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Abstract: Non-uniformly sampled systems are widely found in industry. In these systems the
process output is sampled and the control input is generated at non-uniformly distributed
time instants. In this paper, an optimal residual generator is developed for fault detection in
non-uniformly sampled systems. In the direct approach used here, the intersample behavior of
fault and disturbance is captured by introducing operators that map continuous-time signals to
discrete-time signals. No periodicity assumption is made for the sampling instants.
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1. INTRODUCTION

Modern industrial control systems are widely exposed to
faults which can cause undesirable performance, instabil-
ity, total failure of the system and even dangerous situa-
tions. In order to maintain quality, reliability and safety,
faults should be promptly detected and identified so that
appropriate remedies can be applied. The problem of fault
detection and isolation (FDI) has been widely studied
in the past decades and numerous design methods are
available [Chen et al., 1999, Isermann, 2006].

Sampled-data systems, on the other hand, are extensively
used and accepted in industry, due to numerous advan-
tages of digital technology. In a sampled-data system,
the actual process which is often continuous-time, is con-
nected to the computer network through analog-to-digital
(A/D) and digital-to-analog (D/A) converters. Control
and fault detection algorithms are then implemented by
the computer. Thus a sampled-data system utilizes both
continuous-time and discrete-time systems/signals. A typ-
ical sampled-data process with digitally implemented con-
troller and FDI system is illustrated in Fig. 1.

In conventional sampled-data systems, it is assumed that
each process variable is sampled at a constant rate and
each control signal is generated at a constant rate. The
sampling rates of different A/D and D/A converters may
be equal (single-rate system) or different (multirate sys-
tems). However, in many practical situations, for instance
in chemical processes, this is not often the case. Frequently,
process outputs are sampled at non-uniformly spaced time
instants. Control inputs may also be generated at non-
uniformly spaced times. This could happen due to a num-
ber of reasons, including unpredictable delays in sensors
and laboratory analysis and the nature of the network that
connects the elements of the control system. Also in many
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Fig. 1. FDI in a sampled-data scheme

typical applications, the control algorithm is implemented
on the same distributed computer system that monitors
the process and manages other aspects of the plant. In
such task-sharing situations, it is more reasonable and
cost-effective to allow non-uniform sampling. Moreover, it
has been shown that non-uniform sampling can introduce
some advantages in controlling the process [Kreisselmeier,
1999, Sheng et al., 2002].

In this paper, we develop an optimal FDI methodology
for non-uniformly sampled systems based on the parity
space approach. The method presented in this paper is
distinctive from previous works on non-uniformly sampled
systems in two ways:

• there is no need for sampling instants to follow a
periodic pattern (no periodicity assumption); and

• the fault and disturbance signals can vary arbitrarily
over time (no piecewise constant assumption).

A number of results are available on control, identification
and fault detection of non-uniformly sampled systems [Al-
bertos et al., 1999, Li et al., 2006, 2008, Sheng et al., 2002].
In all of these works, a non-uniform yet periodic sampling
pattern was considered (i.e., the sampling instants are non-
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uniformly distributed in a window of time, and this win-
dow is periodically repeated). This assumption restricts
the applications of the proposed methods. In this paper,
we assume that the output sampling and control updating
times can be arbitrarily distributed over time. Due to this
non-periodicity assumption, the lifting technique which
is usually used for multirate and non-uniformly sampled
systems, can not be used. Here, we use a direct time-
varying formulation to approach non-uniformly sampled
systems.

In addition, to design the optimal FDI scheme in this
paper, we use the direct approach [Chen et al., 1995,
Izadi et al., 2005, 2007, Zhang et al., 2001]. In the direct
approach, it is assumed that the fault and disturbance
inputs can take any value at any instant of time. As
a result, operators should be used to capture the effect
of continuous-time fault and disturbance on discrete-time
residual, and the optimization problem is stated in terms of
operator norms. On the contrary, in the indirect approach,
for instance in Li et al. [2006, 2008], usually the invalid but
convenient assumption is made that fault and disturbance
signals are constant over the sampling intervals. This
assumption is restrictive and will result in an approximate
residual and likely later fault detection, specifically when
the sampling intervals are relatively large.

