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Abstract: In Wire Electrical Discharge Machining (WEDM) the breakage of the cutting tool (the wire) 

reduces the process performance and the required accuracy. Previous works of authors showed that the 

behavior of the basic signals of the process (current and voltage) can be employed to detect degraded 

situations that can lead to wire breakage. In particular, different types of degraded behaviors in two 

commonly used workpiece thicknesses (50 and 100 mm) were identified. In order to achieve this objective, 

a set of virtual sensors were defined and constructed from the basic signals of the process. Although the 

types of degraded behaviors were common for the studied workpiece thicknesses, the thresholds achieved 

by the virtual measurements depended on these. At the sight of this conclusion, the main goal of this work 

is to detect the process degradation in different workpiece thicknesses using one unique empirical model. 

Since Artificial Neural Networks are appropriated for processes of stochastic and nonlinear nature, its use 

is investigated here in order to interpolate the instability trends for different workpiece thicknesses. Firstly, 

a comparative study performed to select the most appropriated configuration of the neural network is 

summarized. Secondly, the strategy applied to detect degraded situations in different workpiece 

thicknesses is presented. The results of this work show a satisfactory performance of the presented 

approach. 

 

1. INTRODUCTION 

Wire Electro-discharge Machining (WEDM) is a very 

important non-conventional machining process. One of the 

most extended WEDM applications is to machine dies aimed 

at producing components for many industries (for example, 

automobile and aeronautic industries). WEDM is based on 

material removing through successive electrical discharges 

applied between the tool -wire- and the workpiece. The only 

requirement for discharging is that both electrodes are 

electrically conductive. During the cutting process, dielectric 

fluid is injected into the gap, which is the space between the 

electrodes. In order to provoke a discharge, the machine 

power supply applies a voltage between the electrodes. Then, 

the discharge is produced after the dielectric ionization. The 

period of time during the ionization happens is known as 

ignition delay time. Between two consecutive discharges, the 

dielectric cools the gap and removes the erosion debris during 

an adjustable period of time known as off-time. The 

discharge rate is about few microseconds. Fig. 1 shows a 

schema of the WEDM process. 

The main advantage of WEDM is its capability for the 

production of complex geometries with a high degree of 

accuracy, independently of the mechanical properties of the 

material, such as hardness, brittleness and resistance.  

One of the main research fields in WEDM is related to the 

improvement of the process productivity by avoiding wire 

breakage that derives from degraded cutting regimes (Ho, et 

al., 2004). However, the difficulty in the study and 

optimization of WEDM is due to the stochastic and non-

linear nature of the process as well as the multiple machining 

parameters that condition the process performance. Given the 

nature of the process, the application of intelligent control 

techniques becomes appropriated to deal with the early 

diagnostic of degraded cutting regimes in WEDM. Among 

these techniques both, heuristic and neural network 

techniques, stand out in WEDM and in other non-

conventional machining processes (such as Sinking Electrical 

Discharge Machining SEDM and Electro Chemical 

Machining ECM). The former has been traditionally applied 

to wire breakage diagnosing (Cabanes, et al., 2006), 

(Lauwers, et al., 1999), (Shoda, et al., 1995), (Yan, et al., 

1995). However, developing ad-hoc rules is an arduous work 

when generic rules that cover a wide variety of degradation 

behaviors are established. Moreover, these works are focused 

on one unique workpiece thickness, often around 50 mm. 

 

Fig. 1 Schema of WEDM process. 
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Neural network techniques have been also applied to WEDM 

and other non-conventional machining processes with 

different aims. In particular, three main application areas 

have been identified: establishment of optimum machining 

parameters (Fenggou, et al., 2004), (Tarng, et al., 1995), 

(Tsai, et al., 2001), (Wang, et al., 2004); fault diagnosis for 

machine maintenance and control of non-conventional 

machining processes (Behrens, et al., 2003), (Huang, et al., 

2000), (Yan, et al., 2001), and pulse classification 

(Mediliyegedara, et al., 2004), (Kao, et al., 1997). It is 

remarkable that in all these works static neural network 

architectures (especially Multilayer Perceptron MLP) have 

been employed. However, neural network techniques have 

not been previously employed for wire breakage forecasting. 

