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Abstract: The problem of structure-preserving model reduction of interconnected linear sys-
tems is considered in this paper. The problem is interesting because networked models often
have high order, and standard model-reduction methods usually do not preserve interconnection
structure. As a tool, balanced truncation and block-diagonal generalized controllability and
observability Gramians are used. Block-diagonal generalized Gramians do not exist for all
interconnected systems, but a class of systems that always has such Gramians is identified.
Furthermore, it is shown how general interconnected systems can be associated with intercon-
nected systems in this class. The block-diagonal Gramians are then used to compute the reduced
models and also yield asymptotic a priori approximation error bounds and stability guarantees
for the reduced models.
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1. INTRODUCTION

In this paper, we consider model reduction of intercon-
nected linear systems. The model consists of subsystems
with dynamics Gi, and a network topology N that de-
scribes how the subsystems interact. An example is shown
in Fig. 1. The reduced model should retain the network
topology, but the subsystems should be of lower order
(smaller McMillan degree). A naive approach to solve the
problem is to approximate each subsystem separately, and
then to interconnect the approximations. This approach
does not take the dynamics of the entire system into ac-
count when approximating each subsystem, and will only
work under special circumstances.

The motivation for this work is that many models that
are of interest to the control community have a network
structure, see Murray (2003). Examples include models of
the power grid, formations of vehicles, but also control
systems where controllers, actuators, and sensors are dis-
tributed over a computer network. In all of these examples
there can be many subsystems that are interconnected in
one way or another, and the order of the entire system can
be very large. It is often desirable to obtain a model with
fewer (differential) equations and whose trajectories are
provably close to the original model’s trajectories. There
are standard methods to do this, for example balanced
truncation, see Enns (1984); Glover (1984). Unfortunately,
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Fig. 1. An example of an interconnected system with
node dynamics Gi, i = 1, 2, 3. We want to find low-
order approximations of Gi, called Ĝi, such that the
mappings wi �→ zi are preserved as well as possible,
while taking the network interaction yi into account.

the standard methods usually do not preserve the intercon-
nection topology.

Model reduction methods that preserve network topology
have been developed by Li and Paganini (2005), and by
Vandendorpe and Van Dooren (2004). In Li and Paganini
(2005), Linear Matrix Inequalities (LMIs) are used to
find structured coordinate transformations, suitable for
state truncation. In Vandendorpe and Van Dooren (2004),
ideas from frequency-weighted balanced truncation and
closed-loop balanced truncation are used to solve the same
problem. Just as in Li and Paganini (2005), we note here
the importance of finding block-diagonal matrix solutions
to certain LMIs. We call these block-diagonal matrix
solutions structured (generalized) Gramians. Structured
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[
E(s) F (s)
H(s) K(s)

]

⎡
⎢⎣

G1(s) 0
. . .

0 Gq(s)

⎤
⎥⎦

Fig. 2. The networked system modeled with a linear
fractional transformation Fl(N,G).

Gramians have long been used in model reduction of
uncertain systems, see Beck et al. (1996); Beck (2006),
and for controller order reduction, see Zhou et al. (1995).
A problem is that the necessary structured Gramians only
exist under special circumstances.

A contribution of this paper is that a class of intercon-
nected systems that always has structured Gramians is
identified. Importantly, systems that do not belong to this
class can be associated with a system in the class. This
means the results can be applied to general interconnec-
tions of linear systems. Furthermore, asymptotic approxi-
mation error bounds and stability guarantees are derived
for the reduced models using the structured Gramians.

The structure of the paper is as follows. In Section 2,
the model framework and preliminary results are given.
In Section 3, a class of linear systems with structured
Gramians is identified. In Section 4, an a priori error bound
is derived and a model-reduction algorithm is presented.
Finally, in Section 5 the method is applied to a simple
interconnected system. The result is also compared to
the method introduced in Vandendorpe and Van Dooren
(2004).

Notation. Most notation in the paper is standard. To
define transfer function matrices the notation C(sI −
A)−1B + D =:

[
A | B
C | D

]
is used. The set RH∞ is the set of

real and rational transfer function matrices in the Hardy
space H∞, see Zhou et al. (1996). Let ‖G‖∞ denote the
H∞-norm of G(s). With diag{P1, P2} we mean the block-
diagonal matrix

[
P1 0
0 P2

]
, with P > 0 (P < 0) that P is

a positive (negative) definite matrix, and with |x|P the
weighted Euclidean norm

√
xT Px.