2. PRELIMINARIES

2.1 Parity-space Approach

The parity space approach was originally introduced by
Chow and Willsky [1984] for discrete-time systems. Con-
sider the following system

{

x(k + 1) = Ax(k) +Bu(k) + Ed(k) + Ff(k)
y(k) = Cx(k)

where x(k) ∈ R
nx is the state vector, u(k) ∈ R

nu the
vector of control input, y(k) ∈ R

ny the vector of process
output, d(k) ∈ R

nd the vector of unknown inputs (e.g.,
disturbance, noise, model mismatch, etc.) and f(k) ∈ R

nf

the vector of faults to be detected. A, B, C, E, and F are
known matrices of appropriate dimensions.

For a fixed number s, referred to as the order of parity
relation, define ys(k) as

ys(k) =









y(k − s)
y(k − s+ 1)

...
y(k)









(s+1)ny×1

.

us(k), ds(k) and fs(k) are also defined similarly. It can be
easily shown that ys(k), us(k), ds(k) and fs(k) are related
through the following expression

ys(k) = Hox(k− s) +Huus(k) +Hdds(k) +Hffs(k), (1)

where

Ho =









C
CA
...

CAs









, Hu =









0 0 · · · 0 0
CB 0 · · · 0 0
...

...
...

...
CAs−1B CAs−2B · · · CB 0









.

Hd and Hf are defined similar to Hu. Based on (1), a
parity space residual generator can be formulated as

r(k) = vs

(

ys(k) −Huus(k)
)

,

where r(k) ∈ R is the residual. The parity vector vs ∈
R

1×(s+1)ny is the design parameter and belongs to the
parity space Ps defined by

Ps = {vs|vsHo = 0} .

Dynamics of the residual generator is then expressed by

r(k) = vs

(

Hdds(k) +Hffs(k)
)

, vs ∈ Ps.

If the residual r(k) can not be perfectly decoupled from
the unknown input d(k), the effect of d(k) on r(k) will be
minimized by optimizing a performance index. A common
choice of performance index for optimization is [Chen
et al., 1999]

J =
‖vsHd‖

2
2

‖vsHf‖
2
2

=
vsHdH

T
d v

T
s

vsHfH
T
f v

T
s

.

The numerator and denominator of J reflect the effect
of unknown input d(k) and fault f(k) on the residual.
Therefore, by minimizing J a compromise is made between
sensitivity to the fault and robustness to the disturbance.
Solution of this optimization problem is well-known in the
literature [Chen et al., 1999].

2.2 Operator Norm and Adjoint Operator

Consider Hilbert spaces X and Y with inner products
〈x1, x2〉X , x1, x2 ∈ X and 〈y1, y2〉Y , y1, y2 ∈ Y, re-
spectively. X and Y are not necessarily the same space,
and even if they are, the inner products can be different.
The norms of members of X and Y are defined using the

corresponding inner products as ‖x‖
2
X = 〈x, x〉X , x ∈ X

and ‖y‖
2
Y = 〈y, y〉Y , y ∈ Y. Also assume that T : X → Y

is a bounded operator that maps X to Y. The adjoint of T ,
denoted by T ∗, is the unique bounded operator mapping
Y to X that satisfies [Chen et al., 1995]

〈Tx, y〉Y = 〈x, T ∗y〉X , x ∈ X , y ∈ Y.

It can be easily shown that the adjoint of a constant matrix
is its transpose.

The induced norm of the operator T is defined by

‖T ‖ = sup
‖x‖

X
≤1

‖Tx‖Y .

