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Abstract: ‘Circadian Rhythm’ is a biological phenomenon observed in a large number of organisms
ranging from unicellular bacteria to human beings. In this paper, transcriptome data from Cyanothece, a
photosynthetic cyanobacteria, has been analyzed for the purpose of discovering genes whose expressions
are rhythmically close (co-rhythmic). Subsequently we study if these rhythms can be modeled, up to
phase, using a cascade of three phase oscillators. One of the phase oscillator in the network is derived
from the model of a ‘limit cycle oscillator’ using KaiC protein (the master clock). We conclude that
‘Circadian Rhythms in Cyanothece transcriptome data can be dynamically modeled up to phase using
a single master clock derived from limit cycle oscillator using KaiC protein cascaded with a pair of
interconnected phase oscillators’. Biologically substrates of the phase oscillators are presently unknown.
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1. INTRODUCTION

‘Circadian Rhythm’ is a biological phenomenon observed in a
large number of organisms ranging from unicellular bacteria
to human beings. The underlying biochemical mechanism is
also understood for many of the organisms to a varying degree
of details. It is unclear, however, how a circadian clock con-
trols various different metabolic processes. In particular, it is
of importance to understand if only one clock is enough or if
multiple clocks are required. In this paper, transcriptome data
from Cyanothece, a photosynthetic cyanobacteria, has been an-
alyzed for the purpose of discovering genes whose expressions
are rhythmically close (co-rhythmic). Subsequently we study
if these rhythms can be modeled, up to phase, using a cascade
of three phase oscillators. One of the phase oscillators in the
network is derived from the model of a ‘limit cycle oscillator’
using KaiC protein (the master clock). We conclude that ‘Circa-
dian Rhythms in Cyanothece transcriptome data can be dynam-
ically modeled up to phase using a single master clock derived
from the limit cycle oscillator using KaiC protein cascaded
with a pair of interconnected phase oscillators’. Biologically
substrates of the phase oscillators are presently unknown.

Cyanothece, a photosynthetic cyanobacteria, is grown in ASP2-
N medium under 12/12 hour light/dark cycle. Under light
conditions, cells are kept under 50 µE m−2s−1 irradiance while
it is 0 µE m−2s−1 for the dark condition. Samples for mRNA
are extracted every 4 hours, at 12 time points (hour 1, hour
5, through hour 45), to generate the micro array data. The
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Fig. 1. The log ration pattern of micro data (black) and its linear
trend (red) and rhythmic component (blue).

data are associated with more than 6000 genes. A mixture of
mRNA extractions from different time points has been used
as reference channel. The data are normalized using Lowess
algorithm and quality assessment is performed using T-test
algorithm (see Quackenbush [2002]). Log ratios of the data
from control signals and target signals are obtained at 12 time
points and they show rhythmic patterns. The rhythmicity has
been displayed in Fig. 1. In the figure, the black pattern is one
example from more than 6000 log ratios of the normalized
micro array series data. The rhythmic component (the blue
curve) can be obtained by removing the linear trend in the
original pattern. The rhythmic component can be reconstructed
with two sinusoidal functions of a pair of optimum frequencies.
A gene clustering strategy is proposed based on the optimum
frequency pairs, instead of patten similarity.

Circadian rhythms are a central feature of biological systems
and are environmentally adaptive, and homeostatically regu-
lated oscillators have been found in many organisms (cyanobac-
teria, fungi, and flies). Oscillation in KaiC phosphorylation

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 9695 10.3182/20080706-5-KR-1001.2495



0 5 10 15 20 25 30 35 40 45
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Gene 130 pattern estimation with Ω
1
 unchanged

Fig. 2. The rhythmic component in the micro array expression
data and its estimates with two sinusoidal functions over
different pairs of frequencies. The red curve is the estimate
with the optimum frequency pair.

is a key regulator for the clock in vivo. A suitable circadian
oscillation in cyanothece has been built using the phospho-
rylation/dephosphorylation cycle of KaiC protein. Simulation
of this cycle using a dynamic model for the in vitro KaiC
circadian clock (see Mehra et al. [2006]) shows convergence
to a limit cycle. Phase activity of the KaiC oscillation, obtained
after a suitable linear transformation, is modeled using a simple
evolution equation described in Tass [2006].

