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Abstract: This paper extends our earlier work presented at the last IFAC World Congress that
concerned the fault tolerant, distributed, scalable control of a group of agents that must move
in a formation specified by relative positions between agents and a constant formation velocity.
The control law we had proposed naturally accommodated various levels of fault tolerance and
scalability and required an amount of inter-agent communication that was commensurate with
a designated level of fault tolerance. The control law assumed, however, that this exchange of
information occurred simultaneously. In practice communications must occur under Medium
Access Control (MAC) constraints. Thus no agent can transmit and receive at the same time,
and cannot transmit to another agent who is receiving information from yet another. We modify
our earlier control algorithm so that such MAC constraints are respected, and provide a stability

analysis of this modified control law.
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1. INTRODUCTION

Spurred by major advances in computing, wireless com-
munications and networking, and an ever expanding ap-
plication domain, there has been a growing interest in
the cooperative control of networks of mobile autonomous
agents, Vicsek et al. [1995]-Anderson et. al. [2006]. Such
networks involve multiple mobile objects that cooperate
to achieve any number of objectives. Thus they may
achieve a formation, perform collective tasks, gather data,
avoid collisions and obstacles, and be robust to malicious
and hostile environments. Cooperation is effected through
limited exchange of information between the agents over
wireless media with little or no centralized intervention.

We are concerned with agents modeled as double integra-
tors in each cartesian dimension that must organize them-
selves in to formations prescribed by the relative positions
between the agents. As in Abel et al [2005] our goal is
to devise control laws that, require minimal information
exchange between the agents and minimal knowledge on
the part of each agent of the overall formation objective,
are fault tolerant, scalable, and easily reconfigurable in
the face of the loss or arrival of an agent, and the loss of
a communication link.

A major drawback of Abel et al [2005] is that it assumes
that all agents can exchange information at will. This
is fine if agents acquire each others state information
through straightforward sensing. If however, state infor-
mation is exchanged through broadcast communication,
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this assumption is highly unrealistic. In particular when
agents broadcast their state information they must com-
pete with each other for access to the communication
medium and are constrained by Media Access Control
(MAC) protocols. Specifically, if agent A must listen to the
broadcast of agent B, then no other agent that has A in
its broadcast range can broadcast at that instant. Further
in many instances no agent can simultaneously transmit
and receive. These requirements limit (often severely) the
number of transmissions that can occur at a given time,
and the full schedule of information exchange can only
occur over several time slots. Consequently information
available to a given agent as it executes its control law
may not be the most upto date. The principal contribution
of this paper is to modify Abel et al [2005] so that MAC
protocols are accomodated.

Significant work in this area has been conducted in the
robotics community, and also in the string stability liter-
ature, Swaroop et al [March 1996], Khatir et al [Decem-
ber 2004]. The biologically motivated flocking literature,
Yamaguchi et al [1996], seeking to mimic flocks of bird,
seeks to organize coherent group movement as opposed to
manitaining specified relative positions. To induce a set
of agents with same speed to move in the same direction
Vicsek et al.  [1995] proposes a simple algorithm that
is rigorously analyzed in Jadbabie et al. [June 2003].
The rendezvous problem, where agents are induced to
converge to a single unspecified location, is studied in Lin
et al [2003]. Consensus forming or synchronization are
also instructive examples, Olfati-Saber et al [September
2004], Moreau [February 2005].
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Fig. 2. agent Formation Topology with Redundancy

We are particularly interested in organizing agents into
formations defined by desired relative positions and trajec-
tories, Fax et al [July 2002] -Fax et al [September 2004].
The closest approach is in Fax et al [September 2004]
which seeks to organize a network of agents according to
specified relative positions, and focuses on the communi-
cation topology. Further discussion on this paper and our
own work in Abel et al [2005] is below.

A related issue is to treat networks with time varying
communication links, Olfati-Saber et al [September 2004],
Moreau [February 2005] Again results in this area are
restricted to the easier synchronization based problems
referred to in the foregoing.

