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Abstract: This paper addresses the question of estimating unknown inputs in biological
processes. The unknown inputs are either constant or periodic (as e.g. in municipal wastewater
treatment plants where the loading rate is unknown yet of a period equal to one day). In
particular the designed observer is able to recover the unknown periodic inputs over a few
periods.
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1. INTRODUCTION

The monitoring of industrial biological processes is clearly
an important issue due to the complexity of the involved
processes, the lack of reliable and low cost sensors for
the key process parameters and the uncertainty related
to the dynamical models of such systems e.g. [2] [8].
Among the different challenges raised by the monitoring
of the biological processes, one is specific to some classes
of processes like municipal wastewater treatment plants
(WWTP’s) for which the organic load is typically unknown
and time varying, yet with a typical periodicity of one
day that follows the human domestic activities and the
related production of wastewater and with a ”nominal”
periodic value which is roughly known. For industrial
wastewater treatment plants, the organic load might also
be unknown, yet varying whenever the type of production
within the industrial plant is changed. In such instances, it
is obvious that the main issue when operating wastewater
treatment plant is disturbance rejection, and any tool that
can provide reliable values of the changing organic load will
be very useful to improve the performance of the WWTP.

The on-line estimation of systems with unknown inputs
has a long history in research, starting from the seminal
works of Kudva et al [13] and Fairman et al [9] (followed
by the results of Darouach et al [5] [6]). In the context
of chemical and biochemical systems, the asymptotic ob-
servers [2] [7], that do not require any knowledge of the
process kinetics, belong to the class of state observers
for systems with unknown inputs; yet they not handle
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the specific issue of the unknown inputs, as mentioned
above. However the asymptotic observers had been ex-
tended by considering cooperativity of the system to de-
sign interval observers that are able to reconstruct upper
and lower bounds of the state by considering unknown
but bounded inputs (like the loading rate) [12] [15]. The
on-line estimation of unmeasured inputs in WWTP’s had
also been considered in [17] where an extended Luenberger
observer design has been proposed. More recently, a mod-
ified asymptotic observer has been proposed to estimate
the inlet glucose concentration from hydrogen and CO2

measurements in an anaerobic digestion process [1]. More
generally, the issue of estimating systems with unknown
inputs has been an active research area and new results
(with e.g. results in active noise rejection) have been re-
cently proposed [3] [4] [11]. Note that one of the main
difficulty to design efficient tools for the on-line estimation
of unknown inputs is linked to the causality principle, since
the observer design has to rely on measurements that are
indeed the effect or the result of the (unknown) cause, i.e.
the unmeasured input.

In this paper we propose two state observers for unknown
loading rates in biological processes, one when the un-
known input is constant and the other one when it is
periodic of known period. The design is typically that
of a Luenberger observer where the unknown input is
assimilated to an (unknown) state of the system. It is
based on mass balance equations of the biological process.
Stability and convergence results are provided for restric-
tive assumptions, and the performance of the observers are
illustrated in numerical simulations. Proofs of convergence
are based on Lyapunov transformations, that are recalled
on the next section.
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2. SYSTEM DESCRIPTION

Consider the mass balance model of a stirred tank reactor
(chemostat) involving a simple growth reaction Ẋ = µ(S)X −D(t)X

Ṡ = −µ(S)X
Y

+D(t)(Sin − S)
(1)

where X(·) and S(·) hold for the biomass and substrate
concentrations, respectively. Sin is the feed concentration.
D(·), µ(·) and Y are the dilution rate, the specific growth
rate and the yield coefficient, respectively. µ(·) is assumed
to be a monotonic smooth non-negative function such that
µ(0) = 0, with bounded derivative.

The model (1) has been extensively studied in the lit-
erature, under different hypotheses on the function µ(·)
and the dilution rate D(·) (see for instance [16]). The
asymptotic behavior of the system (1) is related to the
function D(·) and the values of Sin (for instance, val-
ues of D larger than µ(Sin) can lead to the washout of
the biomass). This model is also used in biotechnology
applications for the synthesis of stabilization laws or the
estimation of unmeasured state variable. Nevertheless, in
most studies, the input concentration Sin is considered
to be either perfectly known or an unknown input with
known bounds. In this last case, controller and estimators
are required to be robust with respect to the uncertainty
on Sin.