The typical rhythmic pattern of micro array expression data can
be modeled up to its phase. A oscillatory network is proposed
with three phase oscillators. The oscillations in micro array
series data are reconstructed up to phases by a cascade of three
oscillators. One of the phase oscillator is a model of master
clock obtained from phosphorylation/dephophorhylation cycle
of KaiC protein. The other two oscillators are the model of the
phase activities of two rhythmic components with the optimum
frequency pairs in the micro array expression patterns and
Kuramoto model has been utilized (see Kuramoto [1984]).

2. ESTIMATION OF MICRO ARRAY EXPRESSION
PATTERNS WITH OPTIMUM FREQUENCY PAIR.

The log ratio patterns of 12 time points collected in micro array
experiments show rhythmicity after the process of Lowess nor-
malization and T-test. We conjecture that the rhythmic pattern
in the micro array data can be modeled using a pair of funda-
mental frequencies (two sinusoids) with unknown amplitudes
and phases. In this study we estimate the micro array pattern
using linear combination of a linear trend and two sinusoidal
functions with a pair of optimum frequencies described as fol-
lows:

g(t) = a + bt + α1 sin(ω1t + θ1)+ α2 sin(ω2t + θ2)

where a + bt is the linear component in the estimation, ω1 and
ω2 are the frequencies of the rhythmic component, α1 and α2

are the amplitudes, θ1 and θ2 are the phases related to two
sinusoidal components. Fig. 1 shows one example log ratio
patten (black curve) that displays rhythmicity and its linear
trend (red) and rhythmic component (blue). The part of linear
trend can be obtained using linear regression. For the pairs
{(ti,gi), i = 1, · · · ,N}, we can fit the curve {(ti,gi)} using a
linear function:

g(t) = a + bt

where the parameter a and b are chosen to minimize the cost
function:
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Fig. 3. The estimation errors over the pairs of frequencies. The
optimum frequency pair is chosen that caused the smallest
error and the optimum frequency pair makes best estimate
(red curve in Fig. 2).

C(a,b) =
N

∑
i=1

(gi −a−bti)
2.

The least square method gives:

a = ∑gi−b∑ti
N

b = N ∑giti−∑gi ∑ ti
N ∑t2

i −(∑ti)2

.

The rhythmic component in the micro array expression pattern
then can be obtained by removing the linear trend:

ḡ(ti) = g(ti)−a−bti.

with obtained a and b (see Fig. 1). The rhythmic component
can be estimated using a linear combination of two sinusoidal
functions described as follows:

ḡ(ti) = α1 sin(ω1ti +θ1)+α2 sin(ω2ti +θ2).

Given a pair of frequencies, (ω1,ω2), the parameters α1,α2,θ1,θ2 are chosen

in such a way that the cost function is minimized:

E(ω1,ω2) = min
α1 ,α2 ,θ1,θ2

G(α1,α2,θ1,θ2)

where G(α1,α2,θ1,θ2) is the cost function:

G(α1,α2,θ1,θ2) =
N

∑
i=1

(ḡ(ti)−α1 sin(ω1ti +θ1)−α2 sin(ω2ti +θ2))
2.

For the given frequency pair, (ω1,ω2), the optimal parameters α1,α2,θ1,θ2

are obtained using the gradient method:
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where µ is the size of change in the vector (α1,α2,θ1,θ2) and ▽G(α1,α2,θ1,θ2)
is the gradient of the function G(α1,α2,θ1,θ2):
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−2∑N
i=1 sin(ω1ti +θ1)ei(α1,α2,θ1θ2)
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−2α1 ∑N
i=1 cos(ω1ti +θ1)ei(α1,α2,θ1θ2)

−2α2 ∑N
i=1 cos(ω2ti +θ2)ei(α1,α2,θ1θ2)









where

ei(α1,α2,θ1θ2) = ḡ(ti)−α1 sin(ω1ti +θ1)−α2 sin(ω2ti +θ2).

The frequency pairs, (ω1,ω2), are varied and the estimation errors over

(ω1,ω2) have been computed . The optimum frequency pair is chosen that make

the smallest errors. Fig. 2 shows the rhythmic component of one micro array

expression pattern (blue) and its estimates with two sinusoidal functions over

different pairs of frequencies (green smooth curves). The red smooth curve is
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Fig. 4. The number of genes over optimum frequency pairs.
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Fig. 5. Five clusters of genes are chosen based on optimum
frequency pair.

the best estimate with the optimum frequency pair. The estimation error over

frequency pairs is shown in Fig. 3. The frequency pair that cause the smallest

estimation error is the optimum frequency pair that makes the best estimate (red

curve in Fig. 2).