The layout of the paper is as follows. Section 2 presents the 

main results of previous works of authors in which a heuristic 

approach was adopted. In Section 3, the strategy for the 

detection of instability trends in different workpiece 

thicknesses is presented. In Section 4 some industrial 

examples are shown. Finally, in Section 5 the conclusions are 

drawn. 

2. HEURISTIC IDENTIFICATION OF DEGRADED 

BEHAVIORS  

In a previous work of authors, different types of degraded 

behaviors were identified in two commonly used workpiece 

thicknesses (50 and 100 mm) (Cabanes, et al., 2008). To 

achieve this, different functions of the characteristic variables 

of the discharges were processed and monitored. In 

particular, the functions (the so-called virtual measurements 

VM) were related to energy (VM-E), peak current (VM-I) and 

ignition delay time (VM-TDH). Each virtual measurement 

represents a succession of percentages of discharges whose 

basic variables exceed (or are lower than) some pre-defined 

reference values. More detailed information about the nature 

of the virtual measurements can be found in (Portillo, et al., 

2007a). 

The results of the analysis of the behavior of the virtual 

measurements revealed three common types of degraded 

behavior that alert to wire breakage: a sudden increase in the 

energy (Degraded Behavior of Energy, DB-E); an oscillating 

behavior in the energy (Degraded Behavior of Energy 

Oscillation, DB-EO); and a sudden increase in the peak 

current combined with high values of ignition delay time 

(Degraded Behavior of Current plus Time Delay High, DB-

C+TDH). However, the reference values for each virtual 

measurement depend on the workpiece thickness. Thus, as 

many set of rules as workpiece thicknesses are needed. 

3. ANALYSIS OF DIFFERENT NEURAL NETWORKS 

CONFIGURATIONS 

At the sight of the previous work, the objective is to 

investigate the use of Artificial Neural Networks to detect the 

instability trends in workpiece thicknesses between 50 and 

100 mm, which are very commonly used at the WEDM 

industry. The adopted approach is based on training neural 

networks with the knowledge of the WEDM process obtained 

in the previous works of the authors (Cabanes, et al., 2008), 

(Portillo, et al., 2007a). This involves applying supervised 

learning. Thus, following the analysis of the latter works, the 

inputs of the neural networks are known a priori.  

To achieve this challenge, the first step has been to perform a 

comparative study to determine the most appropriated neural 

network configuration. In order to simplify this preliminary 

study, it has been performed on only one workpiece thickness 

(50 mm). In the study, the inputs of the neural networks are 

the outputs of the virtual measurements. The outputs consist 

of neurons aimed at triggering different levels of alarm that 

alert to the increasing risk of wire breakage. At the same 

time, the grade of influence of each identified trend in the 

process degradation is indicated. The comparative study has 

considered the following aspects: 

1) Architecture of the neural network: both static and 

recurrent neural architectures are evaluated. In particular, 

the static architecture is the MultiLayer Perceptron 

(MLP), which has been applied frequently in different 

fields with high success. However, its use can increase 

significantly the size of the network. The recurrent 

architecture is the Elman Network (EN) (Elman, et al., 

1990). Its recurrent connection provides the network 

with an exponential memory of past events. In this case, 

there is less experience in the application of this 

architecture to the WEDM process. However, the 

memory property becomes an advantage since the grade 

of degradation of the cutting regime depends on the 

accumulative effect of a set of discharges. 

2) Range of the variables: in order to normalize the 

inputs/outputs, symmetric and asymmetric ranges have 

been compared during the training phase: [-1-1], [0-1]. 

3) Codification of the desired values (targets): during the 

training process of MLP networks, the targets have been 

codified by 1-of-(C-1). In other words, only one of the 

outputs is activated at the same time and all the 

categories C are considered minus one (Sarle, 2002). As 

the Elman architecture is concerned, the targets have 

been defined by the application of a set of algorithms 

explained in (Portillo, et al., 2007b). 