2. PRELIMINARIES

The same model framework as in Sandberg and Murray
(2007) is used here, and some definitions and results are
repeated without proof. We model linear interconnected
systems with the linear fractional transform Fl(N,G),
where the network topology is stored in N and the sub-
systems in G, see Fig. 2 and equations (1)–(2) (see top
of next page). The realization (2) is called a structured
realization of Fl(N,G). The q subsystems that we want to
model reduce are stored in the block-diagonal system

G(s) = diag{G1(s), . . . , Gq(s)} =:
[

AG BG

CG DG

]

where
AG = diag{A1, . . . , Aq}, BG = diag{B1, . . . , Bq},
CG = diag{C1, . . . , Cq}, DG = diag{D1, . . . , Dq},

and
Ak ∈ R

nk×nk , Bk ∈ R
nk×mk ,

Ck ∈ R
pk×nk , Dk ∈ R

pk×mk , k = 1, . . . , q.

The interconnection topology and dynamics is modeled by

N(s) =
[
E(s) F (s)
H(s) K(s)

]
=:

⎡
⎣ AN BN,1 BN,2

CN,1 DE DF

CN,2 DH DK

⎤
⎦ ,

where
AN ∈ R

nN×nN , BN,1 ∈ R
nN×mN ,

CN,1 ∈ R
pN×nN , DE ∈ R

pN×mN .

The system K models how the subsystems G1, . . . , Gq are
connected to each other, and E,F,H model the external
excitation and measurement on the network. Throughout
the paper it is assumed that Fl(N,G) is a well-posed and
stable feedback connection, i.e., ‖Fl(N,G)‖∞ < ∞. In
Sandberg and Murray (2007), it is shown how a mechanical
system fits to this framework. The problem we want to
solve is to find a new system Ĝ with the same block-
diagonal structure as G, but of smaller McMillan degree,
and such that ‖Fl(N,G) −Fl(N, Ĝ)‖∞ is small. This is a
structure-preserving model reduction problem. We try to
solve the problem using an extension of balanced trunca-
tion. To use balanced truncation, Gramians are needed.
Generalized controllability Gramians P and observability
Gramians Q (non-unique) satisfy the LMIs,

AP + PAT + BBT < 0, P > 0,

AT Q + QA + CT C < 0, Q > 0,
(3)

for an asymptotically stable system, where A,B,C are
defined in (2). We say the system Fl(N,G) has structured
Gramians if the Gramians are block diagonal,

P = diag{PN , P1, . . . , Pq},
Q = diag{QN , Q1, . . . , Qq},

such that Pk, Qk ∈ R
nk×nk , conformally to the structured

realization (2). Furthermore, we say the realization and
the Gramians are subsystem balanced if the coordinates
are such that the block-diagonal elements of the Gramians
take the form

Qk = Pk = Σk = diag{σk,1 . . . , σk,nk
},

σk,1 ≥ . . . ≥ σk,nk
> 0, k = 1 . . . q.

(4)

The numbers σk,i are called structured Hankel singular
values of the interconnected system. They are invariant
under block-diagonal coordinate transformations, and can
be computed as

σk,i =
√

λi(PkQk). (5)
The following results are shown in Sandberg and Murray
(2007).
Proposition 1. If there exist Gramians P and Q for
the interconnected system Fl(N,G), then there exist a
block-diagonal coordinate transformation x̄ = Tx, T =
diag{TN , T1, . . . , Tq}, TN ∈ R

nN×nN , Tk ∈ R
nk×nk , k =

1, . . . , q, that makes the realization and the Gramians
subsystem balanced (4).
Proposition 2. Assume the interconnected system Fl(N,G)
has structured Gramians P and Q and is subsystem bal-
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Fl(N,G) = E(s) + F (s)(I − G(s)K(s))−1G(s)H(s) (1)

