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Abstract: This paper features the combination of model-based predictive control and dynamic
inversion into a constrained and globally valid control method for fault-tolerant flight-control
purposes. The fact that the approach is both constrained and model-based creates the possibility
to incorporate additional constraints, or even a new model, in case of a failure. Both of these
properties lead to the fault-tolerant qualities of the method. Efficient distribution of the desired
control moves over the control effectors creates the possibility to separate the input allocation
problem from the inversion loop when redundant actuators are available. An important part of
this paper consists of the application of the proposed theory to an aerospace benchmark of high
complexity. It is shown through an example that the theory is well-suited to the task, provided
that fault-detection and isolation information is available continuously.
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1. INTRODUCTION

Physical damage to an aircraft, like the loss of a vertical
tail, or the blockage of a control surface can lead to loss
of controllability and/or stability. Such failures create a
very challenging situation for the pilots, since such failures
make it vastly more difficult, sometimes even impossible,
to pilot the aircraft.

An example of such a situation, that was not survived
by the crew, is the disaster that involved the El Al Boeing
747 freighter aircraft that crashed in the Bijlmermeer, near
Amsterdam, The Netherlands, in 1992. In this particular
case, separation of the two right wing engines caused sig-
nificant loss of controllability and, next to that, structural
changes, that eventually led to the crash. A simulation
study by Smaili [1997] has shown that this failure was
likely to be survivable, given the correct control inputs
and a wisely chosen trajectory. This example, and many
others, have clearly indicated that it is desirable to develop
mechanisms that can assist the crew in such extraordinary
situations.

The introduction of fly-by-wire systems has created the
possibility to redistribute control effort over the actuators
in an automated fashion. It has been the increase of
computational power of such flight control systems that
now allows for the investigation of fault-tolerant (FTFC)

⋆ This work was supported by the Dutch Technology Foundation
(STW) under project number DMR6515.

techniques. An overview of control methods that can
be applied for FTFC purposes, has been compiled by
Jones [2002]. The latter reference makes a clear distinction
between passive and active methods. Passive methods are
designed to accommodate failures through control design
that is robust with respect to a set of system failures that
is defined a priori. Active methods, on the other hand,
assume that a fault detection and identification (FDI) is
available that provides online failure information such that
the FTFC controller can be adapted online. One active
control method that is deemed very suitable for FTFC is
model-predictive control.

In this paper the fault tolerant flight control (FTFC)
problem is tackled using a combination of model predictive
control (MPC) and feedback linearisation (FBL). Here, we
present an approach that uses all the available freedom
in the constrained inputs and that solves the problem
of control allocation. The proposed theory builds upon
previous work by the authors (Joosten et al. [2007]). The
key contribution of this paper is the fact that the theory is
applied to the an aerospace benchmark of high complexity.

This paper is organised as follows: Section 2 gives an
overview of the different elements of the fault tolerant
flight control setup and additionally shows how they inter-
connect in such a manner. The subsequent sections, sub-
sections 2.1 through 2.3, discuss the implementation and
inherent properties of these elements, which are feedback
linearisation, model predictive control, constraint handling
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Fig. 1. Overview of the complete FTFC loop and the individual components. Additionally, the FDI block is shown
to stress the importance of a failure detection method that delivers a new system description and a new set of
constraints after the introduction of a failure.

and control allocation, respectively. Section 3 introduces
the benchmark model and section 4 gives an example of
the application of the FTFC method to this aircraft. The
paper is concluded with an overview of the most important
conclusions that can be drawn from the application of the
theory to the aircraft model.

2. FAULT TOLERANT FLIGHT CONTROL SETUP

This section presents the reconfigurable control method
that the authors propose. It is this reconfigurable method
which is to be applied in a fault-tolerant setting. The syn-
thesis of two different control techniques, model predictive
control (MPC) and feedback linearisation (FBL), is what
forms the basis of the design.