The aim of the present work is to propose estimators of Sin
under reasonable assumptions. In a previous paper [14],
an estimator for Sin has been designed and analyzed for
the case when S is measured. In the present instance, we
would like to handle the more difficult situation when X(t)
is available for on-line measurement, i.e. :

y(t) = X(t) (2)

and propose two kinds of observers based on a priori
knowledge of the variation of Sin:

(1) Sin is constant,
(2) Sin is periodic with known period.

Throughout the paper, we assume that the yield factor Y
is taken equal to 1 and that the manipulated variable D(·)
is bounded, as well as its derivative, and fulfills a persistent
excitation property

D(t) ≥ D > 0, ∀t ≥ 0 . (3)

With the state transformation

M = X + S , (4)

system (1) can be equivalently rewritten{
Ẋ = µ(M −X)X −D(t)X
Ṁ = D(t)(Sin −M)

(5)

Notice that when D and Sin are constant, Sin is de-
tectable: Sin = limt→+∞X(t)+µ−1(D), which is no longer
true when D(·) is time varying.

3. LYAPUNOV TRANSFORMATIONS

We recall the concept of Lyapunov transformation (see
for instance [10]), that will be useful to analyze the
convergence of the proposed estimators.

Consider a time-varying linear system

ẋ(t) = A(t)x(t), A(t) ∈Mn×n(IR) . (6)

A n × n matrix P (·) defines a Lyapunov transformation
when the following properties are fulfilled

(1) P (·) and Ṗ (·) are continuous and bounded,
(2) |det(P (t))| ≥ m > 0 for any t ∈ [0,+∞).

Then the system

ż(t) = B(t)z(t) (7)

with

B(t) = P−1(t)(P (t)A(t)P (t)− Ṗ (t)) (8)

is said to be equivalent to (6).

It is straightforward to check that a Lyapunov transfor-
mation preserves state stability, because one has x(t) =
P (t)z(t) for any t ≥ 0. Then, a way to show the stability
of the system (6) is to find a Lyapunov transformation
P (·) such that proving the stability of the system (7) is
easy.

4. OBSERVER WHEN SIN IS CONSTANT

We assume here that the inlet substrate concentration Sin
is constant, and consider the observer

˙̂
X = [µ(M̂ − y)−D(t)]y +G1(t, y)(X̂ − y)
˙̂
M = D(t)(Ŝin − M̂) +G2(t, y)(X̂ − y)
˙̂
Sin = G3(t, y)(X̂ − y)

(9)

where Gi(t, y) (i = 1, 2, 3) are the state observer gains.
Define the time function

δ(t) =
µ(M̂(t)− y(t))− µ(M(t)− y(t))

M̂(t)−M(t)
y(t) . (10)

Notice that δ(·) stays uniformly bounded along any tra-
jectory of (1)-(9), and is positive when µ(·) is increasing.

Remark 1. When µ(S) = µ̄S, where µ̄ is a positive
constant, δ(t) is perfectly known: δ(t) = µ̄y(t). Otherwise,
δ(t) can be approximated by δ̂(t) = µ′(M̂(t)− y(t))y(t).

Proposition 2. When µ(·) is linear, the gains

G1(t, y) = D(t)(1− θ − θ2 − θ3) ,

G2(t, y) = −D(t)2
1− θ − θ2 + θ4 + θ5

δ(t)
,

G3(t, y) = −D(t)2
θ6

δ(t)
,

makes system (9) an exponential observer of Sin, for large
enough θ.
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Proof. We first consider the time parameterization

τ(t) =

t∫
0

D(s)ds ≥ Dt, t ≥ 0 . (11)

Then the dynamics of the estimation error

E =

 X̂ −X
M̂ −M
Ŝin − Sin


in time variable τ is given by

dE(τ)
dτ

=



1− θ − θ2 − θ3 η(τ) 0

−1− θ − θ2 + θ4 + θ5

η(τ)
−1 1

− θ6

η(τ)
0 0


︸ ︷︷ ︸

Aθ(τ)

E(τ)

where η(τ) = δ(τ)/D(τ). One can easily check that

Sp(Aθ(τ)) =
{
−θ,−θ2,−θ3

}
, ∀τ ≥ 0.

and that the time-varying matrix, when θ > 1,

Pθ(τ) =



1 1 1

−1− θ2 − θ3

η(τ)
−1− θ − θ3

η(τ)
−1− θ − θ2

η(τ)

θ5

η(τ)
θ4

η(τ)
θ3

η(τ)


fulfills the property

P−1
θ (τ)Aθ(τ)Pθ(τ) = Λθ =

−θ 0 0
0 −θ2 0
0 0 −θ3

 .

