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∗∗ Division of Automatic Control, Department of Electrical
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Abstract: Feedback linearization is one of the major academic approaches for controlling
flexible joint robots. This contribution investigates the discrete-time implementation of the
feedback linearization approach for a realistic three-axis robot model. A simulation study of high
speed tracking with model uncertainty is performed. It is assumed that full state measurements
of the linearizing states are available. The feedback linearization approach is compared to a
feedforward approach.
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1. INTRODUCTION

High accuracy control of industrial robot manipulators is
a challenging task, which has been studied by academic
and industrial researchers since the 1970’s. The first ap-
proaches of linearizing a nonlinear system by nonlinear
feedback can be found in the robotics literature from
that decade. Control methods for rigid direct drive robots
are, e.g., described in An et al. (1988). The two main
approaches are feedforward control and feedback lineariza-
tion, and both are based on a rigid dynamic model, com-
bined with a diagonal PD or PID controller. Experimental
evaluations are described in, e.g., Santibanez and Kelly
(2001) and An et al. (1988). The conclusion in these is that
feedforward control gives the same tracking performance
as feedback linearization and that feedforward control is
the preferred choice.

In Spong (1987) it is shown that flexible joint robots, i.e.,
elastic gear transmissions and rigid links, can be described
by the so called simplified flexible joint model where the
inertial coupling between the links and the motors are
neglected. This approximation is valid for a reasonable
high gear ratio. Furthermore, the viscous damping is also
neglected in the simplified model. In the same article it
is shown that the simplified flexible joint model can be
linearized and decoupled by static feedback linearization,
see also Spong et al. (2006).

In De Luca (1988) and De Luca and Lucibello (1998)
it is shown that the complete flexible joint model can
be linearized and decoupled by dynamic state feedback.
A simulation study of feedback linearization using both
the simplified and the complete flexible joint model is
described in Nicosia and Tomei (1988), where it is claimed
that the simplified model can cause large error in some
operating conditions, although the gear ratio is high. The
feedforward approach for flexible joint robots is described
in, e.g., De Luca (2000). Experimental evaluations of con-

trol methods for flexible joint robots are described in, e.g.,
Caccavale and Chiacchio (1994) (feedforward based on a
rigid model), Jankowski and Van Brussel (1992) (discusses
problems with feedback linearization due to its complex-
ity and sample time requirement, suggests a simplified
discrete-time predictive DAE approach with partial state
feedback, based on a flexible joint model), Albu-Schäffer
and Hirzinger (2000) (full-state feedback with gravity
compensation based on a flexible joint model, concludes
that feedback linearization is not possible to implement
in available systems due to its complexity but also due to
the requirements on model accuracy) and Thümmel et al.
(2001) (feedforward based on a flexible joint model). In
conclusion, the complete flexible joint feedback lineariza-
tion is not implemented in any of these evaluations. No
rigorous comparative simulation or experimental study of
tracking with strict industrial requirements, using discrete-
time implementations of feedback linearization and feed-
forward control, for the flexible joint model, has been
published to the authors’ knowledge. However, simulation
studies with reasonable realistic models are possible to
perform.

This study is intended to help bridging the gap between
theoretical nonlinear robot control and robot control prac-
tise. Many control methods suggested by researchers are
seldom implemented in real systems and, on the other
hand, many important control problems in the real world
are not addressed in the academic research. The existence
of such a gap in general control science is widely acknowl-
edged and the need for a balance between theory and
practise is expressed in, e.g., Åström (1994). From Bern-
stein (1999) we quote ”I personally believe that the gap
on the whole is large and warrants serious introspection
by the research community”. The same article also points
out that the control practitioners must articulate their
needs to the research community, and that motivating
the researchers with problems from real applications ”can
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have a significant impact on increasing the relevance of
academic research to engineering practise”. The problem
is somewhat provocatively described in Ridgely and Mc-
Farland (1999) as, freely quoted, ”what the industry in
most cases do not want is stability proofs, guarantees
of convergence and other purely analytical developments
based on idealized and unrealistic assumptions”.