=

⎡
⎣ AN + BN,2LDGCN,2 BN,2LCG BN,1 + BN,2LDGDH

BGMCN,2 AG + BGMDKCG BGMDH

CN,1 + DF DGMCN,2 DF LCG DE + DF DGMDH

⎤
⎦ =:

[
A B
C D

]
, (2)

L := (I − DGDK)−1, M := (I − DKDG)−1.

anced (4). Let the realizations of the subsystems Gk and
Ĝk, k = 1 . . . q, be given by

Gk(s) =

⎡
⎣Ak,11 Ak,12 Bk,1

Ak,21 Ak,22 Bk,2

Ck,1 Ck,2 Dk

⎤
⎦ , Ĝk(s) =

[
Ak,11 Bk,1

Ck,1 Dk

]
,

where Ak,11 ∈ R
rk×rk , Bk,1 ∈ R

rk×mk , and Ck,1 ∈ R
pk×rk ,

and the reduced-order system be Ĝ = diag{Ĝ1, . . . , Ĝq}.
Then

‖Fl(N,G) −Fl(N, Ĝ)‖∞ ≤ 2
q∑

k=1

nk∑
i=rk+1

σk,i. (6)

The way to use these results is to first find structured
Gramians (if they exist) using LMI software, and then use
Proposition 1 to subsystem balance them. The subsystem
balanced realization is then truncated as described in
Proposition 2. To get small error bounds, the generalized
Gramians should be made small. In the proposed algo-
rithm in Section 4 this is achieved by minimizing the trace
of P and Q while satisfying (3) and the block-diagonal con-
straint. The error bound in Proposition 2 is an extension
of the balanced truncation error bound in Enns (1984);
Glover (1984). Similar bounds are also found in Beck
et al. (1996) and Zhou et al. (1995). The main problem
with Proposition 2 is that it is only for special network
topologies N that there exist structured Gramians. In this
paper, we look at the cases where Proposition 2 cannot be
directly applied.
Remark 3. Generalized Gramians that satisfy LMIs are
more flexible (but also computationally more expensive
to compute) than normal Gramians that satisfy Lyapunov
equations. The reason generalized Gramians are used here
is that the block-diagonal structure is needed for the proofs
to hold. One can also use the block-diagonal elements of
normal Gramians for the reduction. This is done in Van-
dendorpe and Van Dooren (2004); Sandberg and Murray
(2007) and often yields good approximations. The problem
is that there are no a priori error bounds then and unstable
approximations can be obtained.

3. SYSTEMS WITH STRUCTURED GRAMIANS

A problem with truncating states as suggested in Proposi-
tion 2 is that often there are no structured Gramians. In Li
and Paganini (2005), it is suggested that one should try to
find structured Gramians for coprime factors of the system
since this increases the chances of finding them. However,
for structured Gramians found from coprime factors there
is no error bound like (6) available. Here we make the
observation that for certain networks N of simple structure
(call them M), there always exist structured Gramians.
The idea is then to replace the original system Fl(N,G)

with a suitably chosen simpler system Fl(M,G) and use
it to find structured Gramians.

Consider systems of the form

Fl(M,G) = E + FGH, M =
[
E F
H 0

]
. (7)

These systems are much simpler than the general ones
since there is no interaction K between the subsystems
in G. Still these systems are useful. A restriction is that G
generally needs to be stable to ensure that Fl(M,G) ∈
RH∞. Hence, in the following it is assumed that G ∈
RH∞. We have the following result that motivates the
study of systems in the form Fl(M,G).
Theorem 4. Consider systems in the form Fl(M,G),
(7), and assume that E,F,H ∈ RH∞ and G =
diag{G1, . . . , Gq} ∈ RH∞. Then there is a structured
realization of Fl(M,G) that has structured Gramians

P = diag{PM , P1, . . . , Pq} > 0,

Q = diag{QM , Q1, . . . , Qq} > 0.

Proof. The proof is an extension of the results in Oh
and Kim (2002). The extension lies in that we consider
block-diagonal plants G with block-diagonal (structured)
Gramians. Note that without loss of generality we can
study networks N with E = 0. This is because we can
split the state vector of a realization of E +FGH into two
parts [xT

1 xT
2 ]T where x1 are the states of E. Using similar

techniques as below, it can be shown that once structured
Gramians P2, Q2 for the system FGH have been found,
we can always find Gramians in the form diag{P1, P2} and
diag{Q1, Q2} for the entire system E + FGH. Also note
that it is enough to study strictly proper subsystems G,
i.e., DG = 0. If DG 
= 0, we can rewrite the system as
E +FDGH +F (G−DG)H, and define Enew = E +FDH
and Gnew = G − DG.