The first control method that is applied is MPC. MPC
is selected because of its ability to cope with constraints
on the input, state, or output of the system. Furthermore,
since this is a discrete-time control method, it is possible
to change the model in between the discrete time steps.
The fact that MPC is model-based, and that it is possible
to cope with constraints, makes it a serious candidate
for FTFC of systems that feature an FDI mechanism.
Both aspects determine the reconfigurable properties of
the method. An example that considers the use of MPC
in a simulation of the Bijlmermeer accident scenario is to
be found in Maciejowski and Jones [2003].

MPC methods rely upon optimisation and require linear
models in order for the solution of the optimisation prob-
lem to converge to a solution that is a global minimum.
Feedback linearisation offers the possibility to find a non-
linear feedback law, such that given certain assumptions,
the closed loop of the system and FBL controller has
linear and time-invariant behaviour. An example of the
combination of MPC and FBL in order to obtain globally
valid and constrained control over the entry flight of a re-
entry vehicle is to be found in van Soest et al. [2006], and
the combination of robust MPC and feedback linearisation
is evaluated by van den Boom [1997]. Figure 1 provides an
overview of how MPC and FBL are to be combined here.

The concept of a combination between FBL and MPC
as to form a reconfigurable, globally valid, nonlinear, and
constrained controller seems intuitive, but there are several
interconnection issues that require attention. Such issues
are caused by the fact that the number of system inputs is
in general much larger than the number of states that are

to be controlled, which is actually a prerequisite for FTFC.
Furthermore, it is not a priori clear how the constraints on
the inputs relate to the constraints of the MPC controller.

This section provides the theory of both MPC and FBL (or
dynamic inversion, as we implement it) and discusses in-
depth the interconnection issues that arise from this com-
bination. Subsection 2.1 introduces the model structure
and feedback linearisation. The next subsection provides
the details of the MPC strategy that has been applied. Fi-
nally, subsection 2.3 provides details on how to distribute
the desired control effort over the physical inputs.

For reasons of clarity, several assumptions, mainly because
of simplicity, are posed here: it is assumed that online
FDI information and hardware redundancy are available
(i.e. the number of control effectors is greater than the
number of controlled states), the model is assumed to be
affine in the input and full state measurement or state-
reconstruction is assumed to be available.

2.1 Feedback linearisation and dynamic inversion

Feedback linearisation is a control method that will ob-
tain linear and decoupled input-output behaviour through
application of a static and nonlinear feedback law. As-
pects like relative degree, partial feedback linearisation
and uncontrollable internal dynamics are important issues
within the standard framework of feedback linearisation as
presented by Isidori [1995], Slotine and Li [1991]. Feedback
linearisation in its most basic form, input-state lineari-
sation, is what is applied here. Input-state linearisation
largely avoids the aforementioned issues. The presented
implementation applies the concept of a virtual input and
hence allows for the use of the available control effector
redundancy in a further step, whereas FBL in its purest
form does not.

This section starts with an introduction of the system-
type that is considered here and continues to present the
aspects that are involved in the combination of feedback
linearisation and model predictive control. In this paper we
consider nonlinear discrete-time systems, that are affine in
the input, like

x(k + 1) = f(x(k)) + g(x(k))u(k) (1)

y(k) = h(x(k)) (2)

where x(k) ∈ R
n is the state vector, where u(k) ∈ R

m

is the vector of inputs, and where k indicates that this
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system is a discrete-time system with sampling-interval T .
Furthermore, f(x) ∈ R

n×1, g(x) ∈ R
n×m. Both the input

u ∈ U and x ∈ X belong to a polyhedral set, i.e. they can
be written as

U = {u ∈ R
m|Au ≤ b} (3)

X = {x ∈ R
n|Ax x ≤ bx} (4)

for some matrices A, Ax and vectors b, bx.

It is clear to see that, in order to invert the nonlinear
dynamics, a choice of

g(x(k))u(k) = −f(x(k)) + ν(k) (5)

will result in decoupled closed-loop behaviour that equals

x(k + 1) = ν(k) (6)

where ν(k) ∈ R
n is a new input to the inverted system.