The genes that have the same optimum frequency pair are counted together.

Fig. 4 shows the number of genes over the optimum frequency pair. The

optimum frequency pairs provides a method of gene clustering based on the

similarity of rhythmicity contained in the genetic expression patterns of more

than 6000 genes. Fig. 5 shows four clusters of genes based on the optimum

frequency pairs.

3. SIMULATION OF CIRCADIAN PHASE PATTERN OF KAIC PROTEIN

PHOSPHORYLATION

Circadian rhythms are a central feature of biological systems and are environ-

mentally adaptive. Homeopathically regulated oscillators have been found in

many organisms (cyanobacteria, fungi, and flies). Oscillation in KaiC phos-

phorylation is a key regulator for the clock in vivo. KaiC is an enzyme with

autokinase and autophosphatase activities. A synthetic, predictive and dynamic

model for the in vitro KaiC phosphorylation activity has been built based on the

self-amplifying response (‘autocatalysis’) of autophosphorylating kinases (see

Mehra et al. [2006]), described as follows:

ẋ1 = k5x8 − k1x1x3 − k3x6x1x3

ẋ2 = k6x7 − k4x6x2

ẋ3 = k7x4 − k1x1x3 − k3x6x1x3

ẋ4 = k6x7 − k7x4

ẋ5 = k1x1x3 − k2x5

ẋ6 = k2x5 + k3x6x1x3 − k4x6x2

ẋ7 = k5x8 − k6x7

ẋ8 = k4x6x2 − k5x8

where x1, . . . ,x8 represent KaiA, KaiB, KaiC, KaiC∗ , KaiAC, KaiAC*, KaiBC*

and KaiABC* respectively. The model was described in details in Mehra et al.

[2006]. Among these variables, x3 and x4, i.e., unphosphorylated KaiC protein

and phosphorylated KaiC protein (KaiC∗) are of interest in this study. Activities

of KaiC and KaiC∗ are oscillatory and they converge to a limit cycle on the

phase plane with proper initial conditions. Fig. 6 shows the oscillatory activities
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Fig. 6. The oscillatory activities of unphosphorylated KaiC and
phosphorylated KaiC (KaiC∗) in time.
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Fig. 7. An oscillatory behavior around the origin on the phase
plane is obtained by taking a proper linear transformation.
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Fig. 8. The artificial phase pattern (top) and its velocity pattern
(bottom) in time.

of KaiC and KaiC∗ in time. The activities of unphosphorylated KaiC and phos-

phorylated KaiC (KaiC∗) forms a limit cycle oscillations. Taking a proper linear

transformation of the oscillatory activities, we can have the oscillatory behavior

around the origin on the phase plane. Then we can obtain an monotonic artificial

phase activity of KaiC phosphorylation/dephosphrylation cycle. Fig. 7 shows

the oscillatory behavior of KaiC and KaiC∗ protein around the origin on the

phase plane obtained by taking a proper linear transformation, and Fig. 8 shows

the artificial phase pattern of the KaiC phosphorylation/dephosphrylation cycle

with the linear transformation and its velocity pattern in time. In Fig. 9 (top),

the phase velocity pattern is plotted versus the phase pattern.

Since the oscillatory activities of KaiC and KaiC∗ proteins converge to a limit

cycle, the phase pattern contains the clock information of the circadian regu-

lator. One important and interesting problem is if the phase activity of KaiC

phosphorylation/dephosphrylation oscillation can be modeled with some dy-

namical model. In this study we utilize the simple evolution equation described

in Tass [2006]:

ż = (α + iω)z−βz2z∗ + S̃(z,z∗)
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Fig. 9. The phase velocity is plotted versus the phase pattern
(top), The section of phase velocity pattern (red part)
has been used to compute the Fourier coefficients in the
evolution equation (1).
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Fig. 10. The estimation of the part of phase velocity pattern
using the Fourier Transform in phase with the coeffi-
cients obtained. On the top is the estimation error versus
the number of Fourier transform coefficients and on the
bottom is the estimate (green color) of the actual phase
velocity (red color) using 30 pairs of Fourier transform
coefficients.

where z is a complex variable, and z∗ denotes the complex conjugate of z. ω is

the eigenfrequency, α is a real parameter and β a nonnegative real parameter.