The structured realization of FGH can be chosen as⎡
⎢⎣

AF 0 BF CG 0
0 AH 0 BH

0 BGCH AG BGDH

CF 0 DF CG 0

⎤
⎥⎦ ,

and the controllability Lyapunov inequality takes the form
(8) (see top of next page) assuming the Gramian has the
structure P = diag{PF , PH , PG}, PG = diag{P1, . . . , Pq}.
Choose a γ > 0 such that∥∥∥∥

[
AT

H CT
HBT

G

BT
H DT

HBT
G

]∥∥∥∥
2

∞
< γ. (9)

Since H ∈ RH∞ by assumption, there is always such a
γ. Then solve AGPG + PGAT

G + γI = 0. Because of the
block-diagonal and stable structure of AG, the solution
PG > 0 has clearly the required block-diagonal structure.
What remains to show is that there always exist PF and
PH that satisfy (8) with this PG.
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⎡
⎣AF PF + PF AT

F 0 BF CGPG

0 AHPH + PHAT
H + BHBT

H PHCT
HBT

G + BHDT
HBT

G

PGCT
GBT

F BGCHPH + BGDHBT
H AGPG + PGAT

G + BGDHDT
HBT

G

⎤
⎦ < 0 (8)

The first step is to study the lower right 2×2 block matrix
of (8). Let R := γI − BGDHDT

HBT
G. Note that R > 0, by

the choice of γ. Given PG and R, we want to find a PH

such that[
AHPH + PHAT

H + BHBT
H PHCT

HBT
G + BHDT

HBT
G

BGCHPH + BGDHBT
H −R

]
< 0.

(10)
By the bounded real lemma, see Zhou et al. (1996), this
LMI has a solution PH > 0 if, and only if, (9) holds. Denote
the matrix on the left hand side in (10) by −L.

The second step is to note that the Lyapunov controllabil-
ity inequality (8) has a solution if (by Schur complements)

AF PF + PF AT
F + [0 BF CGPG]L−1[0 BF CGPG]T < 0,

and L > 0. Since AF is a Hurwitz matrix (F ∈ RH∞
by assumption) there is always a positive definite solution
PF . This concludes the proof and shows there always exist
a structured Gramian P = diag{PF , PH , PG}. The proof
that there is a structured observability Gramian is the dual
to the above proof. �

Thus Proposition 2 can always be applied to systems
Fl(M,G). Next, it is shown how this result can be used to
deal with general network topologies N with K 
= 0.

General network topologies N . Consider a Taylor approx-
imation of Fl(N, Ĝ) around Ĝ = G. Using the perturba-
tion model Ĝ = G + Δ,

Fl(N, Ĝ) −Fl(N,G)

= F (I − ĜK)−1ĜH − F (I − GK)−1GH

= F (I − GK)−1Δ(I − KG)−1H + H.O.T.

= Fl(N̂1, Ĝ) −Fl(N̂1, G) + H.O.T.,

if ‖ΔK(I − GK)−1‖∞ < 1, where

N̂1 :=
[

0 F1

H1 0

]
,

F1 = F (I − GK)−1, H1 = (I − KG)−1H.

(11)

Hence, the first-order term in Fl(N, Ĝ)−Fl(N,G) can be
made small by choosing a reduced model Ĝ that makes
‖Fl(N̂1, G)−Fl(N̂1, Ĝ)‖∞ small. Note that N̂1 belongs to
the class M in (7). For the Taylor series to converge it
is essential that ‖ΔK(I − GK)−1‖∞ < 1. By the small-
gain theorem this condition is also sufficient for stability
of Fl(N, Ĝ) if Fl(N,G) is stable. Notice that

Fl(N̂2, G) −Fl(N̂2, Ĝ) = ΔK(I − GK)−1,

using

N̂2 :=
[

0 F2

H2 0

]
, F2 = I, H2 = K(I − GK)−1. (12)

Note that N̂2 belongs to the class M in (7). By reducing
the subsystems in G with respect to the system Fl(N̂2, G),
we can ensure that ‖ΔK(I − GK)−1‖∞ < 1 is true by
making the error bound (6) in Proposition 2 smaller than
1.