In our simulation study, the real world is substituted with a
simplified model, i.e., the (simplified) flexible joint model.
Moreover, perfect state measurements are assumed. In a
real implementation, some of the states would probably
be estimated by means of an observer or simply by
differentiation and low-pass filtering, disturbances and
joint nonlinearities would be significant, and the real
world elasticity would be much more complex than in our
model, see, e.g., Wernholt and Moberg (2008). What we do
assume, however, are important details such as a discrete
implementation, continuous anti-alias filters, a reasonable
requirement specification, realistic model parameters and
small model parameter errors in our otherwise ideal model
structure. Our rationale for this approach is that, if the
chosen/evaluated control method does not prove its worth
under these ideal circumstances, then the chances are small
that a real implementation would give a different result.
On the other hand, if the results are promising, then
the next step would be to to increase the realism in the
robot and sensor model, or to perform an experimental
investigation.

2. FLEXIBLE JOINT ROBOT MODEL

In this section, a serial link flexible joint robot model is
described. The model consists of a serial kinematic chain
of N rigid bodies. Rigid body rbi is described by its length
li, mass mi, center of mass ξi, and inertia tensor w.r.t.
center of mass J i. The rigid body rbi is connected to
rbi−1 by a torsional spring. The motors are placed on
the preceding body and the inertial couplings between
the motors and the rigid bodies are neglected under the
assumption of high gear ratio, see, e.g., Spong (1987). The
total system has 2N DOF (i.e., the number of independent
coordinates necessary to specify its configuration). The
torque control of the motors are assumed to be ideal, so the
N input signals u of the system are the motor torques. The
equations of motion are derived by computing the linear
and angular momentum and their time derivatives. By
using Kane’s method (Kane and Levinson, 1985; Lesser,
2000) the projected equations of motion are derived to
yield a system of ordinary differential equations (ODE)
with minimum number of DOF. The model equations can
be described as a system of second order ODE’s

Ma(qa)q̈a + n(qa, q̇a) + K(qa − qm) = 0, (1a)

Mmq̈m + K(qm − qa) = u, (1b)

where ẋ denotes dx/dt. Ma(qa) ∈ RN×N is the inertia
matrix for the links and n(qa, q̇a) = c(qa, q̇a) + g(qa),
where c(qa, q̇a) ∈ RN and g(qa) ∈ RN describes the
Coriolis, centrifugal and gravity torques. Mm ∈ RN×N

is the diagonal inertia matrix of the motors. The link
and motor angular positions are denoted qa ∈ RN and
qm ∈ RN respectively. Note that the gear ratio matrix, r,
is not explicitly shown in the equations. All equations are
expressed on the link side and Mm = rT Mm

m r, where Mm
m

is the motor inertia matrix on the motor side.

For a complete model including the position and orienta-
tion of the tool, Z, the forward kinematic model of the

Fig. 1. A three axis flexible joint model

robot is needed. The kinematic model is a mapping of
qa ∈ RN to Z ∈ R6. The complete model of the robot
is then described by (1) and

Z = Γ(qa). (2)

Z is the controlled output variable. The forward kinematics
(2) is practically invertible, i.e., there are methods for
handling singularities and multiple solutions (Sciavicco
and Siciliano, 2000) to get the inverse kinematics

qa = Γ−1(Z, C), (3)

where C is a set of configuration parameters or other type
of information, used to select a feasible solution. The link
angular positions qa can thus be regarded as alternative
output variables. A robot with N = 3 is used in the
simulation study to follow. This robot is illustrated in
Figure 1.