Papers like Fax et al [July 2002] and Fax et al [September
2004] separately propose a desired formation and a state
exchange architecture and ask whether the latter suffices
to achieve a formation. Abel et al [2005] reverse the
question and ask given a desired formation, what state
exchange architecture suffices to achieve it. They also
focus on control laws that incorporate redundancies that
permit the formation to survive the loss of agents and/or
communication links.

Since the take off point of this paper is Abel et al
[2005], we briefly reprise its salient points. Abel et al
[2005] recognize that the same geometry can be described
in multiple ways. Thus if the desired geometry is that
depicted in fig. 1 it can be described by specifying the
relative positions between agents joined by arrows. Thus
in this figure relative positions and/or relative velocities of
the pairs (1,2), (1,4), (2,3) and (4,5) are specified. One
may also specify the same geometry by adding redundant
information, as in fig. 2, where the additional constraints
are added between the pairs (1,3) and (1,5). Such a
redundant structure adds fault tolerance to the geometric
description. Thus, while the loss of agent 4 in fig. 1, implies
that 5 is isolated, in fig. 2, 5 retains its position relative to
agent 1 and the new topology remains viable.

Here on we will call this the Formation Topology, as
opposed to the Communication Topology which defines the
state information flow required to implement a cooperative
control law. We explore here the relation between these
two topologies and argue that issues of fault tolerance,

scalability and communication derive from the correct
design of the formation topology.

To this end Abel et al [2005] proposes a cost function that
incorporates the formation topology. A one step ahead op-
timal control law obtained on its basis has many features.
Foremost among them is the fact that the communication
topology required to implement it is identical to the un-
derlying formation topology.

The key attractive properties of the approach of Abel et al
[2005] are as follows: In the sequel we will call a pair
of agent neigbors if they appear in the same geometric
constraint. Thus in fig. 1 agent 1 has the neighbors 2, and
4, while in fig. 2 it has the additional neighbors 3 and 5.

(a) Agent i needs the state information of only its neigh-
bors in the formation topology. (b) A given agent only
needs to know the constraints imposed on itself by the
formation topolgy. (¢) Should the loss of an agent still
permit an acceptable topology, then only the neighbors of
the lost agent need to reconfigure their control law. (d)
Should the loss of a communication channel still permit
an acceptable topology, then only the agent at the end
points of the lost arc need to reconfigure their control
law. (e) If a new agent joins the fleet by establishing a
geometric position with respect to a subset of the agents,
then only these agents need to reconfigure their control
law. (f) Relative position constraints can be augmented by
compatible, potentially redundant velocity and/or relative
velocity constraints.

Thus (a) indicates the communication topology high-
lighted in the foregoing. Item (b) has the added attraction
of permitting the control to be implemented by a given
agent with only a local knowledge of the formation topol-
ogy. Scalability comes from (e) as a new agent 6 in fig.
1 with only 5 as a neighbor would require that only 5
readjust its control law. Reconfigurability under the loss of
an agent is greatly facilitated.

In this paper, we propose an alternative control law that
retains these attractive properties while respecting MAC
requirements. A few points of note are as follows: First
Abel et al [2005] have an undirected communication
architecture, i.e. if agent ¢ must convey its state to j,
then j must convey its state to 7. Though over a period of
time this paper also has this requirement, as no agent can
simultaneously transmit and receive, in any given sampling
interval the architecture here is directional. This contrasts
though from the directional control of Anderson et. al.
[2007], Anderson et. al. [2006] where if agent ¢ must sense
the state of j, then agent j will not know the sense of i at
all. Second as will be evident in the sequel, the control
law employs a communication architecture that varies
from one sampling interval to the next. However, unlike
Moreau [February 2005] this architecure is periodically
varying. Of course Moreau [February 2005] is confined
to the synchronization problem, as opposed to the harder
formation control problem studied here.