The following lemma is useful to us, since it shows that
N̂1 and N̂2 can be augmented into a larger M .
Lemma 5. Let

M =
[
E F
H 0

]
=

[
E11 E12 F1

E21 E22 F2

H1 H2 0

]
,

and assume ‖Fl(M,G)‖∞ ≤ γ. Then ‖Fl(Mi, G)‖∞ ≤ γ,

where Mi =
[
Eii Fi

Hi 0

]
, i = 1, 2.

Proof. We have

Fl(M,G) =
[ Fl(M1, G) E12 + F1GH2

E21 + F2GH1 Fl(M2, G)

]
.

If the induced L2-norm of Fl(M,G) is less than γ, then the
induced L2-norms of all the block elements are less than
γ. �

Hence, if we want to make both ‖Fl(N̂1, G)−Fl(N̂1, Ĝ)‖∞
and ‖Fl(N̂2, G)−Fl(N̂2, Ĝ)‖∞ small, we should find struc-
tured Gramians for Fl(N̂ ,G) where

N̂ :=

[ 0 0 F1

0 0 F2

H1 H2 0

]
, (13)

and F1,H1, F2,H2 are taken from N̂1 and N̂2. Using this
method, a structure-preserving model reduction method
for general interconnected linear systems is suggested in
the next section.

4. ERROR BOUNDS AND ALGORITHM

Using the network approximation N̂ for the general inter-
connected system Fl(N,G), we can derive the following
theorem.
Theorem 6. Assume that Fl(N,G) is internally stable,
and that G,E, F,H ∈ RH∞. Furthermore, let the struc-
tured and subsystem balanced Gramians to the system
Fl(N̂ ,G) be

P = diag{PN̂ ,Σ1, . . . ,Σq},
Q = diag{QN̂ ,Σ1, . . . ,Σq},

Σk = diag{σk,1 . . . , σk,nk
} > 0, k = 1 . . . q,

where N̂ is defined in (11)–(13). Then the reduced-order
model Ĝ = diag{Ĝ1, . . . , Ĝq}, defined by

Gk(s) =

⎡
⎣Ak,11 Ak,12 Bk,1

Ak,21 Ak,22 Bk,2

Ck,1 Ck,2 Dk

⎤
⎦ , Ĝk(s) =

[
Ak,11 Bk,1

Ck,1 Dk

]
,

where Ak,11 ∈ R
rk×rk , Bk,1 ∈ R

rk×mk , and Ck,1 ∈ R
pk×rk ,

satisfies

(i) Ĝ ∈ RH∞;
(ii) Fl(N, Ĝ) ∈ RH∞, if 2

∑q
k=1

∑nk

i=rk+1 σk,i < 1;
(iii)

‖Fl(N,G) −Fl(N, Ĝ)‖∞ ≤ (2 + o(1))
q∑

k=1

nk∑
i=rk+1

σk,i,

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8728



as
∑q

k=1

∑nk

i=rk+1 σk,i → 0.

Proof. Using N̂ , Lemma 5, and Proposition 2, we have
that

(a) ‖ΔK(I − GK)−1‖∞ ≤ 2
∑q

k=1

∑nk

i=rk+1 σk,i;
(b) ‖Fl(N̂1, Ĝ) −Fl(N̂1, G)‖∞ ≤ 2

∑q
k=1

∑nk

i=rk+1 σk,i.

Now we can prove the statements of the theorem:

(i) From the (3,3)-block of the LMI (8) in the proof
of Theorem 4, it holds that AkΣk + ΣkAT

k < 0,
k = 1, . . . , q. Since Σk > 0 is diagonal, this proves
that the block Ak,11 on the diagonal of Ak has its
eigenvalues in the left complex half plane.

