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Abstract: In this paper, a class of hybrid impulsive systems with time delays and stochastic
effects are considered. We obtain some criteria on the global exponential stability in mean square
for the impulsive stochastic delayed systems. To do this, differential inequalities and L-operator
inequalities are developed. An example is given to illustrate the effectiveness of our results.

1. INTRODUCTION

In many evolutionary systems, there exist two common
phenomena, that is, time delays and stochastic effects. For
example, delay effects are inevitable in the implementation
of electronic networks due to the finite switching speed
of the hardware (see Baldi et al. [1994] for example).
Moreover, stochastic effects can also be found widely in
many dynamical systems in various fields such as medicine
and biology, economics, electrical engineering, telecommu-
nications. They can be observed from the phenomena in-
cluding stochastic failures and repairs of the components,
changes in the interconnections of subsystems, and sudden
environment changes. These complexities, sometimes, can
be described by time delay systems and/or stochastic
systems. With such background, the theoretical studies
and the applications of delayed stochastic systems have
attracted much attention (see, e.g., Richard [2003], Mo-
hammed [2006]).

On the other hand, some state variables of systems are
often subject to instantaneous perturbations and experi-
ence critical changes at certain instants, which may be
caused by switching mechanism, abrupt frequency change
or other sudden disturbance, and exhibit impulsive effects
(see Lakshmikantham et al. [1989], Bainov et al. [1993]).
From the mathematical view, impulsive systems belongs
to a new category of dynamical systems, which is neither
continuous-time nor discrete-time ones in the traditional
sense. Instead, it displays a combination of the characteris-
tics of both the continuous-time and discrete-time systems,
and therefore, it is regarded as a class of hybrid dynamical
systems (see Michel [1999]). Hybrid impulsive systems
with time delays and stochastic effects are certainly with
more accuracy in the modeling of the evolutionary process
in practical systems, but they are harder to be studied
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than the traditional dynamics. In some cases, these com-
plex factors cannot be neglected since they may directly
affect the dynamical behaviors of the system by leading to
oscillatory and instability. Thus, it may become necessary
to investigate such hybrid impulsive systems with delays
and stochastic factors for some practical problems.

In recent years, the stability of stochastic systems with
delays has been an interesting problem, and some stability
conditions have been reported for such systems (referring
to Richard [2003], Mohammed [2006], Nair et al. [2004],
Kolmanovskii [1986], Mao [1995]). Moreover, the stability
and attractivity of impulsive differential equations have
been deeply investigated in the works including Laksh-
mikantham et al. [1989], Bainov et al. [1993], Samoilenko
et al. [1995], and Obolenskii et al. [1988], and a full
discussion of this subject for impulsive delay differential
equations has been further carried out (see, e.g., Yan et al.
[1999], Liu et al. [2001], Yu [2001], Guan et al. [2002])).
However, to the best of our knowledge, there are few re-
sults about the stability for hybrid impulsive systems with
delays and stochastic effects (Hespanha [2005], Boukas
[2006]). Therefore, techniques and methods to study the
stability and dynamic behaviors of impulsive stochastic
differential equations with delays should be developed and
explored.

In this paper, we consider a class of hybrid impulsive
systems with delays and stochastic terms. The paper
is organized as follows. In Section 2, we present the
problem formulation and related preliminary knowledge.
Then in Section 3, by developing differential inequalities
and L-operator inequalities, we obtain the stability in
mean square of the origin for the hybrid systems. A
simple example is shown to illustrate the feasibility and
effectiveness of our results. Finally, concluding remarks are
given in Section 4.

2. PRELIMINARIES

In this section, we will give our model description and
preliminary knowledge for the following analysis.
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As usual, let N = {1, 2, 3, . . .}, R+ = [0,∞), and I be
an identity matrix. Rn is the space of n-dimensional real
column vectors and Rm×n is the set of m×n real matrices.
If A is a vector or a matrix, AT stands for the transpose of
A, trace(A) is the sum of the diagonal elements of A. If A
is a real symmetric matrix λM (A) and λm(A) denotes the
largest eigenvalue and the smallest of A. Additionally, E
represents the expectation of a stochastic process, and L
is a Kolmogorov’s backup differential operator generated
by the corresponding stochastic systems. Also, δ(t) is the
Dirac impulsive function.