The latter equation shows that the chosen control law
decouples the system, such that the closed-loop constitutes
a series of integrators in parallel. Furthermore, it is clear
to see that when the number of inputs m is smaller than
the number of states n, it will be impossible to invert the
entire dynamics. When m = n there will exist a unique
solution to Equation (5) and when m > n then there will
exist a whole set of solutions u(k) to this equation. It is
necessary to make the remark that, that it is assumed in
this paper that m > n, and hence input redundancy exists.
Therefore, the input u(k) will have to be allocated at every
discrete-time step. The latter is commonly called nonlinear
dynamic inversion (NDI), instead of FBL.

In summary, the input-state linearisation that is presented
in this section leads to LTI behaviour that relates ν(k)
to x(k), and retains freedom in the allocation of u(k). A
restrictive result of the above is that the original input
constraints on u(k) must now be mapped into constraints
on ν, since ν(k) will be controlled using model predictive
control (see Figure 1). The next section will introduce an
MPC algorithm that has been tailored to this situation,
such that this issue can be avoided to a large degree.

Remark: It must be noted that discretisation of nonlinear
dynamic systems is not at all trivial. In this paper the
nonlinear system of the application example is sampled
with sampling interval T and first order Euler integration
is applied. The difference equation (1) is obtained from the
original nonlinear system as follows

ẋ = f(x) + g(x)u ≈
x(k + 1) − x(k)

T
(7)

⇔

x(k + 1)≈ Tf(x(k)) + x(k) + Tg(x(k))u (8)

2.2 Model predictive control

Now that a linear discrete-time system (6) has been
obtained through NDI, it is straightforward to apply model
predictive control (MPC). MPC applies an internal model
of the system under consideration. It is this model that is
used to predict future values of dependent variables as a
function of independent variables, in most cases the system
input, over a prediction horizon. Application of a cost-
function allows for the minimisation of this cost function
over the horizon, subject to constraints. The first input

is applied to the system and the optimisation is repeated
during the next time-step.

A possible objective function, where the prediction horizon
is chosen equal to N time steps, equals

J(νk) =

N∑

i=1

e(k + i|k)T Qe(k + i|k) (9)

where e(k + i|k) = x̂(k + i|k) − xr(k + i|k), and where
x̂(k + i|k) is the predicted value of x(k + i) at time k.
r(k) ∈ R

n is the reference signal and Q � 0 is a state
weighting matrix, respectively.

If we introduce the following variables

x̃ =







x(k + 1|k)
x(k + 2|k)

...
x(k + N |k)







, x̃r =







xr(k + 1|k)
xr(k + 2|k)

...
xr(k + N |k)







ũ =







u(k|k)
u(k + 1|k)

...
u(k + N − 1|k)







, ν̃ =







ν(k|k)
ν(k + 1|k)r

...
ν(k + N − 1|k)r







and

Q̃ = IN ⊗ Q

where IN is an identity matrix of size N , and where
the operator ⊗ indicates the Kronecker product of two
matrices. The Kronecker product of two matrices A and
B is defined as

A ⊗ B =






a11B . . . a1nB
...

. . .
...

am1B . . . amnB




 (10)

where aij is the i, j-th entry of matrix A ∈ R
m×n. Now,

using relationship (6) the above objective function (9) can
be expanded into

J(ν̃, x̃r) = (x̃ − x̃r)
T Q̃(x̃ − x̃r)

= (ν̃ − x̃r)
T Q̃(ν̃ − x̃r)

= ν̃T Q̃ν̃ − 2x̃T
r Q̃ν̃ (11)

The minimisation of J(ν̃, x̃r) constitutes a quadratic pro-
gramming problem (QP). The argument of the minimisa-
tion of this QP is the vector ν̃∗(k).

In order to be able to take into account the constraints
on the physical input u(k) it is necessary to incorporate
Equation (5) which denotes the relationship between ν(k)
and u(k) and the constraints on input u(k) as in (3). Both
of these can be expanded over the horizon as follows
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




g(x(k)) 0 . . . 0
...

