums 
of the normalized PaCO2 control and the VT control errors. It 
should be noted that the search for Pinsp may introduce a 
large PIP as well. Initially, a PIP penalty function was 
designed in the objective function. However, after 
investigations, it was found that the PIP constraints can 
automatically be met by the VT control goals (both limit the 
high Pinsp). Therefore, the PIP constraint is omitted in the 
objective function. 

For the aggregated multi-objective optimisation, the choice of 
the weighting parameters is very crucial. It decides on the 
relative importance of the individual goals and whether the 
optimal compromise among the competing goals can be 
achieved or not. In this paper, the weight parameters �1 and �2 
were chosen after assessing the PaCO2 and VT control errors 
based on different weight values. Five ICU patient data were 
used to construct the simulated patient. After combining 
different weight values and consulting the control results with 
clinicians, it was decided that 0.4 and 0.6 were the best 
settings for the �1 and �2 to achieve the desired compromise 
among the medical goals.  

The optimisation is conducted using the Genetic Algorithm 
(GA) based technique (Goldberg, 1989) because of its 
capability of searching relatively large solution spaces. The 
random combination of Pinsp and Vrate are searched and the 
values that generate the minimal objective function value are 
found. 

FiO2 subsystem 

The main goal for FiO2 subsystem is to maintain PaO2 
within the normal range. The same method developed by our 
group (Kwok et al., 2004b) is applied. It is briefly 
summarized as follows. By evaluating the SOPAVent oxygen 
transport equations at steady-state, the first derivative of 
PaO2 to FiO2 can be derived. The Newton method is then 
used to search for the FiO2 in order to achieve the PaO2 
target.  

The search for FiO2 to meet the PaO2 target can be described 
by the following equation: 

0_2),2()2( =−= tPaOFiOSOPAVentFiOf δ    (2) 

Where � stands for the model parameters and PaO2_t is the 
target PaO2 which is defined as 12 kPa. The iterative formula 
is: 

)(
2

2

22
22

2

_)),((
)()1(

nFiOFiO
PaO

tPaOnFiOSOPAVENT
nFiOnFiO

∂
∂

−−=+ δ    (3) 

Where FiO2(n) denotes the nth approximation of FiO2.  

4. CLOSED-LOOP VALIDATION OF THE DECISION 
SUPPORT SYSTEM 

In Section 3, a mechanical ventilation management decision 
support system (DSS) is developed based on SOPAVent 
patient model and a model-based optimisation method. By 
transferring the medical goals of the mechanical ventilation 

into an aggregated objective function, suitable ventilator 
settings can be derived using optimisation of such objective 
function. Based on the continuously updated SOPAVent 
model, the DSS should be able to adapt to the patient state 
changes and provide adaptive decision support for ventilation 
management. In this Section, the performance of the adaptive 
DSS is evaluated using closed-loop simulations.  

The structure of the closed-loop simulation is shown in Fig. 
4. The aim of the closed-loop validation is to assess the 
system’s ability to deal with different scenarios that may 
occur in the actual clinical environment and to evaluate 
whether the DSS can produce consistent performances on 
achieving the optimal compromise between the competing 
goals.  
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Fig. 4. The adaptive ventilator management decision support 
system. 

 

In the actual clinical environment, the patient’s condition 
may deteriorate or improve over time. Therefore, four 
scenarios can be defined as follows: 

1) A slow increase in shunt; 

2) A slow increase in Kd; 

3) An acute increase in shunt which then returns to the 
baseline level after 1 hour; 

4) An acute increase in Kd which then returns to the 
baseline level after 1 hour. 

The DSS was designed to generate the ventilator setting 
advice every 30 min. In the simulation, the patient was 
represented by the SOPAVent model. The simulated patient 
parameters were changed according to the designed scenarios 
listed above. At every 30 min, the simulated patient data 
(PaO2, PaCO2, VT, Ventilator settings, EtCO2) were input to 
the DSS to update the patient model. Thereafter, the ‘optimal’ 
ventilator settings were derived using an optimisation based 
on the patient model prediction and the defined objective 
functions. The derived ventilator settings were then input to 
the simulated patient to simulate the next 30 min patient 
states. Each simulation lasted 4 hours and started with a 30-
minute period of stabilization where the simulated patient’s 
ventilator settings were maintained at the initial values. 