2. DYNAMICS AND THE FORMATION TOPOLOGY

When considering the problem of an n-agent formation
our focus here is on a two dimensional formation topology,
even though the ideas trivially extend to three dimensional

6609



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

formations as well. We shall partition the global, 4n x 1
state vector = of the network as

T _TT
T = [xl ’$2] ) (1)
where x1 and x5 contain the positions and velocities re-

spectively. In particular, denoting x; ; as the j-th element
of x;, we will have

21, is the x position of agent 1,

29, is the x velocity of agent ¢,

Z1n+i is the y position of agent 4, and
Zo,n+i 18 the y velocity of agent ¢

We shall further assume that each agent has been in-
ternally controlled to represent a double integrator with
elements u; and u,4; of the control input vector u rep-
resenting normalized force variables acting on the i-th
agent, in the x and y directions respectively. For notational
simplicity we will assume that the sampling interval is 1-
second. The ideas trivially extend to nonunity sampling
intervals. Thus, to within a suitable force normalization
the system of agents can be described by:

2(k+ 1) = da(k) + Tu(k) 2)
where
o= {13" g:],andfz {21;;]. 3)

To ease notation we will often denote

dalk] = 0(k). (4)

The formation topology is alternatively characterized
graphically and algebraically. In the former case it is
described by an undirected graph with agents as nodes.
An arc exists between two agents if their relative position
constraint explicitly appears in the description of the for-
mation topology.

Algebraically, the formation topology will be characterized
in the following way. Observe that the relative positions
between two agents 7 and j can be completely specified,
for suitable f and g by the pair of equations

xl,i — .’)317]‘ = f and xl,n+i — {L‘LnJrj =4dg. (5)
Assume that there are L such pairs of constraints. Then
with an L x n matrix A,

A0 O by
A=|10A 0 and b= | by (6)
0 0 O2nx2n O2nx1
the topology can be represented by the following equation:
Az =b, (M)

Here x is the target state vector. In all there are 2L
position constraints. Further A is a a matrix with each
row having all but two elements zero and the remaining
two being +1.

Formally, we make the following assumption.

Assumption 2.1. Suppose the formation topology has L
arcs. Then the matrix A is L x n. Further if an arc exists
between agents ¢ and j then there exists a row of A which
has all but the i-th and j-th elements zero and among the
remaining two one is 1, and the other —1. Further by, by
are each in the range space of A, and

rank[A] =n — 1. (8)

Note that (8) implies that the graph representing the
fomation topology is connected, i.e. there is a path joining
any two nodes that can be traversed by moving from one
nearest neighbor to the next.

Recall that while figures 1 and 2 describe the same geome-
try the latter represents a formation topology with redun-
dancies. Observe if the formation topologies in figure 1 and
figure 2 are respectively defined by the pairs [AM), 5()] and
[A®) 53] then [AM bM] is a submatriz of [A?)b(3)].
Moreover, should the loss of an agent result in a topology
that remains acceptable, e.g. the loss of 4 in figure 2, then
this new topology characterized by [A®) b(3)] obtained
by removing the rows corresponding to the constraints
featuring 4 and columns corresponding to the states of
4, is itself a submatrix of [A®) b®)]. This feature forms
a core property to be exploited in fault tolerant design.
Scalability is likewise incorporated rather easily. Thus if
a new agent 6 appears in figure 2 with an arc between it
and 5, then the new pair [.A(4), b(4)] characterizing it has
[A®) b(?)] as a submatrix, and involves just the addition
of rows and columns, and aumenting rows in [A) b(2)]
that feature in A, b(*] by zero column entries.

Thus the loss of an agent/communication channel requires
working with a submatrix of the original [A,b], and the
addition of an agent requires a supermatrix of [A, b].