(ii) The small-gain theorem gives that Fl(N, Ĝ) =
Fl(N,G + Δ) ∈ RH∞, assuming Fl(N,G) and G are
in RH∞ and ‖ΔK(I − GK)−1‖∞ < 1. Using (a) the
result follows.

(iii) Keeping the second-order term of the Taylor series
expansion, we have

Fl(N, Ĝ) −Fl(N,G)

= F (I − ĜK)−1ĜH − F (I − GK)−1GH

= F [(I − GK)−1 + (I − GK)−1ΔK(I − GK)−1

+ H.O.T.](G + Δ)H − F (I − GK)−1GH

= F (I − GK)−1Δ(I − KG)−1H

+ F (I − GK)−1ΔK(I − GK)−1ΔH + H.O.T.
Using the triangle inequality, (a), and (b), it follows
that
‖Fl(N,G) −Fl(N, Ĝ)‖∞
≤ ‖Fl(N̂1, Ĝ) −Fl(N̂1, G)‖∞

+ ‖ΔK(I − GK)−1‖∞‖F (I − GK)−1‖∞‖ΔH‖∞
+ · · ·

≤ 2
q∑

k=1

nk∑
i=rk+1

σk,i + o

(
2

q∑
k=1

nk∑
i=rk+1

σk,i

)
.

Notice that ‖ΔH‖∞ → 0 as
∑q

k=1

∑nk

i=rk+1 σk,i →
0. This is because P > 0 and Q > 0, and that
the structured singular values are strictly positive,
meaning that the only way

∑q
k=1

∑nk

i=rk+1 σk,i goes
to zero is that if rk → nk, implying that Δ → 0.

�

The theorem shows that structured Gramians for Fl(N̂ ,G)
(existence guaranteed) can be used for model reduction of
G, and some guarantees on the quality of approximation
of the original interconnected system Fl(N,G) hold. The
structured Hankel singular values σk,i can be used to
choose approximation order rk. For each subsystem Gk,
there is in practice often a significant drop in size of the
singular values σk,i for some i. A good initial guess for rk

is to keep the dominant singular values.
Remark 7. It is also possible to compute structured
Gramians for Fl(N̂1, G) or Fl(N̂2, G) alone, and use them
to reduce G. This has some computational advantages
since the dimensions of the LMIs are smaller. Notice that
if the Gramians come from Fl(N̂1, G), then Theorem 6(i)
still holds, and if the Gramians come from Fl(N̂2, G), then
Theorem 6(i)–(ii) still hold.

Remark 8. The model N̂ is useful for understanding what
the important dynamics in the subsystems in G are. One
way to interpret Theorem 6 is as a frequency-weighted

model reduction problem, where
[
F1

F2

]
(G− Ĝ) [H1 H2] , is

made small. When the F - and H- components are “large”,
the approximation error G − Ĝ has to be “small”. Hence,
by studying the weights, we can see what frequencies
are amplified and attenuated and gain insight about the
interconnected system.

Model reduction algorithm. An algorithm that imple-
ments the proposed model-reduction method is described
next. Three different methods are suggested, denoted by
(MA)–(MC).

0. Form a structured realization of the interconnected
system Fl(N,G) and G = diag{G1, . . . , Gq}, and
choose approximation tolerance ε.

1. Choose a model M with structure (7). Three choices,
(MA)–(MC), are suggested in this paper:
(MA) M = N̂1 from (11);
(MB) M = N̂2 from (12);
(MC) M = N̂ from (13).

2. Form a structured realization of Fl(M,G) =
[

A | B
C | D

]
.

3. Compute structured Gramians (existence guaranteed
by Theorem 4) by solving

min
q∑

k=1

trace Pk, s.t. AP + PAT + BBT < 0

P = diag{PM , P1, . . . , Pq}
and

min
q∑

k=1

trace Qk, s.t. AT Q + QA + CT C < 0

Q = diag{QM , Q1, . . . , Qq}.
4. Compute structured Hankel singular values σk,i =√

λi(PkQk) and apply subsystem balancing coordi-
nate transformations Tk to G, see Proposition 1.
Choose approximation order rk. If (MC), rk can be
chosen using Theorem 6(iii) and the tolerance ε.