3. FEEDBACK LINEARIZATION AND
FEEDFORWARD CONTROL OF A FLEXIBLE JOINT

ROBOT

The flexible joint robot is an example of a differentially flat
system (Rouchon et al., 1993) which can be defined as a
system where all state variables and control inputs can be
expressed as an algebraic function of the desired trajectory
for a flat output, and its derivatives up to a certain order.
Feedback linearization by static or dynamic state feedback
is equivalent to differential flatness (Nieuwstadt and Mur-
ray, 1998). By solving (1a) for qm and differentiating twice
we get the expression for q̈m as

q̈m = q̈a + K−1[Ma(qa)q[4]
a + 2Ṁa(qa, q̇a)q[3]

a +

M̈a(qa, q̇a, q̈a)q̈a + n̈(qa, q̇a, q̈a, q[3]
a )], (4)

where x[i] denotes dix/dti. Adding (1a) to (1b) yields

u = Ma(qa)q̈a + n(qa, q̇a) + Mmq̈m. (5)

Inserting (4) in (5) gives

u = τ(qa, q̇a, q̈a, q[3]
a , q[4]

a ), (6)

which shows that the flexible joint model is a flat system
with the flat output qa. By choosing the states

x =







qa

q̇a

q̈a

q[3]
a






=







x1

x2

x3

x4






, (7)

the system can be expressed in the following state-space
form by the use of (4) - (6)

ẋ1 = x2, (8a)

ẋ2 = x3, (8b)

ẋ3 = x4, (8c)

ẋ4 = f(x) + g(x)u, (8d)

y = x1, (8e)
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where

f(x) = −M−1
a (x1)KM−1

m (Ma(x1)x3 + n(x1, x2))−

M−1
a (x1)(K + M̈a(x1, x2, x3))x3−

2M−1
a (x1)Ṁa(x1, x2)x4−

M−1
a (x1)n̈(x1, x2, x3, x4), (9a)

g(x) = M−1
a (x1)KM−1

m . (9b)

It is clear that four differentiations of each component

of the output y are needed in order for y
[4]
i to depend

directly on u, i.e., the relative degree νi = 4. Now,
Σνi = 4N so the system has full relative degree and no zero
dynamics associated with output y (Isidori, 1995; Slotine
and Li, 1991). Thus the system is fully linearizable by a
static feedback control law that can be derived from the
controller canonical form (8) as

u = g−1(xm)(v − f(xm)), (10)

where v is a new control signal for the linearized and

decoupled system q
[4]
a = v consisting of N independent

chains of four integrators. For tracking control, v can be
chosen as

v = q[4]
a,r + L(xr − xm), (11)

where L ∈ RN×4N is a linear feedback gain matrix, xr are
the reference states, and xm are the measurements of the
states x. The fourth derivative of the reference trajectory

must be defined and is denoted q
[4]
a,r. This control law can

also be derived by inserting the measured states xm and v
in (6) to yield

u = τ(x1m, x2m, x3m, x4m, q[4]
a,r + L1(xr − xm)). (12)

The derived control law is a combination of feedback and
feedforward where the feedback part is dominating and is
from now on denoted FL.

A feedforward dominant control law can be expressed as

u = τ(x1r, x2r, x3r, x4r, q
[4]
a,r) + L2(xr − xm), (13)

where, ideally in the case of a perfect model, all torque
needed for the desired trajectory is computed by feed-
forward. This control law is denoted FF. Note that for
both controllers, in a real implementation, an integral term
would be needed to handle model errors and disturbances.
For simplicity the integral term is omitted in this study.

The control law (12) gives constant bandwidth of the
linearized closed loop for all robot configurations. For
constant bandwidth there would be no need for gain
scheduling. Gain scheduling is on the other hand probably
needed in (13). This can be accomplished by observing
that the closed loop dynamics for (12) is given by (8) with
ẋ4 = −L1x and that L2 is given by setting −L1x = f(x)+
g(x)[−L2x]. If the system is linearized for zero gravity, zero
speed we get the configuration dependant feedback gain

L2 = MmK−1Ma(x1r)L1 − [0 0 Ma(x1r) + Mm 0] . (14)

In this way we get approximately the same linear feedback
for both control laws which will facilitate the comparison.

The two control laws are illustrated in Figure 2 - 3. The
control signal u can be described as

u = ud,nc + uffw + ufdb , (15)

where ud,nc is the torque for decoupling and nonlinear
cancellation, uffw is the feedforward torque and ufdb is
the torque from the linear feedback controller. For FF,
ud,nc = 0.