3. CONTROL LAW WITHOUT MAC CONSTRAINTS

We first recount the control law of Abel et al [2005], that
assumes that communication occurs without access control
constraints. It involves a one step ahead optimization law
using the cost function

J(k) = [Az(k +1) = b)" [Az(k +1) —b] +
+ul (F)Qu(k)  (9)
Where @ = Q7 > 0 penalizes the input. The key step in

achieving the control law with the desired characteristics
described in the introduction is to appropriately select Q.

Since z(k+1) is dependent on u(k) we begin by substitut-
ing (2, 4) into the cost function defined in (9). Taking the
partial derivative of the resultant expression with respect
to u(k), we obtain:

[TT AT AT + Q) u(k) = TT AT [b — AO(K)]

Choose, for some a > 0,

Q=al —TTATA > 0.
The resulting control law is:
u(k) = o 'TTATh — o 1T AT A0(k) (10)
It has been shown in Abel et al [2005] that stability is
guaranteed if () is positive definite. Thus o must be chosen
so that
(11)

Now we reprise the arguments from Abel et al [2005] that
show that the communication topology resulting from (10)
is identical to the geometric topology and further that only
a local knowledge of the formation is required by each
agent. Observe that the control inputs to agent i are uo;
and U2;—1-

al —TTAT AT > 0.
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We have the following result that establishes the various
properties of the communication topology.

Theorem 3.1. Consider (10) under (1), (3), and (6). Then
finding wg;—1(k) and wug;(k) requires: (A) The states of
agent [ only if there is an arc between agents [ and i in
the formation topology. (B) The I-th row of A only if for
some j € {2 —1,24,2i — 14+ n,2i +n} a;; # 0. (C) The
I-th element of b(k) only if for some j € {2i — 1,2¢,2i —
14+ n,2i+n} a;; # 0. (D) The gain A;.

(A) shows that the communication topology is the same
as the formation topology. (B) and (C) show that agent
i need only know those rows of A and elements of b
which define the arcs emanating from it. Thus ¢ must
only know its place in the formation topology and a
distributed knowledge of the formation topology suffices.
This in particular has security implications as even if an
agent is compromised the global objective is not.

4. CONTROL UNDER MAC CONSTRAINTS

The control law in 3 assumes that all agents can commu-
nicate at will. In practice when broadcast communication
is used MAC constraints must be used to avoid message
collisions. At the minimum this requires that when an
agent is receiving state information from a neighbor all
others in whose broadcast range it resides, must be silent.
Nor can an agent receive and broadcast simultaneously.

Further, depending on the circumstance one of the follow-
ing three situations may hold. (a) All agents are in each
others mutual broadcast range. (b) Only agents having an
arc between them are in each other’s mutual broadcast
range. (¢c) While any two agents that have an arc between
them are in each other’s mutual broadcast range, other
agents without an arc to them may be in their broadcast
range.

The control law we propose accommodates all these three
settings. At any rate the following assumption will hold.

Assumption 4.1. If an arc exists between i and j in the
formation topology, then ¢ and j are in each others
broadcast range. Further each agent always knows its
position and velocity.

As is customary in ad hoc networks, we assume a priori
that the agents have settle on a broadcast schedule, that
is consistent with the MAC constraints noted above.
We note that efficient algorithms for determining such a
schedule, that involve only local exchange of information
are available in the literature.

This schedule must be implemented over K sampling inter-
vals, in each of which certain agents broadcast in a manner
consistent with MAC requirements. Each interval is as-
sumed for simplicity to be one. This transmission pattern
is repeated after every K-samples. We further assume that
while every input is updated in every sampling interval, the
agent effecting that update does so by modifying (10), by
replacing the instantaneous state information by the latest
value it has access to. We make the following assumption
capturing MAC.

Assumption 4.2. Every agent broadcasts only once in ev-

ery K sampling intervals, and when it transmits, all agents
it has an arc with receive that information. Further no

agent can receive while it is broadcasting, and an agent
cannot broadcast if an agent it has an arc to is receiving
from another source. Moreover, all communication is in-
stantaneous, in that if a broadcast occurs over an interval
[a, ), then the receipent knows the information at time a.