5. Truncate the realization of G as described in Propo-
sition 2 and Theorem 6 to obtain Ĝ. Form Fl(N, Ĝ).

6. If ‖Fl(N,G) − Fl(N, Ĝ)‖∞ ≤ ε stop, else increase rk

by including the largest previously truncated struc-
tured Hankel singular value, and goto 5.

5. EXAMPLE

In this section, we apply the model-reduction methods
(MA)–(MC) to an interconnected mechanical system, see
Fig. 3. The model is further described in Sandberg and
Murray (2007). The model has two subsystems G1 and G2

consisting of two models of elastic masses of order n1 = 8
and n2 = 10. The masses are interconnected with a linear
spring with spring constant k. As the spring constant is
varied, different dynamics get excited in the masses. This
means that the reduced models will depend on the spring
constant. The structured realization of Fl(N,G) does not
have structured Gramians when k ≥ 1. Hence, we use
approximate network models in the class M . Note that if
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G1 G2

w y1 y2

z1 z2

Fig. 3. The interconnected mechanical system. The first
mass is perturbed by the force w and we measure
the positions z1 and z2. The forces y1 and y2 are
interaction forces between the systems, determined by
the spring k and positions z1 and z2.

standard balanced truncation is applied to Fl(N,G), then
it will generally not be possible to extract reduced models
Ĝ1 and Ĝ2 of the individual mass models.

An extension of the closed-loop balanced truncation
method, see Vandendorpe and Van Dooren (2004), is also
applied to this example in Sandberg and Murray (2007).
This method is denoted (MO) here. Method (MO) does in
general not have an a priori error bound like Theorem 6
and it relies on Gramians that solve Lyapunov equations,
see Remark 3. Here we compare the methods (MO) and
(MA)–(MC). The results are summarized in Table 1.

Table 1. The approximation errors ‖Fl(N,G)−
Fl(N, Ĝ)‖∞ are listed for different k, r1, r2,
along with the total computation time (CPU)
on a 2GHz MacBook. 0.35 ≤ ‖Fl(N,G)‖∞ ≤

0.5 in all cases.

k r1 r2 (MO) (MA) (MB) (MC)

1 6 2 0.035 0.044 0.044 0.044
10 6 6 0.036 0.036 0.036 0.036
20 6 6 0.044 0.075 0.076 0.076
40 6 8 ∞ 0.10 0.10 0.10
100 6 6 0.12 0.032 0.032 ∞

CPU [sec] 7 96 48 217

From Table 1, we can draw a number of conclusions:

• The method (MO) is the computationally cheapest
method. This is not surprising since it does not
require solutions of LMIs but solutions of Lyapunov
equations.

• For small spring constants (k ≤ 20), the method
(MO) also delivers the best approximations but the
difference to (MA)–(MC) is very small. However,
when k = 40, the two masses interact heavily and
(MO) fails to deliver a stable approximation, i.e.,
Fl(N, Ĝ) /∈ RH∞.

• The methods (MA)–(MC) all deal well with the most
difficult case, k = 40. The methods (MA)–(MB) yield
good approximations for all spring constants.

• The methods (MA)–(MC) all run into numerical
problems for large k. This is especially true for (MC)
that is not able to deliver a stable approximation
when k = 100 because of numerical problems.

Based on the results, it is suggested that (MO) is the first
method of choice for computing a structured approxima-
tion. If it fails to deliver a good approximation then (MB)
is able to deliver a good and stable approximation within a
reasonable amount of time. Notice that when (MB) is used,
we can use Theorem 6 to guarantee stability using the

structured singular values. The method (MC) that is the
preferred method from a theoretical standpoint is rather
computationally heavy. This is due to the high order of
the network N̂ and the resulting LMIs.

6. CONCLUSION

We have characterized a class of interconnected systems
Fl(M,G) that always has structured Gramians. Intercon-
nected systems that are not in this class can be approxi-
mated by systems in the form Fl(M,G). The structured
Gramians can be used for model reduction that preserves
the interconnection structure. It was also shown how
asymptotic a priori error bounds are obtained. In the ex-
ample studied, the introduced method compared favorably
to the method in Vandendorpe and Van Dooren (2004);
Sandberg and Murray (2007) in the sense that it always
delivered stable approximations with small approximation
error. However, this came at a higher computational cost.
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