S̃(z,z∗), depending on z and z∗, represents a class of stimulation mechanisms

which merely influence the phase. One special form of choice of S̃ is given by

S̃(z,z∗) = z
∞

∑
m=1

(ηmzm+1z∗−η∗
m(z∗)m+1z)

with complex coefficients

ηm = wm + ivm (wm,vm ∈ R).

Introduction of polar coordinates r and φ by inserting the hypothesis z(t) =
r(t)exp(iφ(t)) gives the evolution equations of the amplitude r and the phase

φ :

ṙ = αr−βr3,
φ̇ = ω +∑∞

m=1(2rm+2wm sin(mφ)+2rm+2vm cos(mφ)).

The stimulus S̃(z,z∗) only acts on the oscillator’s phase whereas the amplitude

remains unaffected. For this reason the amplitude r relaxes towards the stable

value
√

α/β irrespective of the initial value r(0) and irrespective of the

stimulus’ action. So the evolution equation of the phase φ can be simplified

into:

φ̇ = ω +
∞

∑
m=1

(am sin(mφ)+bm cos(mφ)) (1)

where am and bm are real constant coefficients irrespective of the amplitude r.

In Fig. 9 (top), the plot of the phase velocity pattern versus the phase pattern

shows that the phase velocity is a periodic function of the phase pattern. In

the evolution equation of the phase(1), the derivative of phase is represented in

the form of Fourier expansion in phase. These observations tell that the phase

pattern can be reproduced with the evolution equation (1). To reproduce the
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Fig. 11. The reproduction of the phase using the evolution
equation (1) with the obtained Fourier coefficients. The
blue curve is the original phase pattern and the red curve is
the simulated phase pattern. The phases are plotted in 2π
modulus at the bottom.
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Fig. 12. Phase velocity pattern (in time) comparison: original
phase velocity (blue), the estimate of phase velocity using
the Fourier expansion (green), and the estimate of phase
velocity using the evolution equation (red).

phase pattern using the evolution equation (1), the parameters in the model,

ω , am and bm have to be found. A period of phase velocity pattern has

been used to compute those Fourier coefficients with DFT algorithm. Fig. 9

shows the section of phase velocity pattern (red) that is used to compute the

coefficients. Fig. 10 shows the estimation of phase velocity pattern using the

Fourier expansion in phase with the coefficients obtained. On the top is the

estimation error versus the number of Fourier expansion coefficients and on

the bottom is the estimate (green color) of the actual phase velocity (red color)

using 30 pairs of Fourier coefficients. With the obtained Fourier coefficients,

we can reproduce the phase pattern by simulating the evolution equation (1).

Fig. 11 shows the simulation of phase pattern using the evolution equation,

in which the blue curve is the original phase pattern and the red curve is

the simulated phase pattern. Fig. 12 shows the comparison of original phase

velocity and its estimates.

4. OSCILLATORY NETWORK WITH CIRCADIAN CLOCK

OSCILLATOR

In Section 2, we studied the micro array expression pattern fitting using the lin-

ear combination of a linear trend and two sinusoidal components with an opti-

mum frequency pair. In Section 3, we simulated the circadian activities of KaiC

and KaiC∗ proteins using a dynamical model and the artificial phase activity of

KaiC phosphorylation/dephosphorylation oscillation was reproduced using an

phase model of evolution equation. A typical rhythmic pattern of an expression

data can be modelled up to its phase. In this section, we propose a network of 3

oscillators that reproduce the circadian phase pattern and the phase patterns of

two sinusoidal components in the micro array expression pattern fitting, shown

in Fig. 13. Then the rhythmic component of micro array expression pattern with

linear trend removed can be estimated with the sinusoids of the phase patterns

of two sinusoidal components. One oscillator of the network is described by

the evolution equation that reproduce master circadian clock and control the
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Fig. 13. The oscillatory network including one master clock
(φ0) and two Kuramoto oscillators (φ1 and φ2).

phases of sinusoidal components. The other two oscillators of the network are

described by a modified Kuramoto model of two unit with extra terms which are

the functions of master circadian phase. The oscillatory network is described as

follows:

φ̇0 = ω0 +∑M
m=1(am sin(mφ0)+bm cos(mφ0))

φ̇1 = ω1 + ε1 sin(k0k1φ1 −φ0 +ψ1)
+ε2 sin(φ2 − k1φ1 +ψ2)

φ̇2 = ω2 + ε3 sin(k0φ2 −φ0 +ψ3)
+ε4 sin(k1φ1 −φ2 +ψ4),

(2)

with k1 = ω2
ω1

and k0 = ω̄
ω2

, where φ0 is the phase of the master clock with

ω0 < 0, φ1 and φ2 are the phases of the two sinusoidal components with

natural frequencies, ω1 > 0, ω2 > 0, the optimum frequency pair obtained via

pattern fitting of the micro array data. ω̄ < 0 is the average phase velocity

of the master clock, which is the slope of the straight line that interpolates

the phase activity of the master clock (the circadian phase pattern in Fig. 8).