1

AN

Fig. 3. Desired formation for a three agent system.

2 3

As an example consider the setting of (3). Suppose the
transmission schedule uses K = 3, and is as follows: 1
broadcasts to 2 and 3 at all instants 3k, 2 transmits to 1
at 3k+1, and 3 to 1 at 3k + 2. Note that this accords with
assumptions, 4.1 and 4.2, regardless of whether 2 and 3
are in each others broadcast range.

Define

(12)
where e; is a n x 1 vector that has 1 in its i-th element,
and zeros in all others. Also denote:

Dij = 1; ® D;.

. /
Di = €;€;

(13)

Suppose
V={1,2,--- ,n}
Define V; C V as the set of all agents that have an arc
to agent 7 in the formation topology. Then the schedule
comprises a sequence of sets
vihcv, vie{0o,1,--- ,K —1},

where each agent in V'(I) broadcasts in every sampling
interval starting with KK + [. In keeping with assumption
4.2 we obtain the following control law, which we note

retains the attractive properties of (10): For all integer k,
and l € {0,1,--- ,K — 1}

u(kK + l) = %A/b — (Z DiQ%A/A(I)Di4> x(kK + l)

i=1

l /
_ Z( Z Z Dj2%AI-A(I)Di4)x(kK+m)

m=0 iV (m) jEV;

>y JJJ«QFE/JAt’Aquji4

i€V (m) jeVi
z(k(K —1) 4+ m)

m=Il+1

The term involving

n ]_—V
> Di —AADD;y
i=1
recognizes that each agent always has its state information.
The second term captures the fact that all agents have
access to their own states at all times. The resulting closed
loop system is of course K -periodic.

To formalize the underlying rules governing the MAC
protocol, that directly impact the stability proof to be
presented in the next section, we make the following
assumptions.
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Assumption 4.8. The V(I) form a disjoint partion of V,
ie.

V(i) NV (j) = {¢} and U V(i) = V-
This assumption ensures that in every K-cycle each node
broadcasts only once, and is consistent with assumption
4.2.

Assumption 4.4. If for some [ € {0,1,---
then for all j € V(1), i ¢ V.

K =1}, 4 e V(D)

Since every neighbour of ¢ € V() in the formation topol-
ogy is in receive mode in the pertinent interval, this ensures
that no agent receives and transmits simultaneously.

Assumption 4.5. If for some l € {0,1,--- ,K—1},{i,j} C
V(1). Then V(i) N V(j) = {o}.

This assumption ensures that no node can receive simulta-
neously from multiple sources. This is necessitated by the
fact that no node can broadcast if a node in its broadcast
range is receiving from another node.

5. STABILITY

This section proves the stability of the closed loop system
defined by (2) and (14). Since the proofs are long, they are
omitted. Define first for m 6 {0,- -1}

=-T Y > Dﬂ— (AA AAS0)(Dir ©0)®,
i€V (m) jeV;
(15)
and

= —PZDQ— AAe A'A®0)(Di ©0)®.  (16)
where, ® denotes the direct sum operation on the matrices.

Then because of (6) and (3), the closed loop becomes: for
le{0,- ,M—1},

l
2(kK +1+1)=(@+ Gu(kK + 1)+ Y Guma(kK + m)

m=0

F/
—1)+m)+ FEA’b.

+ z_: Gma(k(K

m=Il+1
Then it follows that
(kK + K +1) z(kK)
z(kK + K) z(kK —1) .
| ~F | +¢ (A
e(kK +1) e(kK — K +1)
where with F; given by
[ —(@+G+Gx1) G T
0171 —(®+G+Gk—2) -Gx-1 -+ —G1
00 0 0 0 I
and Fy given by
Go 0 cee e o0
Go gk-1 0 e 0
(®+G+Go) Grk-1 Gk—2 Gk—3 -+ G1
F=F'F (18)

and .
G=Ft1,--- 1) T A'b/a.