Furthermore, Pθ(·) fulfills the conditions given in Section 3
to be a Lyapunov transformation. Then, a straightforward
computation gives the expression (8) of the matrix Bθ(·)
of the equivalent system.

Bθ(τ) = Λθ +
η̇(τ)
η(τ)

Qθ

[ 0 0 0
0 1 0
0 0 1

]
Q−1
θ︸ ︷︷ ︸

Cθ

with

Qθ =

 θ3 − 2θ4 + θ5 −1 0
−θ3 + 2θ5 − θ7 0 −1
θ4 − θ5 − θ7 + θ8 1 1

 .

Consider the dynamics
dZ(τ)
dτ

= Bθ(τ)Z(τ) (12)

and define the function V (Z) = 1
2Z

tZ. Then one has, for
θ > 1,

dV (Z(τ))
dτ

≤ 2
(
−θ +

∣∣∣∣ η̇(τ)
η(τ)

∣∣∣∣ ||Cθ||2)V (Z(τ))

where ||Cθ||2 =
√
λmax(CtθCθ). A straightforward but

lengthy computation gives

||Cθ||2 =

√
3θ6 + 6θ5 + 12θ4 + 18θ3 + 21θ2 + 12θ + 6

θ6 − 2θ4 + θ2

Notice that limθ→+∞ ||Cθ||2 =
√

3, and η̇(τ)/η(τ) is
uniformly bounded. Consequently, one has

−θ +
∣∣∣∣ η̇(τ)
η(τ)

∣∣∣∣ ||Cθ||2 ≤ −ν < 0, ∀τ ≥ 0

for large enough θ. Finally, V (·) is a Lyapunov function
for the dynamics (12), that guarantees the exponential
convergence of Z(·). Under the time parameterization
(11), one concludes that E(·) converges also exponentially
toward the origin.

5. OBSERVER WHEN SIN IS PERIODIC

We assume here that the inlet substrate concentration Sin
is periodic with known period ω, provided by the following
dynamical system : Ṡin = v

v̇ = −ω2(Sin − a)
ȧ = 0

where a is the (unknown) mean value of Sin(·). We
therefore consider the following observer.

˙̂
X = [µ(M̂ − y)−D(t)]y +G1(t, y)(X̂ − y)
˙̂
M = D(t)(Ŝin − M̂) +G2(t, y)(X̂ − y)
˙̂
Sin = v̂ +G3(t, y)(X̂ − y)
˙̂v = −ω2(Ŝin − â) +G4(t, y)(X̂ − y)
˙̂a = G5(t, y)(X̂ − y)

(13)

where Gi(t, y) (i = 1 to 5) are the state observer gains.

Proposition 3. When µ(·) is linear, the gains

G1(t, y) = D(t) + σ5(θ),

G2(t, y) =
ω2 −D(t)(D(t) + σ5(θ))− σ4(θ)

δ(t)
,

G3(t, y) =
σ3(θ)− ω2σ5(θ)

D(t)δ(t)
,

G4(t, y) =
ω2(σ4(θ)− ω2)− σ2(θ)

D(t)δ(t)
,

G5(t, y) =
σ1(θ)

ω2D(t)δ(t)
,

where δ(·) is defined in (10) and

σ5(θ) = −θ − θ2 − θ3 − θ4 − θ5
σ4(θ) = θ3 + θ4 + 2θ5 + 2θ6 + 2θ7 + θ8 + θ9

σ3(θ) = −θ6 − θ7 − 2θ8 − 2θ9 − 2θ10 − θ11 − θ12
σ2(θ) = θ10 + θ11 + θ12 + θ13 + θ14

σ1(θ) = −θ15

makes system (13) an exponential observer of system
Sin(·) for large enough θ.
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Proof. The dynamics of the estimation error

E =


X̂ −X
M̂ −M
Ŝin − Sin
v̂ − v
â− a


is solution of the linear time-varying system

Ė(t) =


G1(t, y) δ(t) 0 0 0
G2(t, y) −D(t) D(t) 0 0
G3(t, y) 0 0 1 0
G4(t, y) 0 −ω2 0 ω2

G5(t, y) 0 0 0 0e .