Fig. 2. Feedback Linearization Control Law (FL)

Fig. 3. Feedforward Control Law (FF)

Fig. 4. IRB6600 from ABB equipped with a spot welding
gun

4. SIMULATION STUDY

The robot model described in Section 2 is simulated
with the controller structures from Section 3. The model
parameters used are typical for the three first axes of a
large industrial robot with a payload capacity of 150 kg.
One example of such a robot is shown in Figure 4 and
the frequency response function of the linearized model in
one configuration is shown in Figure 5. For simplicity, the
gravitational constant is set to zero.

The requirement specification illustrates a typical require-
ment for a dispensing application, e.g., gluing inside a car
body, and is stated as follows:

• The programmed path should be followed by an accu-
racy of 1 mm (maximum deviation) at an acceleration
of 8 m/s2 and a speed of 0.5 m/s.

• The specification above must be fulfilled for model
errors in the user load mass by ±20 % and errors in
the gear-box stiffness of ±20 %.

• The test path is a circular path with radius 25mm.

The smooth cartesian trajectory reference Zr(θ(t)) is com-
pared to the obtained robot trajectory Z(η(t)), where θ
and η are time dependant scalar path parameters. Instead
of using the tracking error |Zr(t)−Z(t)|, the path accuracy
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Fig. 5. The frequency response function from motor torque
to motor speed. Magnitude in [dB] and frequency in
[Hz].
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Fig. 6. The circular angle Q and its derivatives

is measured by the path-following error. The tracking error
will indicate error for, e.g., a small time delay between Zr

and Z. Therefore, the path-following error is preferred as
an accuracy measure and is also used in ISO (1998). The
maximum path-following error is here computed as

e = max
η∈Z

(min
θ∈Zr

(|Zr(θ) − Z(η)|)). (16)

The circle computed in polar coordinates, radius r, angle
Q, by discrete integration of Q[5](t) and thus the path is
C4 as shown in Figure 6. The link angle reference qr is
then computed using inverse kinematics and the required
derivatives are calculated without delay.

4.1 Nominal Performance

In this section, the performance of feedback lineariza-
tion and feedforward control is evaluated for the nominal
case, i.e., no model errors. The discrete implementation
is straightforward as the control laws, including all model
derivatives (Ṁa, M̈a, and n̈), are expressed as algebraic
equations. The robot model is simulated as a continuous
system with a zero-order hold at the output. Figure 7
shows an example of a simulated path with a path error
of 4 mm. Simulations were performed for the nominal
system with different sample times and different band-
widths of the linearized closed loop. Two methods for
computing the feedback gain matrix L1 were used, LQ
optimal control (Anderson and Moore, 1990) and pole
placement. For feedforward control, L2 is then computed
from L1 according to (14). The controller is implemented
with a fixed sample rate. The measured variables were
filtered with a second order continuous anti-alias filter of
Butterworth type, with a bandwidth equal to the Nyquist
frequency. The bandwidth of of the linearized closed loop
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Fig. 7. An example of the circular reference path (dashed)
and robot path (solid)
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Fig. 8. Path error vs. sample time for feedback lineariza-
tion (FL) and feedforward (FF) using an LQ linear
controller. Bandwidth (BW) of the linearized closed
loop is 1 Hz and 5Hz.

is indicated by the absolute value of dominant closed
loop poles. Figure 8 - 9 show the path errors at different
sample times and at two different bandwidths. The linear
LQ-controller clearly causes problems when feedback lin-
earization is used. Hence, in the remaining simulations,
pole placement is used for the linear controller design.
The design of the linear controller has not been further
analyzed since the objective of this work is to compare the
nonlinear controller concepts. Figure 10 shows the path
errors for feedback linearization when different nominal
motor inertias are used. The nominal motor inertias in all
other simulations are 200 kgm2, expressed on the link side.
The performance of feedback linearization clearly depends
on the motor inertia. Other simulations also show that
the path error increases for feedback linearization if the
anti-alias filtering of the measured variables is increased,
i.e., the bandwidth is decreased or the order of the filter
is increased. Feedforward control does not show the same
sensitivity in this respect.