...
. . .

...
0 0 . . . g(x(k + N − 1))






︸ ︷︷ ︸

=C̃(x)

ũ(k) =







−f(x(k))
−f(x(k + 1))

...
−f(x(k + N − 1))







︸ ︷︷ ︸

=b̃eq(x)

+ν̃(k) (12)

and

(IN ⊗ A)
︸ ︷︷ ︸

=Ã

ũ(k) ≤ [1 1 . . . 1]
T
⊗ b

︸ ︷︷ ︸

=b̃

(13)

Hence it can be concluded that the optimization of cost-
function (11) subject to (12) and (13) will produce the
optimal vector ν̃∗(k). It must be noted, however, that
ũ(k) appears in the equality constraint (12) and that the
same constraint also depends nonlinearly on the state
x̃(k). ũ(k) is an independent variable and therefore it is
necessary to append it to the cost-function (11) such that
the constraints can also be incorporated in to the problem
as follows

min
ν̃,ũ

[
ũ
ν̃

]T [
0 0

0 Q̃

] [
ũ
ν̃

]

+

[
0

−2x̃T
r Q̃

] [
ũ
ν̃

]

(14)

s.t.
[

C̃ | − INn

]
[
ũ
ν̃

]

= b̃eq (15)

[

Ã 0
]
[
ũ
ν̃

]

≤ b̃ (16)

The minimisation of (14), s.t. (15) and (13) leads to
a feasible ũ∗ and an optimal ν̃∗. The latter may be
interpreted as if the dynamic inversion were embedded into
the MPC problem. It must be noted, however, that it is not
possible to weight the input ũ(k) during this phase because
that impairs the state-tracking capability of the controller.
The argument of the optimisation ũ∗ is not unique, since
g(x(k)) is a wide matrix. Hence, it is possible to pose a
second optimisation problem posed as a control allocation
problem, which will be the subject of the next section.

One issue, that was already mentioned in the previous
paragraph, is that the equality constraint (15) depends on
the state in a nonlinear fashion. This constraint therefore
has to approximated such that it is either constant or
linearly dependent of the state at time k. Several solutions
exist for these approximations, of which some are provided
hereafter:

(1) assume that that x(k) is constant over the horizon
such that

C̃ ≈ In ⊗ g(x(k)), b̃eq ≈ [1 1 . . . 1]
T

f(x(k));

(2) apply the input that was computed for the previous
time-step to predict the evolution of the state over
the horizon;

(3) assume that the system state will follow the reference
state according to a stable and linear time-invariant
(LTI) reference system;

(4) exploit a Jacobian linearization of f(x(k)) and
g(x(k)) to obtain a local LTI model that can be
applied to predict the evolution of the state over the
horizon.

The authors acknowledge that what is presented in this
section is a tailor-made MPC implementation, and refer to
Maciejowski [2002] for an in-depth investigation of MPC
and its properties in general.

Remark: The addition of ũ(k) in (14) may seem redun-
dant, but allows to avoid the complex and computationally
intensive mapping of the polytope U that bounds u(k) to
a polytope that bounds ν(k) via the relationship

g(x(k))u(k) = −f(x(k)) + ν(k) (17)

Doing so, must be done every time-step and is very closely
related to the subject of computational geometry. It is
however well-known that projection methods, as are de-
scribed in Preparata and Shamos [1985],are computation-
ally very intensive and therefore not suitable for this appli-
cation. Even the more advanced and much faster methods
like the equality set projection algorithm by Jones et al.
[2004] was shown to be prohibitive where computational
complexity is concerned.

2.3 Control allocation

The previous sections have shown that it is possible to
construct a globally valid, but constrained and nonlinear
controller by means of a combination of MPC and FBL.
Until now, however, we have only computed a feasible
input u∗

k, in the previous section. This input is not unique,
since in general the number of inputs is known to be larger
than the number of controlled states. In many cases it will
be desirable to be able to redistribute this feasible input
such that, for instance, the absolute size of the inputs is
minimal, or such that the change of the input with respect
to the previous time-step is minimised.