︸ ︷︷ ︸

Aθ(t)

E(t)

One can easily check that the gains Gi(·) have been
determined such that

Sp(Aθ(t)) =
{
−θ,−θ2,−θ3,−θ4,−θ5

}
, ∀t ≥ 0

With the help of a symbolic computation software, one can
find a matrix Pθ(t) such that

P−1
θ (t)Aθ(t)Pθ(t) =


−θ 0 0 0 0
0 −θ2 0 0 0
0 0 −θ3 0 0
0 0 0 −θ4 0
0 0 0 0 −θ5


︸ ︷︷ ︸

Λθ

.

For θ 6= 1, an instance of such Pθ(t) is given by the
expression below

ρ θρ θ2ρ θ3ρ θ4ρ
α2345 θα1345 θ2α1245 θ3α1235 θ4α1234

β567789 θβ456789 θ2β356679 θ3β345678 θ4β345567

γ123789,10 γ234789,11 θγ134679,10 θ
2γ124578,9 θ

3γ123567,8

θ14 θ14 θ14 θ14 θ14


where
ρ = ω2D(t)δ(t),
αijkl = ω2D(t) (ζijkl −D(t)) ,
βijklmn = ω2

(
ζijklmn − ω2

)
,

γijklmn,o = ω2θ2
(
ζlmno − ω2ζijk − ω2

)
,

with ζE =
∑
e∈E

θe.

When θ > 1, Pθ(·) is a Lyapunov transformation, which
leads to an equivalent system Ż = Bθ(t)Z with

Bθ(t) = Λθ − P−1
θ (t)Ṗθ(t) . (14)

Notice that one can write

Ṗθ(t) =
δ̇(t)
δ(t)

RPθ(t) +
Ḋ(t)
D(t)

[
S − D(t)

δ(t)
T

]
Pθ(t) (15)

with

R =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , S =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , T =


0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
One can also easily check, with the help of a symbolic
computation software, that the following properties are
fulfilled

lim
θ→+∞

P−1
θ (t)RPθ(t) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 0 1

 , (16)

lim
θ→+∞

P−1
θ (t)SPθ(t) =


0 0 0 0 0
0 0 0 0 0
0 0 0 −1 −1
0 0 0 1 0
0 0 0 0 1

 , (17)

lim
θ→+∞

P−1
θ (t)TPθ(t) = 0 . (18)

Let V (Z) = 1
2Z

tZ. From (14), one can write

V̇ ≤ 2
(
−θ + ||P−1

θ (t)Ṗ−1
θ (t)||2

)
V

when θ > 1. Then, from (15), (16), (17), (18), δ̇/δ and
Ḋ/D being bounded, one obtains

−θ + ||P−1
θ (t)Ṗ−1

θ (t)||2 ≤ −ν < 0, ∀t ≥ 0

for large enough θ. Finally V (·) is a Lyapunov function
that guarantees the exponentially convergence of Z(·), or
equivalently E(·), toward 0.

6. SIMULATIONS

Simulations have been conducted with a linear growth
function µ(·) and fluctuating dilution rate D(·). Tuning
parameter θ has been chosen equal to 1.5 and measurement
y(·) has been corrupted by 2% white noise.

Trajectories are depicted on Figures 1 and 2, for piecewise
constant and piecewise periodic Sin, respectively.

7. CONCLUSION

For biological processes with linear growth functions, ex-
ponential observers for unknown input concentration have
been proposed, for the cases of constant unknown input,
or periodic unknown input, with known period. Proofs of
convergence are based on the use of Lyapunov transforma-
tions.

Simulations with non-linear µ(·) and approximation of δ(·)
are not presented here. Robustness with respect to on
uncertainty on δ(·) will be matter of a future work.
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