4.2 Robust Performance

The uncertain system, according to the requirement spec-
ification, was then simulated with a set of 20 models.
The models were a combination of extreme values for the
uncertain parameters and some random systems inside
the uncertainty description. The result for one simulation
example is shown in Figure 11 and an example of the
resulting path error is shown in Figure 12. All simulations
are summarized Table 1.
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Fig. 10. Path error vs. motor inertia for feedback lineariza-
tion (FL) using a pole placement linear controller.
Bandwidth of the linearized closed loop is 1 Hz. Two
different sample times (h) are used. Feedforward con-
trol (not shown) yields an error less than 0.2 mm in
all cases.

Fig. 11. Simulation of uncertain systems for feedback lin-
earization control. Sample time is 1 ms and linearized
closed loop bandwidth is 1 Hz.

Fig. 12. Path error of uncertain systems for feedback lin-
earization control. Sample time is 1 ms and linearized
closed loop bandwidth is 5 Hz.

Table 1. Summary of simulation results for
circular path (radius 25 mm) and the uncertain

system.

Sample Time [ms] Bandwidth [Hz] Method Error [mm]
1 1 FF 0.56
1 1 FL 0.70
1 5 FF 0.14
1 5 FL 0.17
5 5 FF 0.24
5 5 FL 1.10

4.3 Discussion

From the simulation results, the following conclusions are
drawn:

• FL requires higher sample rate than FF.
• Low sample rate can to some extent be compensated

by high bandwidth of the linearized closed loop.
• If these requirements are fulfilled, the nominal and

robust performance of FL is similar to FF. However,
in this simulation study, FF always yields a better
result.

• The value of the motor inertia is critical for FL.
• Measurement filtering, and hence time delay, reduces

the performance more for FL than for FF.
• The design of the linear feedback controller is critical

for good performance. FL is more sensitive in this
respect.

To understand these results, it is helpful to consider
the different torque components in (15). The result can
now be explained as follows, the nonlinear cancellation
and decoupling performed by FL in an ideal continuous
world does not work in the same way for discrete time.
Thus, the inevitable delay of ud,nc , caused by the discrete
implementation, causes path errors if the sample time is
too high. Increasing the bandwidth of the linearized closed
loop will compensate for the delay in ud,nc by a correcting
torque in ufdb . For FF and small model errors, uffw is
dominating and the errors are small even for a moderate
sample rate and measurement filtering. In FL, the amount
of torque in ud,nc and uffw depends on the numerical values
of the model parameters. This explains why an increase
in motor inertia decreases the error. From Figure 2 it is
seen that increased motor inertia increases uffw relative to
ud,nc .

In feedback linearization of a rigid manipulator, i.e., the
classical computed torque algorithm, ud,nc consists of the
slow varying gravity torque and the speed dependent
torques. The fastest varying torque is the acceleration
dependant torque which is included in uffw . In this case the
problems described above should be considerably smaller
than in the case of a flexible joint robot where ud,nc

also depends on the fast varying acceleration and jerk. To
understand the different behavior of feedback linearization
for different systems, consider the algorithm applied to
a rigid one-axis manipulator with no friction or gravity,
i.e., a double integrator. If the model inertia is correct, all
required torque will be included in uffw and ud,nc is zero.
FL and FF is the same in this case.

To summarize, time delays caused by discrete implementa-
tion and filtering causes the linearization and decoupling
to be only partial. The incomplete decoupling can, e.g.,
be analyzed by linearizing the system around position
qa0, and applying the feedback linearization (including
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measurement filtering) to the linearized and discretized
system. The system is then decoupled by using

u = (Ma(qa0) + Mm)q̈a + MmK−1Ma(qa0)v. (17)

This deviation from the ideal decoupled system must be
handled by the linear controller, which therefore is critical
for the resulting performance. Of course there is a limit of
the achievable feedback bandwidth. Unmodeled dynamics,
model errors, measurement noise and the fact that perfect
complete state measurements are unachievable also limit
the bandwidth. State estimation, noise filtering, and com-
putational delay also add to the total delay. The sample
rate and time delays can theoretically be very small but
in practise there are limitations. The requirement on com-
putational power would be enormous for a six-axes ma-
nipulator. Computation of model derivatives by numerical
differentiation would reduce the number of operations, but
would on the other hand also increase the delay.