Hence, since m ≥ n there is freedom in choosing u. One
way to solve this problem involves the following quadratic
programming problem

min
u

uT Quu + ∆uT Ru∆u (18)

s.t. g(x(k))u(k) = g(x(k))u∗(k)

Au ≤ b

where ∆u = u(k) − u(k − 1) and where Qu, Ru � 0 are
input weighting matrices.

The above optimisation problem may be interpreted as
follows: given one feasible input u∗(k) that results from
the MPC step, this control allocation problem will find
a u(k) that satisfies the mixed objective posed above:
minimisation of the inputs and minimisation of the change
of u(k) with respect to the previous time-step, while
satisfying the control allocation goal by means of the
equality constraint g(x(k))u(k) = g(x(k))u∗k).

It is this control allocation strategy that completes the
FTFC setup that has been presented in this section, and
the next section will show the merits of this FTFC method
by means of an example that involves the nonlinear equa-
tions of motion of a fixed-wing aircraft.
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3. INTRODUCTION TO THE GARTEUR AG16
BENCHMARK

This section provides a brief introduction to the Boeing
747-100/200 fault-tolerant control benchmark model to
which the previously introduced control methodology will
be applied. This model is used by the fault-tolerant control
group (action group 16) of the Group for Aeronautical Re-
search Europe (GARTEUR) in which several institutions
from Europe participate.

The current version of the benchmark model is based on
the Delft University aircraft simulation and analysis tool
by van der Linden [1996] on the basis of which Smaili [1999]
has implemented a Boeing 747-100/200 model for purposes
of the reconstruction of the 1992 Bijlmermeer accident
with an El-Al Boeing 747-100/200. Several contributors
have since modified and improved the original model:
Marcos [2001], Marcos and Balas [2003],Smaili et al. [2006].

In its current state the benchmark consists of a com-
prehensive model that can be evaluated in the Mat-
lab/SIMULINK environment. The aerodynamic model
and physical properties of this aircraft model correspond
to actual wind-tunnel data of the aircraft-type under
consideration (Hanke and Nordwall [1970]) and several
failures, ranging in complexity from stuck actuators, to
the complete scenario of the Bijlmermeer disaster.

The model comes with a complete reconstruction of the
autopilot of this aircraft, but can also be flown in open-
loop. In the open-loop setting, one has control over 30
different inputs, which represent the 25 different control
surfaces, the 4 engines, and the landing gear. Integrated
into the model are assessment criteria (Lombaerts et al.
[2006]) for objective evaluation of the quality of the FTC
methods of the different participants in GARTEUR AG16.

In the following section it will be shown that the control
strategy proposed in this paper is suitable for retaining
stability and tracking of a reference with the benchmark
aircraft in case of a failure.

4. APPLICATION EXAMPLE

In this section we evaluate the performance of the com-
bination of MPC and FBL as a reconfigurable control
method. We do so in an example that involves a so-
called stabiliser runaway. In this particular failure case
the horizontal tailplane (stabiliser) of the aircraft moves
towards its extreme position.

Before the actual example is discussed, it is necessary to
introduce an important prerequisite that is required when
using the benchmark model in this setting. In section 2.1
it was assumed that the system structure corresponds to
Equation (1). In practice, however, the structure of the
benchmark model is much more complex and, moreover,
not affine in the input. Therefore, a recursive and online
identification approach is applied in order to determine
the aerodynamic parameters C∗ in the proposed model
structure

x(k + 1) = f(C∗, x(k)) + g(C∗, x(k))u(k) (19)

y(k) = h(x(k)) (20)

ro
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Fig. 2. Simulation result for the body rates p, q, r with
respect to a reference after introduction of a stabiliser
runaway fault at t = 10 [s]

These parameters are determined using the approach
presented by Lombaerts et al. [2007]. Although not strictly
required in the nominal case, the identification method is
applied in both the nominal and the failure case here.