It is a well known fact that [Chen et al., 1995]

‖T ‖
2

= ‖T ∗‖
2

= ‖T ∗T ‖ = ‖TT ∗‖ . (2)

2.3 Process Description

Consider an LTI, strictly proper, continuous-time process
with the following state-space representation

{

ẋ(t) = Ax(t) +Bu(t) + Ed(t) + Ff(t)
y(t) = Cx(t)

(3)

where x(t) ∈ R
nx is the state vector, u(t) ∈ R

nu the
known vector of control input, y(t) ∈ R

ny the vector
of process output, d(t) ∈ R

nd the vector of unknown
input (to represent disturbance, noise, model mismatch
and other uncertainties) and f(t) ∈ R

nf the vector of fault
to be detected. A, B, C, E and F are known matrices
of appropriate dimensions. The assumption of strictly
properness is standard in the sampled-data literature
and necessary for boundedness of the sampling operator.
In practice, because of antialiasing filters that are used
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before sampling, the systems are always strictly proper.
Notice that here, again due to antialiasing filters, f(t) can
represent both actuator and sensor faults.

In general, different input/output channels of this process
can be generated/sampled at non-uniformly spaced time
instants (non-uniformly sampled multirate systems). How-
ever, for simplicity we assume that all the input/output
channels are generated/sampled synchronously at the
same time instants (the approach can be applied to the
general multirate case with little modification). Let T =
{t0, t1, t2, · · · } be the set of time instants when the output
is sampled (or the input is updated). Let ℓT (Z) be the vec-
tor space of all discrete-time signals corresponding to the
time instants in T . Notice that the discrete-time signals in
ℓT (Z) have no practical meaning unless the corresponding
time instants, given by T , are known. Let L(R) be the
vector space of all continuous-time signals.

The non-uniform digital-to-analog (D/A) converter is
modeled by non-uniform (zero-order) hold operator HT :
ℓT (Z) → L(R) defined as

u(t) = HT υT (k) = υT (k), tk ≤ t < tk+1.

The non-uniform analog-to-digital (A/D) converter is also
modeled by non-uniform sampling operator ST : L(R) →
ℓT (Z) defined as ψT (k) = ST y(t) = y(tk). Here υT (k)
and ψT (k) represent the (irregular) discrete-time input
and output, respectively.

The control signal u(t) is the output of a hold operator,
and therefore is constant over the sampling interval (i.e., it
is piecewise constant). The disturbance d(t) and the fault
f(t), on the other hand, can have arbitrary values at any
time (notice that in indirect design, d(t) and f(t) are also
assumed to be piecewise constant, which is obviously non-
realistic).

3. INPUT-OUTPUT RELATION

The parity space based residual generator, discussed in
Section 2, is obtained based on (1). This equation expresses
how the output of the system within an interval of time
((s+ 1)h units of time, where h is the sampling period) is
related to the state of the system at the beginning of the
interval and the inputs of the system (including controlled
input, disturbance and fault) during the interval. Likewise,
the first step in constructing a residual generator for
non-uniformly sampled systems is to derive an expression
similar to (1). For this purpose, at each sampling instant
tk, we select a time frame that contains s + 1 samples of
the output

(

ψT (k − s) to ψT (k)
)

, hence the time frame
is [tk−s, tk). Notice that due to the non-uniform sampling
pattern, the actual length of the time frame is different at
every instant. Define

ψT,s(k) =









ψT (k − s)
ψT (k − s+ 1)

...
ψT (k)









(s+1)ny×1

and similarly υT,s(k). The objective is to express ψT,s(k)
in terms of the state of the system at the beginning of
the time frame

(

x(tk−s)
)

, the controlled input within the

time frame
(

υT,s(k)
)

and the uncontrolled inputs within

the time frame
(

d(t) and f(t) for tk−s ≤ t < tk
)

.

3.1 Case (i): Controlled Input

In the first case, assume that there is no uncontrolled input
in the system, i.e., d(t) = 0 and f(t) = 0. It can be shown
that the input-output relation in the selected time frame
is given by

ψT,s(k) = Ho,T (k)x(tk−s) +HT (k)HBd,T (k)υT,s(k),

whereHo,T (k) : (s+1)ny×nx, HT (k) : (s+1)ny×(s+1)nx

and HBd,T (k) : (s+ 1)nx × (s+ 1)nu are given by

Ho,T (k) =













C
CAd(tk−s, tk−s+1)
CAd(tk−s, tk−s+2)

...
CAd(tk−s, tk)













, (4)

HT (k) =













0 · · · 0 0
C · · · 0 0

CAd(tk−s+1, tk−s+2) · · · 0 0
...