5. SUMMARY

In this paper, the discrete implementation of feedback lin-
earization for flexible joint robots has been investigated in
a simulation study concerning high speed tracking. Feed-
back linearization has been compared with feedforward
control. Perfect state measurements have been assumed.
With this assumption, the result is that typical industrial
robot requirements can be fulfilled with both concepts.
Another result is that feedforward control gives better
performance and puts less requirements on the controller
and sensor hardware. The design of the linear controller
is found to be critical for the resulting performance. The
feedback controller is needed for robustness, stabilization
and disturbance rejection. The partial linearization and
decoupling, caused by the discrete implementation, in-
creases the requirements on the feedback controller. Of
course, there are more ways to combine feedback and
feedforward than the two concepts studied in this article.
Given the flat expression of the control signal (6) there are
many ways to insert the measured states, the references
states and the amplified state errors into the equation.
Thus, how the optimal feedforward/feedback controller for
an elastic robot manipulator should be designed is still an
open question.
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A. Albu-Schäffer and G. Hirzinger. State feedback con-
troller for flexible joint robots: A globally stable ap-
proach implemented on DLR’s light-weight robots. In
Proceedings of the 2000 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2000.

C. An, C. Atkeson, and J. Hollerbach. Model-Based Con-
trol of a Robot Manipulator. The MIT press, Cambridge,
Massachusetts, 1988.

B. Anderson and J. Moore. Optimal Control: Linear
Quadratic Methods. Prentice-Hall, 1990.

D. Bernstein. On bridging the theory/practise gap. IEEE
Control Systems Magazine, 19(6):64–70, 1999.

F. Caccavale and P. Chiacchio. Identification of dynamic
parameters and feedforward control for a conventional
industrial manipulator. Control Eng. Practice, 2(6):
1039–1050, 1994.

A. De Luca. Feedforward/feedback laws for the control
of flexible robots. In Proceedings of the 2000 IEEE
International Conference on Robotics and Automation,
pages 233–240, San Francisco, CA, April 2000.

A. De Luca. Dynamic control of robots with joint elas-
ticity. In Proceedings of the 1988 IEEE International
Conference on Robotics and Automation, pages 152–158,
Philadelphia, PA, 1988.

A. De Luca and P. Lucibello. A general algorithm for
dynamic feedback linearization of robots with elastic
joints. In Proceedings of the 1998 IEEE International
Conference on Robotics and Automation, pages 504–510,
Leuven, Belgium, May 1998.

A. Isidori. Nonlinear Control Systems. Springer-Verlag,
1995.

ISO. ISO 9283:1998, manipulating industrial robots
- performance criteria and related test methods.
www.iso.org, 1998.

K. P. Jankowski and H. Van Brussel. An approach to
discrete inverse dynamics control of flexible-joint robots.
IEEE Transactions on Robotics and Automation, 8(5):
651–658, October 1992.

T. R. Kane and D. A. Levinson. Dynamics: Theory and
Applications. McGraw-Hill Publishing Company, 1985.

M. Lesser. The Analysis of Complex Nonlinear Mechanical
Systems: A Computer Algebra assisted approach. Singa-
pore: World Scientific Series on Nonlinear Science, 2000.

S. Nicosia and P. Tomei. On the feedback linearization of
robots with elastic joints. In Proceedings of the 27nd
Conference on Decision and Control, pages 180–185,
Austin, Texas, December 1988.

M. V. Nieuwstadt and R. Murray. Real-time trajectory
generation for differentially flat systems. International
Journal of Robust and Nonlinear Control, 8(11):995–
1020, 1998.

D. Ridgely and M. McFarland. Tailoring theory to prac-
tise in tactical missile control. IEEE Control Systems
Magazine, 19(6):49–55, 1999.
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