Five ICU patient data were used to validate the DSS by 
constructing the simulated patient initial scenarios. The 
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results show that the DSS can generate a satisfactory and a 
consistent performance for each scenario and for all patients. 
Due to space limitations, only two typical results are 
presented (as shown in Figs. 5 and 6). The simulated patient 
was constructed for a patient whose weight, height, age and 
gender were 57kg, 173cm, 68 years and male respectively.  

 

Fig. 5. The closed-loop simulation results for the patient with 
a slow increase in Kd. 

 

Fig. 5 shows how the patient clinical state and ventilator 
settings change when the Kd was increased from 0.37 to 0.58 
over the 210 minutes. It can be seen that initially the patient 
had a high PaCO2 at 8.26 kPa but a low VT at almost 
6ml/kg. The Vrate setting was 20, which was already the 
maximal setting. After the initial 30-min stabilization, the 
DSS responded correctly by increasing the Pinsp from 13 to 
17 cmH2O. The advice on the Pinsp setting seems to have 
met the medical goals as it led to a reduction in the PaCO2 
into the acceptable range while not generating an excessive 
tidal volume and airway pressure. With the Kd increasing, the 
PaCO2 will increase if the ventilator settings were to remain 
unchanged.  In the current simulation, the DSS generated the 
best compromise among the competing goals by slightly 
increasing the Pinsp with Kd increasing. At the end of the 
simulation, both VT and PaCO2 were beyond their 
acceptable ranges with the continuous increase in Kd. 
However, this just indicated the limitation of mechanical 
ventilation. If the patient continued deteriorating, then a sub-
optimal solution must be accepted.  

Fig. 6 shows the changes in the patient clinical state and 
ventilator settings when the patient shunt was increased 
slightly from 11% to 22% over the 210 minutes. Normally, 
the increase in shunt should reduce the PaO2 if the ventilator 
settings were kept the same. This was reflected by the slow 
decline in PaO2 between two sampling points in the figure. 
Every 30 minutes, the patient measurements were input to the 
DSS. The system responded correctly by increasing FiO2. 
This improved the PaO2 and kept it close to the target level. 
For the other mechanical ventilation management goals, it 
can be seen that Pinsp was changed appropriately to maintain 

the conflicting targets, PaCO2 and VT, within their 
acceptable ranges. 

 

Fig. 6. The closed-loop simulation results for the patient with 
a slow increase in shunt. 

 

From the closed-loop simulation results, it can be concluded 
that the DSS can respond correctly subject to the patient state 
changes and competing ventilation management targets. 
However, it should be noted that the simulated patient with 
designed scenarios may introduce some problems. For 
example, the Kd updating in patient model cannot use the Kd 
data-driven model because the simulated patient data are far 
different from the real patient data which are used for Kd 
model training. Therefore, in the simulation study, the 
estimated Kd is directly set as the same value as the 
simulated patient. 

5. CONCLUSIONS 

The management of mechanical ventilation in general ICU is 
complex and includes more often than not competing goals. 
In this paper, a goal-directed model-based adaptive decision 
support system for mechanically ventilated patient 
management is presented. Based on a ventilated patient 
hybrid model called SOPAVent, the optimal ventilator 
settings are derived using an aggregated multi-objective 
optimisation. The DSS is validated via a series of closed-loop 
simulations and the results show that the system can adapt to 
the patient clinical state changes and respond correctly in 
order to achieve an overall optimal patient therapy. Future 
work will include the management of the side effects of FiO2 
(i.e. oxygen toxicity) into the FiO2 subsytem and also the 
clinical validation of the decision support system. 

ACKNOWLEDGEMENT 

All authors wish to acknowledge the help/support from Drs 
Hoi Fei Kwok and Kevin M Goode during the course of this 
project. 

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9067



     

REFERENCES 

ARDSnetwork (2000). "Ventilation with lower tidal volumes 
as compared with traditional tidal volumes for acute 
lung injury and the acute respiratory distress 
syndrome. The Acute Respiratory Distress 
Syndrome Network.[see comment]." New England 
Journal of Medicine 342(18): 1301-8. 

Dojat, M., Pachet, F., Guessoum, Z., Touchard, D., Harf, A. 
and Brochard, L. (1997). "NeoGanesh: a working 
system for the automated control of assisted 
ventilation in ICUs." Artificial Intelligence in 
Medicine 11(2): 97-117. 