4) Layout of the Inputs/Outputs: this criterion is related to 

define only one neural network that processes all the 

virtual measurements (unique configuration) or, on the 

contrary, as many neural networks as virtual former 

configuration has been only considered for the Elman 

architecture since the network size would be too large for 

a configuration based on the MLP architecture. 

The training and simulation process has been implemented in 

Matlab
TM
 7.1. The generalization method employed during 

the training phase is based on early stopping. The algorithm 

for Bayesian Regularization available in Matlab
TM
 7.1 is not 

applied since it updates the weight and bias values according 

to Levenberg-Marquardt optimization, which is not 

recommended for Elman networks (see Matlab
TM
 Help).  

In particular, the backpropagation with adaptive learning rate 

and momentum has been applied. The activation functions of 

the hidden and output neurons are the logistic sigmoidal and 
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the tangent sigmoidal functions. Each neural network 

configuration has been trained ten times due to the 

dependence of the error on the initial values of the weights. 

The results of the comparative study have showed that the 

parallel Elman configuration responds better to the objectives 

of this work. The corresponding networks provide the lowest 

errors. To illustrate this, Fig. 3 shows the lowest validation 

errors, quantified by the Mean Squared Error, obtained for 

both the Elman and MLP architectures. In particular, these 

results refer to the parallel configurations related to the 

processing of the energy virtual measurement E.  
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Fig. 2 Lowest validation errors in MLP-E and EN-E. 

Besides this, they provide a significantly smaller size 

compared to the MLP networks. This means that the Elman 

network is less time and memory consuming compared to 

static neural networks. Besides, the MLP networks would 

require the management of an input buffer to add and remove 

values of the successive virtual measurements. The Elman 

network with unique configuration has been discarded mainly 

because the degraded behaviour related to the peak current 

and TDH (DB-C+TDH) is not properly detected.  

Another aspect to stand out is that asymmetric range has 

provided significantly lower validation errors, independently 

of the network architecture. 

At the sight of these conclusions, a configuration of three 

Elman neural networks is selected (see Fig. 3): Elman 

Network for Energy (EN-E), Elman Network for Current 

(EN-I) and Elman Network for high values of ignition delay 

time TDH (EN-TDH). Each network is dedicated to specific 

virtual measurements that constitute the neural network 

inputs. Besides these inputs, the workpiece thickness is added 

to each network in order to be able to detect the process 

degradation in a range of workpiece thicknesses.  

As mentioned above, the outputs of the recurrent neural 

networks represent the level of alarm whose discrete value 

informs about the detection of the corresponding degraded 

cutting regime. In the case of EN-E net, it has as outputs both 

types of degraded cutting regime (DB-E and DB-EO). A 

post-processing phase of the three networks outputs trigger 

different levels of alarm that alert to the increasing risk of 

wire breakage: A1 (low), A2 (medium) and A3 (high). In the 

post-processing phase the grade of influence of each type of 

behaviour in the degradation is also estimated. 
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Fig. 3 Scheme of the recurrent neural network approach. 

4. STRATEGY FOR INTERPOLATING INSTABILITY 

TRENDS  

Once the appropriated neural configuration has been selected, 

the next objective is to obtain a unique neural structure valid 

for detecting the degradation of the process in different 

workpiece thicknesses. This objective involves as well 

having common post-processing rules for a range of 

thicknesses. To achieve this, the proposed approach is to train 

the networks with examples of 50 and 100 mm to give 

outputs of the same high level independently of the 

workpiece thickness. 

As the training process is concerned, in this second stage, 

three ranges of the inputs/outputs have been considered 

during the training process due to the asymptotic character of 

the sigmoid activation function: [0.05-0.95], [0.1-0.9] and 

[0.15-0.85]. 

On the other hand, a total of 456 sequences of 250 points 

each have been distributed in the three networks (70% for 

training and 30% for validation) during the training phase. 

Sarle (2002) maintained that twice as many training cases as 

weights may be more than enough to avoid overfitting for a 

noise free quantitative target variable. Some works conclude 

that is essential to use lots of hidden units to avoid bad local 

optima when using early stopping (Isasi, et al., 2004), (Sarle, 

et al., 1995). Considering both indications, hidden layers 

from 5 to 60 neurons have been evaluated, which are taken 

around ten by ten. 