...
...

CAd(tk−s+1, tk) · · · C 0













, (5)

HBd,T (k) =







Bd(tk−s, tk−s+1) · · · 0
...

...
0 · · · Bd(tk, tk+1)






.

Here, Ad(τ1, τ2) and Bd(τ1, τ2) for τ1 ≤ τ2 are defined as

Ad(τ1, τ2) = e(τ2−τ1)A,

Bd(τ1, τ2) =

∫ τ2

τ1

e(τ2−τ)AdτB =

∫ τ2−τ1

0

eτAdτB.

3.2 Case (ii): Uncontrolled Input

In the second case, assume that the system is only driven
by uncontrolled inputs, i.e., u(t) = 0. Also for simplicity
assume that f(t) = 0. It is well known that, for any two
times t1 ≤ t2,

x(t2) = e(t2−t1)Ax(t1) +

∫ t2

t1

e(t2−τ)AEd(τ)dτ.

By substituting t1 = tk−s and t2 = tk−s+i, i = 0, 1, · · · s
we get

x(tk−s+i) = e(tk−s+i−tk−s)Ax(tk−s)

+

∫ tk−s+i

tk−s

e(tk−s+i−τ)AEd(τ)dτ. (6)

Now we can rewrite the last term as
∫ tk−s+i

tk−s

e(tk−s+i−τ)AEd(τ)dτ

=

i
∑

m=1

∫ tk−s+m

tk−s+m−1

e(tk−s+i−τ)AEd(τ)dτ

=

i
∑

m=1

e(tk−s+i−tk−s+m)A

×

∫ tk−s+m

tk−s+m−1

e(tk−s+m−τ)AEd(τ)dτ.

Define

δ̄T (k) =

∫ tk+1

tk

e(tk+1−τ)AEd(τ)dτ.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10150



Then (6) can be simplified to

x(tk−s+i) = Ad(tk−s, tk−s+i)x(tk−s)

+

i
∑

m=1

Ad(tk−s+m, tk−s+i)δ̄T (k − s+m− 1).

Using the output equation in (3) we have ψT (k − s +
i) = Cx(tk−s+i) and therefore

ψT (k − s+ i) = CAd(tk−s, tk−s+i)x(tk−s)

+

i
∑

m=1

CAd(tk−s+m, tk−s+i)δ̄T (k − s+m− 1)

By changing i from 0 to s, and stacking all the equations,
the input-output relation becomes

ψT,s(k) = Ho,T (k)x(tk−s) +HT (k)δ̄T,s(k),

where

δ̄T,s(k) =











δ̄T (k − s)
δ̄T (k − s+ 1)

...
δ̄T (k)











(s+1)nx×1

.

Ho,T (k) : (s+1)ny ×nx and HT (k) : (s+1)ny × (s+1)nx

are the same as those obtained for controlled input and
are given in (4) and (5) respectively.

Now define the operator ΓE,T : Knd → R
(s+1)nx as

ΓE,Td =

























∫ tk−s+1

tk−s

e(tk−s+1−τ)AEd0(τ) dτ

∫ tk−s+2

tk−s+1

e(tk−s+2−τ)AEd1(τ) dτ

...
∫ tk+1

tk

e(tk+1−τ)AEds(τ) dτ

























,

where for i = 0, 1, · · · , s,

di(t) =

{

d(t) tk−s+i ≤ t < tk−s+i+1;
undefined elsewhere.

Knd is the space of all vector valued continuous-time
signals in the interval [tk−s, tk+1) with finite norm. In other
words Knd = L2([tk, tk+1),R

nd). For each k, the operator
ΓE,T maps a continuous-time signal in [tk−s, tk+1) to a
vector that is interpreted as a discrete-time signal. It can
be easily observed that

δ̄T,s(k) = ΓE,Td(t).

Therefore, the input-output relation can be written as

ψT,s(k) = Ho,T (k)x(tk−s) +HT (k)ΓE,Td(t).