There exists a constraint, ψ4 = −ψ2 = ψ1−ψ2
k0

. The connection parameters εi-

s, i = 1, · · · ,4, are positive. The above interconnected phase dynamics (2) is a

variation of the well known Kuramoto’s models (see Kuramoto [1984]). The

rhythmic component of the micro array data now can be estimated using the

sinusoidal functions of the phases φ1 and φ2 as follows:

ḡ(t) = α1 sin(φ1(t))+α2 sin(φ2(t)),

Here we picked up one micro array expression pattern, as shown in Fig. 1, for

example. Using the optimum frequency pair in the micro array pattern fitting

obtained in Section 2 and the Fourier coefficients obtained in Section 3, and

choosing values for other parameters in the dynamical model of oscillatory

network, the phase patterns are simulated. Fig. 14 shows the master circadian

phase pattern and two phase patterns for the sinusoidal components simulated

with the model of oscillatory network (2). Fig. 15 shows the corresponding

sinusoids of the phase patterns. Fig. 16 shows the estimation of the genetic pat-

tern using sinusoids of the phases, φ1(t) and φ2(t), generated by the oscillatory

network (green curve).

One important problem in the dynamical model (2) is the stability of the

‘scaled’ phase differences, k0k1φ1−φ0 and k0φ2−φ1, that is, k0k1φ1(t)−φ0(t)
and k0φ2(t)− φ1(t) converge to some equilibrium points. Another phase dif-

ference in the model is φ2 − k1φ1, which is dependent on the phase differences

k0k1φ1 − φ0 and k0φ2 − φ1. We start this analysis with a simpler model with

those Fourier terms removed in the first equation, described as follows:

φ̇0 = ω0

φ̇1 = ω1 + ε1 sin(k0k1φ1 −φ0 +ψ1)
+ε2 sin(φ2 − k1φ1 +ψ2)

φ̇2 = ω2 + ε3 sin(k0φ2 −φ0 +ψ3)
+ε4 sin(k1φ1 −φ2 +ψ4),

(3)

in which ω̄ = ω0. Multiplying k0k1 on the second equation and k0 on the third

equation, we have:
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Fig. 14. The circadian phase pattern φ0(t)(blue) and two phase
patterns, φ1(t) and φ2(t), for the sinusoidal components
(green and blue) generated by simulating the oscillatory
network (2)
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using the sinusoids of the phases generated with the model
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φ̇0 = ω0

k0k1φ̇1 = k0k1ω1 + k0k1ε1 sin(k0k1φ1 −φ0 +ψ1)
+k0k1ε2 sin(φ2 − k1φ1 +ψ2)

k0φ̇2 = k0ω2 + k0ε3 sin(k0φ2 −φ0 +ψ3)
+k0ε4 sin(k1φ1 −φ2 +ψ4)

(4)

where k0k1ω1 = k0ω2 = ω0 by the definitions of k0 and k1 . Define η1 =
k0k1ε1,η2 = k0k1ε2,η3 = k0ε3, and, η4 = k0ε4, then ηi-s, i = 1, · · · ,4, are
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negative because k0 is negative. Define Φ1 = k0k1φ1−φ0 +ψ1 and Φ2 = k0φ2−
φ0 + ψ3 , and by the constraint ψ4 = −ψ2 = ψ1−ψ2

k0
, we have φ2 − k1φ1 +

ψ2 = Φ2−Φ1
k0

and k1φ1 − φ2 + ψ4 = Φ1−Φ2
k0

. From (4) and the new variables

defined above, we have differential equations on Φ1 and Φ2 as follows:

Φ̇1 = η1 sin(Φ1)+η2 sin( Φ2−Φ1
k0

)

Φ̇2 = η3 sin(Φ2)+η4 sin( Φ1−Φ2
k0

)
(5)

with ηi-s and k0 negative.