4.1 Metrics for the analysis of the results 

During the analysis of the results, two main phases are 

distinguished:  

5) Quantitative analysis: selection of the configurations that 

yield the lowest validation error per range. The 

validation error is quantified by the Mean Square Error 

MSE. 

6) Qualitative analysis: the preselected configurations are 

compared by simulating their operation. In order to 

select the most appropriate configurations, two ratios are 

considered: the validation ratio and the test ratio. The 
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validation ratio represents a hit ratio of the validation 

cases employed during the training phase. The behavior 

of the network when processing a specific validation 

example is computed as correct depending on the quality 

of its output in tracking the output target. The concept of 

quality involves aspects such as the output achieves a 

minimum threshold that allows to discriminate a high 

level alarm, and the correct estimation of the type of 

degraded behavior. The test ratio is computed over the 

test examples, which are not used during the training 

phase. In this particular case, they correspond to 

degradation examples occurred in workpieces 80 mm 

height. The detection of the degradation of the cutting 

regime is considered correct when the pre-established 

threshold, which is common for the workpiece 

thicknesses between 50 and 100 mm, is achieved. 

If the performance of both ratios is approximately the same 

for different neural configurations, the smallest one is 

selected. 

4.2  Analysis of the results 

Table 1 summarizes the configurations and the performance 

of the selected Elman neural networks.  

In order to illustrate the selection procedure, the analysis of 

the results of the Elman network for energy is presented. Fig. 

4 shows the neural networks configurations per range that 

yield the lowest validation errors and the corresponding 

validation ratios. The numbers upon each bar represent the 

quantity of hidden neurons and the validation ratio 

respectively. It can be observed that the validation errors are 

quite similar in the three cases. Consequently, a qualitative 

analysis is performed in order to compare the characteristics 

of the configurations when operating. Concerning this, Fig. 4 

shows that the configuration in the range [0.1-0.9] provides 

the highest validation ratio. 

Actually, from the qualitative point of view, the performance 

of the target-tracking in the remaining ranges is notoriously 

lower. This can be observed in the examples shown in Fig. 5, 

Fig. 6 and Fig. 7. Each example shows the inputs, outputs 

and targets of the evaluated network. The inputs of this 

network are the energy and peak current virtual 

measurements (VM-E and VM-I) and the thickness.  

As the outputs are concerned, they correspond to the types of 

degraded behaviors related to the energy: E-E refers to a 

sudden increase in the energy DB-E, and E-EO refers to an 

oscillating behavior in the energy DB-EO.  

The examples show the behavior of the three different 

configurations that correspond to the three evaluated ranges, 

respectively, when processing the same validation example. 

In particular, the validation example is related to the 

degraded behavior consisting of successive peaks of high 

energy DB-EO. This is the reason why the corresponding 

target and output E-EO present an increasing behavior, whilst 

E-E remains low. However, the configurations do not provide 

the same behavior of the output, as it can be observed in the 

circle areas of the figures Fig. 5, Fig. 6 and Fig. 7. While the 

configuration in Fig. 6 tracks satisfactorily the target by 

accumulating successive peaks of high energy, the 

configurations presented in Fig. 5 and Fig. 7 are further from 

the desired behavior. Consequently, the configuration 

obtained in the range [0.1-0.9] is selected. The test ratio of 

this configuration is 75%. 

Table 1.  Configurations of the neural network 

structure  

Network Energy 

(EN-E) 

Peak 

Current 

(EN-I) 

High ignition delay 

time (EN-TDH) 

Hidden 

neurons 
30 10 10 

Range [0.1-0.9] [0.05-0.95] [0.1-0.9] 

Validation 

error (MSE) 
0.0026 0.0063 0.0065 

Validation 

ratio 
85.7% 85.7% 100% 

Test ratio 75% 91% 100% 
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Fig. 4. Lowest validation error (MSE) and validation ratio in 

EN-E. 