This equation shows how continuous-time input d(t) dur-
ing a specific frame of time affects the discrete-time output
ψT,s(k).

4. OPTIMAL RESIDUAL GENERATION

Consider the LTI continuous-time process in (3). Based on
the results of Section 3, when both the controlled (u(t))
and uncontrolled (d(t) and f(t)) inputs are driving the pro-
cess, the input-output relation in time frame [tk−s, tk+1] is
given by

ψT,s(k) = Ho,T (k)x(tk−s) +HT (k)HBd,T (k)υT,s(k)

+HT (k)ΓE,T d(t) +HT (k)ΓF,T f(t).
(7)

The operator ΓF,T : Knf → R
(s+1)nx maps continuous-

time signal f(t) to discrete-time signals and is defined
similar to ΓE,T .

Based on (7), a parity space residual generator for the
non-uniformly sampled system is formulated as

r(k) = vs(k)
(

ψT,s(k) −HT (k)HBd,T (k)υT,s(k)
)

. (8)

Here, r(k) ∈ R is the residual and s is the order of
parity relation. The parity vector vs(k) ∈ R

1×(s+1)ny is the
design parameter. Since the non-uniformly sampled system
described above is inherently time-varying, the residual
generator should also be time-varying. That’s why the
parity vector is a function of k and should be calculated
at each iteration. The parity vector vs(k) belongs to the
parity space Ps(k) given by

Ps(k) = {vs(k)|vs(k)Ho,T (k) = 0} .

Dynamics of the discrete-time residual with respect to
continuous-time inputs d(t) and f(t) is then expressed by

r(k) = vs(k)HT (k)
(

ΓE,Td(t) + ΓF,T f(t)
)

.

The parity vector vs(k) is designed to ensure robustness
of the residual generator to the unknown input d(t), while
keeping it sensitive with respect to the fault f(t).

If there exists a parity vector vs(k) ∈ Ps(k) such that

vs(k)HT (k)ΓE,T ≡ 0,

vs(k)HT (k)ΓF,T 6= 0,

then the unknown input d(t) has no effect on the residual
and perfect disturbance decoupling is achieved. Otherwise,
the parity vector is designed by optimizing a performance
index to minimize the effect of d(t) on r(k). Inspired by
the LTI case, a common choice of performance index for
optimization is

JJ(k) =
‖vs(k)HT (k)ΓE,T ‖

2

‖vs(k)HT (k)ΓF,T ‖
2 .

The norms here are induced operator norms.

To minimize this objective function, the first step is
to calculate the norm of the operators, which in turn
requires calculating the adjoint operators. Using the norm
relationship in (2) and the fact that vs(k) and HT (k) are
real matrices (hence their adjoints are their transposes),
the performance index is simplified to

JJ (k) =

∥

∥vs(k)HT (k)ΓE,T Γ∗
E,TH

T
T (k)vT

s (k)
∥

∥

∥

∥

∥
vs(k)HT (k)ΓF,T Γ∗

F,TH
T
T (k)vT

s (k)
∥

∥

∥

(9)

Consider the operator ΓE,T : Knd → R
(s+1)nx . The inner

product in Knd = L2([tk−s, tk+1),R
nd) is

〈x, y〉Knd
=

∫ tk+1

tk−s

xT (τ)y(τ) dτ

=

s
∑

i=0

∫ tk−s+i+1

tk−s+i

xT
i (τ)yi(τ) dτ, x, y ∈ Knd .

The inner product in R
(s+1)nx is defined as usual:

〈a1, a2〉R(s+1)nx = aT
1 a2, a1, a2 ∈ R

(s+1)nx . The adjoint

operator Γ∗
E,T : R

(s+1)nx → Knd is uniquely determined
by

〈ΓE,Tx, a〉R(s+1)nx
=

〈

x,Γ∗
E,Ta

〉

Knd
, (10)
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where x ∈ Knd and a ∈ R
(s+1)nx . Partition a ∈ R

(s+1)nx

into s+ 1 blocks as

a =









a0

a1

...
as









.