Claim: The system (5) has a locally stable equilibrium at (0,0).

Proof: Firstly, we can easily verify that Φ̇1(0,0) = 0 and Φ̇2(0,0) = 0, which

means the origin (0,0) is an equilibrium. Then we need to prove the equilibrium

(0,0) is stable locally.

Define the Lyapunov function V (Φ1,Φ2) as follows:

V(Φ1,Φ2) =
α

2
Φ2

1 +
1

2
Φ2

2

with α = η4
η2

= |η4 |
|η2 |

> 0. It is obvious that V (Φ1,Φ2) is positive definite. Then

we have

V̇(Φ1,Φ2) = αΦ1Φ̇1 +Φ2Φ̇2

= αΦ1

(

η1 sin(Φ1)+η2 sin( Φ2−Φ1
k0

)
)

+Φ2

(

η3 sin(Φ2)+η4 sin( Φ1−Φ2
k0

)
)

= αη1Φ1 sin(Φ1)+η3Φ2 sin(Φ2)

+|η4|(Φ1 −Φ2)sin( Φ2−Φ1
|k0 |

)

with ηi-s and k0 negative, we can easily verify that

αη1Φ1 sin(Φ1) < 0

η3Φ2 sin(Φ2) < 0

|η4|(Φ1 −Φ2)sin( Φ2−Φ1
|k0 |

) < 0

for (Φ1,Φ2) with |Φ1| and |Φ2| small enough. Then V̇ (Φ1,Φ2) is negative

definite for (Φ1,Φ2) in the neighborhood of the origin (0,0). By Lyapunov

Theorem, the equilibrium (0,0) is locally stable in the system (5). Hence, the

‘scaled’ phase differences, k0k1φ1 − φ0 and k0φ2 − φ1, converge to −ψ1 and

−ψ3 in the system (3).

In the dynamical model of oscillatory network with the Fourier terms in the

first equation (2), the ‘scaled’ phase differences, k0k1φ1 −φ0 + ψ1 and k0φ2 −
φ1 + ψ3, can not converge to a certain equilibrium, but they can be controlled

within certain range by choosing stronger connection parameters, εi-s, in the

model (2). For simplicity, we choose ψi = 0 and εi = ε for all i in the model

(2). By increasing the connection coefficients, εi, the ‘scaled’ phase differences,

k0k1φ1 −φ0 and k0φ2 −φ1 can be reduced within smaller range. Fig. 17 shows

the ‘scaled’ phase difference patterns k0k1φ1 −φ0 (red), k0φ2 −φ1 (green) and

k1φ1 −φ2 (blue), for three different connection coefficients, εi = ε = 0.2,0.8
and 1.6 from top to bottom. and maximal phase differences become smaller as

the connection coefficients, εi, increase, which is shown in Fig. 18.

5. CONCLUSION

We have analyzed the transcriptome data from Cyanothece, a photosynthetic

cyanobacteria, for the purpose of discovering genes whose expressions are

rhythmically close (co-rhythmic). The rhythmic component of the micro array

expression patterns can be reconstructed using two sinusoidal functions with a

pair of optimum frequencies. Subsequently we utilized an evolution equation

to model the phase activity of KaiC phosphorylation/dephosphorylation cycle.

At last we proposed an oscillatory network, using a cascade of three phase

oscillators, to model the phase patterns of rhythmic components in the micro

array expression data. One of the phase oscillators in the network is derived

from the model of a ‘limit cycle oscillator’ using KaiC protein (the master

clock). We conclude that ‘Circadian Rhythms in Cyanothece transcriptome

data can be dynamically modeled up to phase using a single master clock

derived from limit cycle oscillator using KaiC protein cascaded with a pair of

interconnected phase oscillators’. Further work on the oscillatory network will

be done. The work will include how the master clock controls the phases of the

other two oscillator, if one master clock is enough to drive phase patterns of

rhythmic components in multiple micro array expression data, and how those

parameters in the model are chosen.
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Fig. 17. The ‘scaled’ phase difference patterns k0k1φ1 − φ0

(red), k0φ2 − φ1 (green) and k1φ1 − φ2 (blue), for three
different connection coefficients, εi = ε = 0.2,0.8 and 1.6
from top to bottom.
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Fig. 18. The maximal phase differences become smaller as the
connection coefficients, εi, increase
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