In this particular example, it is shown that a combination
of the reconfigurable controller and the online identifica-
tion algorithm can retain stability after introduction of
the stabiliser runaway failure at time t = 10 [s]. At this
time the stabiliser moves to its extreme trim angle of
2o. Next to that, it is shown that, despite the stabiliser
being inoperative and stuck at an extreme position, it is
still possible to track a doublet-like reference signal with
the pitch rate q [rad/s] using another combination of the
control surfaces.

The states that are controlled, are the roll-rate p, the pitch
rate q and the yaw rate r, respectively. The inputs that are
used in this example are the 4 different aileron surfaces,
the 4 elevator surfaces, the two rudder surfaces, and the
stabiliser trim angle. The other inputs remain at their trim
value for the initial condition of each simulation.

Figure 2 depicts the results that were obtained in simula-
tion. Several important notions can be derived from this
figure. First of all it can be seen from the figure that,
although the online identification is initialised with data
that was obtained off-line, it takes approximately 3 [s] for
the closed loop to stabilise the system for the reference
state p, q, r = 0. Furthermore, it clear to see, that although
a failure is introduced at t = 10 [s] virtually no effect is
noticeable in the state-response. The latter indicates that
the controller successfully succeeds at redistributing the
desired control effort over the remaining control surfaces
while MPC automatically satisfies the physical constraints
on the control surface deflections. And finally, it is easily
seen from the figure that in spite of the failure of the sta-
biliser, it is still possible to track a reference with the pitch
rate. It is assumed that extensive tuning of parameters
like the state- and input weighting matrices Q, Qu, Ru, the
selected sampling interval T and the prediction horizon N
will lead to greatly improved tracking behavior.
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What remains to be said about this example is that
the computational complexity of the control method is
quite high. To be more precise: selection of an MPC
prediction horizon N ≥ 2 leads to a controller that cannot
be evaluated in realtime, although this can be greatly
improved upon through a more efficient implementation
of the controller. Furthermore, although not visible in the
provided results, the online identification algorithm suffers
from lack of excitation when the system is controlled to be
in steady-state for extended periods of time. Both of these
issues are not addressed in this paper, but will be the topic
of future research.

5. CONCLUSIONS AND FURTHER WORK

This paper has presented the combination of MPC and
FBL into a constrained and globally valid control method
and is as such an evolution of previous work (Joosten et al.
[2007]). Using the proposed control method, it is possible
to implement a reconfigurable flight control-law that is
valid throughout the flight envelope. The reconfigurable
properties are a result of efficient distribution of the
desired control effort over the remaining and redundant
control inputs. Furthermore, the method can take into
account various input, state and output constraints. The
latter is particularly useful when actuators get stuck in a
certain position.

An example has been provided that shows that the com-
bination of the proposed control strategy an online and
recursive identification can both retain stability and track
a reference when the body (pitch, roll, yaw) of the Boeing
747-100/200 benchmark model are controlled.

Practical issues that will be the topic of future research
are related to the construction of a more computationally
efficient variant of this controller. Additionally, it will have
to be taken into account that the recursive identification
scheme is applied in a closed-loop setting, whilst that fact
is not explicitly accounted for at the moment.

From a theoretical point of view an interesting subject for
future research is the addition of robustness to the FTFC
method, whilst it is well-known that feedback linearisation
and dynamic inversion methods are not particularly robust
to modelling uncertainties. Such modelling uncertainties
particularly arise in situations where FDI information is
not available instantaneously. In order to achieve this, it
is necessary to include theory for determination of the
uncertainty in a model after feedback linearisation, like
what is discussed by Juliana et al. [2005]. The same holds
for the development of theory that explains the effect
of discretisation on model uncertainty as to obtain an
uncertain discrete-time feedback linearised system that is
suitable for control with robust model predictive control
methods like Kothare et al. [1996].

Increased robustness of the FTFC method will be of
great importance in applications where there is latency in
the FDI system. Robustness with respected to modelling
uncertainty is required to guarantee stability until new and
accurate FDI information becomes available after a failure
has occurred.
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