Then, the left hand side of (10) becomes

〈ΓE,Tx, a〉R(s+1)nx
= (ΓE,Tx)

T a

=

























∫ tk−s+1

tk−s

e(tk−s+1−τ)AEx0(τ) dτ

∫ tk−s+2

tk−s+1

e(tk−s+2−τ)AEx1(τ) dτ

...
∫ tk+1

tk

e(tk+1−τ)AExs(τ) dτ

























T









a0

a1

...
as









=

s
∑

i=0

∫ tk−s+i+1

tk−s+i

xT
i (τ)ET e(tk−s+i+1−τ)AT

ai dτ.

On the other hand, the right hand side of (10) is

〈

x,Γ∗
E,Ta

〉

Knd
=

s
∑

i=0

∫ tk−s+i+1

tk−s+i

xT
i (τ)(Γ∗

E,T a)i(τ) dτ.

Comparing the two equations we get

(Γ∗
E,T a)i(t) = ET e(tk−s+i+1−t)AT

ai, i = 0, 1, · · · , s.

(Γ∗
E,Ta)(t) is now obtained by concatenating (Γ∗

E,Ta)i(t)’s.

ΓE,T Γ∗
E,T maps R

(s+1)nx onto itself and hence is (equiva-

lent to) an (s+1)nx×(s+1)nx matrix. To find this matrix
we have

ΓE,T Γ∗
E,Ta = ΓE,T

[

ET e(tk−s+i+1−t)AT

ai

]

i=0,··· ,s

=

























∫ tk−s+1

tk−s

e(tk−s+1−τ)AEET e(tk−s+1−τ)AT

a0 dτ

∫ tk−s+2

tk−s+1

e(tk−s+2−τ)AEET e(tk−s+2−τ)AT

a1 dτ

...
∫ tk+1

tk

e(tk+1−τ)AEET e(tk+1−τ)AT

as dτ

























.

Now define EJ (τ1, τ2) as a matrix of smallest dimensions
that satisfies

EJ (τ1, τ2)E
T
J (τ1, τ2) =

∫ τ2

τ1

e(τ2−τ)AEET e(τ2−τ)AT

dτ

=

∫ τ2−τ1

0

eτAEET eτAT

dτ.

Then we have,

ΓE,T Γ∗
E,Ta =











EJ (tk−s, tk−s+1)E
T
J (tk−s, tk−s+1)a0

EJ (tk−s+1, tk−s+2)E
T
J (tk−s+1, tk−s+2)a1

...
EJ(tk, tk+1)E

T
J (tk, tk+1)as











Now define HEJ ,T (k) as

HEJ ,T (k) =







EJ(tk−s, tk−s+1) · · · 0
...

...
0 · · · EJ (tk, tk+1)






.

Then
ΓE,T Γ∗

E,Ta = HEJ ,T (k)HT
EJ ,T (k)a,

which implies that

ΓE,T Γ∗
E,T = HEJ ,T (k)HT

EJ ,T (k).

Using this expression, the performance index in (9) can be
simplified to

JJ(k) =
vs(k)HT (k)HEJ ,T (k)HT

EJ ,T (k)HT
T (k)vT

s (k)

vs(k)HT (k)HFJ ,T (k)HT
FJ ,T (k)HT

T (k)vT
s (k)

=
‖vs(k)HT (k)HEJ ,T (k)‖

2
2

‖vs(k)HT (k)HFJ ,T (k)‖2
2

. (11)

HFJ ,T (k) is defined similar to HEJ ,T (k). The performance
index in (11) is now expressed in terms of regular matrix
norms.

The parity vector vs(k) is then designed by solving the
optimization problem

min
vs(k)∈Ps(k)

JJ(k).

Let NB(k) be the basis vector for parity space Ps(k).
Also let λmin(k) and ps,min(k) be the minimum generalized
eigenvalue and the corresponding generalized eigenvector,
satisfying

ps,min(k)NB(k)HT (k)
(

HEJ ,T (k)HT
EJ ,T (k)

− λmin(k)HFJ ,T (k)HT
FJ ,T (k)

)

HT
T (k)NT

B (k) = 0.