Goldberg, D. E. (1989). Genetic Algorithms in Search, 
Optimization and Machine Learning. Boston, MA, 
USA, Addison-Wesley Longman Publishing Co. , 
Inc. 

Goode, K. M. (2001). Model-based development of a fuzzy 
logic advisor for artificially ventilated patients. 
Ph.D. thesis. The University of Sheffield. 

Kwok, H. F., Linkens, D. A., Mahfouf, M. and Mills, G. H. 
(2004a). "Adaptive ventilator FiO(2) advisor: use of 
non-invasive estimations of shunt." Artificial 
Intelligence in Medicine 32(3): 157-169. 

Kwok, H. F., Linkens, D. A., Mahfouf, M. and Mills, G. H. 
(2004b). "SIVA: A hybrid knowledge-and-model-
based advisory system for intensive care 
ventilators." IEEE Transactions on Information 
Technology in Biomedicine 8(2): 161-172. 

Laubscher, T. P., Heinrichs, W., Weiler, N., Hartmann, G. 
and Brunner, J. X. (1994). "An adaptive lung 
ventilation controller." IEEE Transactions on 
Biomedical Engineering 41(1): 51-9. 

McKinley, B. A., Moore, F. A., Sailors, R. M., Cocanour, C. 
S., Marquez, A., Wright, R. K., Tonnesen, A. S., 
Wallace, C. J., Morris, A. H. and East, T. D. (2001). 
"Computerized decision support for mechanical 
ventilation of trauma induced ARDS: results of a 
randomized clinical trial." Journal of Trauma Injury 
Infection & Critical Care 50(3): 415-24. 

Rutledge, G. W., Thomsen, G. E., Farr, B. R., Tovar, M. A., 
Polaschek, J. X., Beinlich, I. A., Sheiner, L. B. and 
Fagan, L. M. (1993). "The design and 
implementation of a ventilator-management 
advisor." Artificial Intelligence in Medicine 5(1): 
67-82. 

Wang, A., Panoutsos, G., Mahfouf, M. and Mills, G. H. 
(2007). "An Improved Blood Gas Intelligent Hybrid 
Model For Mechanically Ventilated Patients In The 
Intensive Care Unit." In: The 5th IASTED 
International Conference on Biomedical 
Engineering, Innsbruck,Austria. 

 

 

Appendix. SOPAVent EQUATIONS 

The transport of O2 is described by the following 5 linked 
differential equations (Goode, 2001); 
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Where VA,Va,Vt,Vv,Vp indicate the volumes of alveolar, 
arterial, tissue, venous, and pulmonary compartments 

respectively (litres); 
.

tQ , cardiac output (ml blood/min); X, 
Fraction of blood shunted past lungs; VO2, O2 consumption 
by tissues (ml O2/min); VD, Alveolar dead space volume 
(ml); VT, Tidal volume (ml); RR, Respiratory rate 
(breath/min); CAO2, Alveolar O2 content (ml O2/l gas) ; 
CxO2, where x=a, t, v, p – arterial, tissue, venous and 
pulmonary O2 content respectively (ml O2/l blood) ; t, Time 
(min) ; FiO2, Inspired O2 gas fraction. 

The gas exchange between the ideal alveolus and the 
pulmonary compartment is driven by the pressure gradient 
across the different boundary for each gas (A6). Embedded in 
the model is an inverse gas dissociation functions that convert 
O2 contents to partial pressure (A7). 

2 2 2 2( ( /1000) )O AO Diff B Pmean C O PpO= ⋅ ⋅ −          

[ml O2/l blood]                                                                 (A6)                                      

2 2( )p inv pP O f C O=        (A7) 

where, PpO2, Pulmonary partial pressure of O2 (kPa); 
Pmean, mean airway pressure (kPa); and BO2 is the diffusion 
coefficient expressed in terms of ml O2/kPa/l blood.  

Whilst only equations pertaining to the diffusion and 
circulation of O2 are presented here, there exists a set of 
similar equations for CO2 within the model. 

A lung mechanics model is included into SOPAVent to 
predict tidal volume (VT) as shown in (A8). 

                    (A8) 

   

Where C is the lung compliance, Raw is the airway resistance 
and it is the fraction of inspiratory time in one ventilatory 
cycle.  
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