5. APPLICATION EXAMPLES IN DIFFERENT 

WORKPIECE THICKNESSES 

This section illustrates the operation of the proposed neural 

structure by showing some examples related to the Elman 

network for energy. In the post-processing phase, a set of 

simple IF-THEN rules are applied in order to trigger the 

different levels of alarm as well as to estimate the type of 

degraded behaviour. 

Table 2 summarizes the post-processing rules applied in the 

case of Elman network for energy (in particular, the rules 

refer to the degraded behaviour denoted as DB-EO). E-EO is 

the output of the network. HTEO, MTEO and LTEO represent 

the high, medium and low level of alarm, respectively. PDB-EO 
divided by the sum of the contributions of all the types of 

degraded behavior (PDB-E + PDB-EO + PDB-I+TDH) are used to infer 

the most probable cause of process degradation. The 
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examples shown in Fig. 8, Fig. 9 and Fig. 10 correspond to 

the degraded behavior consisting of successive peaks of high 

energy (DB-EO) in workpieces 50, 80 and 100 mm height, 

respectively. As it has been established in the previous 

section, the thresholds of the alarms are common for all the 

workpiece thicknesses, independently of the differences in 

the thresholds achieved by the virtual measurements. Thus, 

the alarms are triggered by following the rules stated in Table 

2, which processes concurrently. In the three examples the 

output E-EO of the network, which refers to the degraded 

behavior DB-EO, show an increasing behavior until the high 

level alarm is reached. As the output E-E is concerned, it 

remains low, except for a time lapse in the example of the 

Fig. 8. In this example E-E only achieves a medium level 

alarm, whilst the output E-EO reaches the high level. This 

means that the type of degraded behavior is properly 

estimated. The alarm levels marked on the outputs graph alert 

to the increasing risk of wire breakage and are computed by 

the post-processing phase. In the three cases, A3 is triggered 

approximately between 120 and 300 milliseconds before the 

wire breakage (marked by an arrow). 
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Fig. 5 Inputs, outputs and targets of EN-E generated during a 

DB-EO degraded cutting regime: range [0.15-0.85]. 
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Fig. 6 Inputs, outputs and targets of EN-E generated during a 

DB-EO degraded cutting regime: range [0.1-0.9]. 
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Fig. 7 Inputs, outputs and targets of EN-E generated during a 

DB-EO degraded cutting regime: range [0.05-0.95]. 

Table 2.  Post-processing rules applied to the 

outputs of EN-E in the case of DB-E 

Post-processing E-EO output 

IF E-EO>HTEO, 

THEN A3=TRUE; 

IF NOT, IF E-EO> MTEO, 

THEN A2=TRUE; 

IF NOT, IF E-EO> LTEO, 

THEN A1=TRUE; 

PDB-EO= E-EO; 

 
Fig. 8 Inputs and outputs of EN-E generated during a DB-EO 

degraded cutting regime in 50 mm 

 
Fig. 9 Inputs and outputs of EN-E generated during a DB-EO 

degraded cutting regime in 80 mm 

 
Fig. 10 Inputs and outputs of EN-E generated during a DB-

EO degraded cutting regime in 100 mm 
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5.  CONCLUSIONS 

In WEDM different types of degraded behavior can lead to 

the breakage of the machining tool: the wire. These 

phenomena are characterized by a very fast dynamic 

(milliseconds order) that can be detected through specific 

trends of the so-called virtual measurements, whose 

maximum values depend on the workpiece height. Thus, the 

challenge of this paper is to define one unique neural 

structure valid for the early detection of degraded behaviors 

in a range of workpiece heights (50-100 mm). The 

achievement of this objective will allow to avoid the tool 

breakage by the proper control actuation. Considering the 

nature of the degraded phenomena, a recurrent neural 

network approach is implemented. It is based on three Elman 

networks that process three virtual measurements that 

constitute their inputs. The advantages of this approach are 

related to obtaining one unique neural structure in order to 

avoid having a battery of heuristic rules per workpiece 

height, and also to taking advantage of the learning capacity 

of ANN aimed at interpolating the detection of degraded 

behaviours in intermediate workpiece heights. The results 

show the viability of the presented approach. Future work 

will be extended to other recurrent network architectures, and 

to implement the diagnosis system in real-time. 
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