Then, similar to the LTI case [Chen et al., 1999], v∗s(k) =
ps,min(k)NB(k) is the optimal solution and J∗(k) =
λmin(k) is the optimal performance. Once the optimal
parity vector v∗s (k) is designed, the residual generator in
(8) can be implemented.

Notice that the residual generator (8) updates the residual
at time instants tk, k = s, s+1, · · · . These are the instants
of time when the output is measured and sampled. So,
as soon as new information from the process becomes
available (through measurements) the residual will be
updated. Therefore, the fault can be detected at the
earliest time possible.

As mentioned before, the residual generator designed
for the non-uniformly sampled system is time-varying.
Therefore, the related matricesHo,T (k), HT (k), HBd,T (k),
HEJ ,T (k) and HFJ ,T (k) should be recalculated and the
optimization problem re-solved at every iteration. This
is a result of the non-uniformly sampled system being
inherently time-varying and unpredictable. However, if
the non-uniform sampling follows a certain pattern (for
instance a periodic pattern as in Albertos et al. [1999], Li
et al. [2006] and Sheng et al. [2002]), then the matrices can
be calculated before hand and the parity vector computed
off-line. In any case, the calculations at each step, mainly
simple matrix computations and an eigenvector problem,
are not numerically complex. Notice that, although op-
erator norms are used in the derivation of the solution,
the obtained performance index (11) is stated in terms of
regular matrix norms.
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5. EXAMPLE

Consider the LTI continuous-time process in (3) with

A=

[

−0.2 3
0 −1

]

, B =

[

0
1

]

, E =

[

0.1
1

]

,

F =

[

0
1

]

, C = [ 1 1 ] .

The output is non-uniformly sampled at the time instants
given by (in seconds)

T =
{

0, 0.7, 1.4, 2.1, 3.3, 3.8, 4.4, 5.8, 6.4, 6.8, 7.7,

8.8, 9.4, 10.4, 11.0, 11.7, 12.3, 13.1, 13.9, 14.9
}

The control signal is also updated according to T with
random numbers between -3 and 3. The disturbance d(t)
is white noise with variance 1 (updated every 0.1 sec) and
the fault f(t) is a step function, changing from 0 to 1 at
8 sec. The input and output of the system are shown in
Fig. 2.

0 0.7 1.4 2.1 3.33.84.4 5.86.46.8 7.7 8.89.4 10.411 11.712.313.113.9 14.9
−8

−6

−4

−2

0

2

4

6

Time (sec)

 

 

Output

Input

Fig. 2. System input and output

The first time that the output is sampled after the fault
occurrence is at 8.8 sec, and this is the first time that
fault information is available to the control/monitoring
algorithm. Therefore, a well-designed residual generator
should be able to reflect the fault at 8.8 sec. Choosing
s = 3, a residual generator was designed for this non-
uniformly sampled system, with the threshold set to be
at 1. The result of simulation is shown in Fig. 3. As it can
be seen, the proposed residual generator was able to detect
the fault at the earliest possible time (8.8 sec).
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Fig. 3. Residual signal for fault detection

6. CONCLUSIONS

In this paper, we have presented a direct method to
design an optimal residual generator for non-uniformly
sampled systems. In this direct design, in order to avoid
approximations, no assumption is made on fault and
disturbance inputs and they can vary arbitrarily over
time. As a result, the relationship between continuous-time
fault/disturbance and discrete-time residual is expressed
in terms of an operator rather than a matrix. However,
it was shown that the norm of the operator is equal to
the norm of a certain matrix. Therefore, the optimization
problem can be converted to a regular matrix problem
whose solution is known.

In the development of the residual generator, no a priori
information is required regarding the output sampling and
input updating times. In particular, there is no need for
the sampling and updating times to follow a periodic
pattern. The method can therefore be applied to general
non-uniformly sampled systems. In the proposed method,
as soon as a new measurement from the process becomes
available, the residual can be updated. So any unnecessary
delay in fault detection is avoided.
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