We first examine the eigenvalues of F. To this end we

provide a result that relates its egienvalues to a lower

dimensional matrix. Specifically define:

A'A
> 2. DD (19)
i€V (m) JEV;
n A/A
=) Di= =D (20)
i=1 @
Fy given by
I —(I+G+Gxk-1) —GK-2 e =Gy
0 I —(I+G+Gk_2) —Gg_1 - —Gy
0 0 6 0 0 I
Go Grk-1 O e 0
Fy =
(I+G+Go) Gx—1 Gr—2 Gx—3 - G1
and
F=F'F (21)

Then we have the following Lemma stated without proof.

Lemma 5.1. Suppose (11) and assumptions 2.1-4.5 hold.
Suppose that some eigenvalues of F' in (21) are at 1, and
the rest are inside the unit circle. Then the eigenvalues of
F in (18) are also either 1, or inside the unit circle.

The next Lemma characterizes the eigenvalues of the
reduced dimensional matrix F'.

Lemma 5.2. Suppose (11) and assumptions 2.1-4.5 hold.
Then (K — 1)n eigenvalues of F' in (21) are at 0, one
eigenvalue is at 1, and the remaining n — 1 are inside the
unit circle.

Lemmas 5.1 and 5.2 together show that the eigenvalues of
F are either inside the unit circle or at 1. Our eventual
goal is to show that

klim Ax(k) =b. (22)

Obseve that this is equivalent to the requirement that

2(kK) I
s(kK —1) I

Jim (Ix @ A) : = .| (23
2(kK — K +1) I

To prove (23), we provide a somewhat stronger result than
the implications of Lemmas 5.1 and 5.2.

Lemma 5.3. Suppose (11) and assumptions 2.1-4.5 hold.
Then all poles of (Ix ® A) (2I — F)~! are inside the unit
circle.

Then we have the following main result.

Theorem 5.1. Suppose (11), assumptions 2.1, and 4.3-4.5
hold. Then under (2) and (14), one has

klim Az(k) =b.
6. SIMULATIONS

The initial conditions of the fleet are the same for all the
simulations. Figure (1) illustrates the desired formation
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topology without any built-in redundancy. The communi-
cation protocol for such a configuration is as follows,

o (KT, kT + h): 1—2,1—4
o (kI'+ h,kT+2h): 2—1,2—-3,5—4
o (kT +2h,kT+3h):4—1,4—5,3—2

where, T' = 3h and the direction of the arrow indicates
the direction of the information flow. This assumes that
none of the pairs (2,4), (5,1) and (3,5) are in each others
broadcast range.

Now consider the topology with redundancy built-in. Fig-
ure 4 illustrates the desired formation topology with re-
dundancy incorporated via the link between agents 2 and
4. The communication protocol for this configuration is

shown below
1
2 \4
\_/

TN

Fig. 4. Desired formation for a five agent system with
redundancy.

3 5

(KT, kT + h): 1—-2,1—-14
(kT + h, kT +2h): 2—1,2—-3,2—4
(kT +2h, kT +3h):4—1,4—5,4—2
(KT + 3h, kT +4h): 3 — 2,5 — 4

where T' = 4h. This does assume that (2,4) are now in each
others broadcast range. Effectively, in going from figure 4
to 1 the agents have reduced their broadcast range. This
is a device that is commonly employed to ensure a more
efficient implementation of the broadcast schedule.

Figure 5 illustrates the position error ||Az — b|| of the fleet
for the redundant formation shown in figures 4.

25

5

[1Ax=bI|

0.5 k
0

0 200 400 600 800 1000 1200

Number of iterations.

Fig. 5. The formation error in the case of a redundant
topology.

7. CONCLUSION

We have examined the cooperative control of a fleet of
automomous units that have to achieve arbitrary relative
positions. We have proposed a new control strategy that
results in distributed control, requiring a communication
topology that mirrors exactly the formation topology and
respects MAC requirements.
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