Furthermore, C[X, Y ] denotes the space of continuous
mappings from the topological space X to the topological
space Y . Especially, C[ [−τ, 0], Rn] denotes the family of
all continuous Rn-valued functions ψ on [−τ, 0] with norm
||ψ|| = sup−τ≤θ≤0 |ψ(θ)|. Moreover,

PC[Î , R] := {ψ : Î → Rn | ψ(t+) = ψ(t) for t ∈ Î,

ψ(t−) exists for t ∈ Î, ψ(t−) = ψ(t) for all but points

tk ∈ Î}, where the domain Î ⊆ R, ψ(t+) and ψ(t−) denote
the left-hand and right-hand limits of scalar function ψ(t),
respectively.

Consider a class of hybrid impulsive stochastic systems
with time delays:

dxi(t) = fi(t, xi(t))dt + gi(t, x(t), x(t − µ))dt

+σi(t, x(t), x(t − ν))dwi(t)

+
∞∑

k=1

Iik(t, x(t), x(t − ς))δ(t − tk)dt, (1)

where t ≥ 0, xi ∈ Rni , i = 1, . . . ,m,
∑m

i=1 ni = n, x =
(xT

1 , . . . , xT
m)T ∈ Rn, xi is the state of the ith subsystem,

which is described by ẋi = fi(t, xi), gi : R×Rn×Rn → Rni

is the deterministic interconnected function, and σi : R ×
Rn × Rn → Rni×mi and Ii : R × Rn × Rn → Rni×mi

represent the strength of the stochastic interconnection
and the impulsive one, respectively. The time delays µ, ν, ς
may be unknown (constant or time-varying), but are
bounded by a known constant, i.e., 0 ≤ µ, ν, ς ≤ τ , and
wi = (wi1, . . . , wimi

)T with w(t) = (wT
1 (t), . . . , wT

m(t))
as an

∑
mi−dimensional Brownian motion defined on a

complete probability space (Ω, {Ft}t≥0, P ) with a natural
filtration {Ft}t≥0 (i.e. {Ft} = σ{w(s), 0 ≤ s ≤ t}).
Moreover, tk are the impulsive moments satisfying

t0 = 0 < t1 < . . . < tk < tk+1 < . . . , lim
k→∞

tk = ∞.

If Ii(t, ·) = 0, the hybrid system (1) becomes a stochastic
delayed system

dxi(t) = fi(t, xi(t))dt + gi(t, x(t), x(t − µ))dt

+σi(t, x(t), x(t − ν))dwi(t). (2)

In this paper, we assume that fi(t, 0) = 0, gi(t, 0) =
0, σ(t, 0) = 0, and there exists a solution for any given
initial values.

Let C2,1(J ×Rn;R+) denote the family of all nonnegative
functions V (x, t), which are twice continuously differen-
tiable in x and once in t, t ∈ J ⊂ R, x = (x1, x2, . . . , xm) ∈

Rn. For each V (x, t) ∈ C2,1(Rn × R+;R+), define an
operator LVi along the trajectory of system (2) by

LVi(t, x) =
∂Vi(t, x)

∂t
+ Vx(t, x)[fi(t, xi) + gi(t, x, x(t − r))

+
1

2
trace[σT

i (t, x, x(t − s))Vxxσi(t, x, x(t − s))]

where

Vx(x, t) = (
∂V (x, t)

∂x1
, · · · ,

∂V (x, t)

∂xn
),

Vt(x, t) =
∂V (x, t)

∂t
, Vxx(x, t) = (

∂V 2(x, t)

∂xi∂xj
)n×n.

For a right-hand continuous function v : R → R, define its
upper Dini derivative as follows

D+v(t) = lim sup
s→0+

v(t + s) − v(t)

s
.

The following lemma is a modification of the continuous
delay differential inequality (see Xu [1988]) and the proof
is given in Appendix.

Lemma 1. Let ui(t) ∈ C[[σ, b), R+] satisfy





D+ui(t) ≤
n∑

j=1

pij(t)uj(t) +
n∑

j=1

qij(t)ũj(t), t ∈ [σ, b),

ui(σ + s) = φi(s), φ ∈ PC, s ∈ [−τ, 0],

where τ ≥ 0, σ < b ≤ +∞, pij(t) ≥ 0 for i 6= j, qij(t) ≥ 0,
ũi(t) = sup

θ∈(0,τ ]

ui(t + θ), i = 1, 2, . . . , n. Suppose that there

exists an integrable function r(t), t ∈ [σ − τ, b) such that
for t ∈ [σ, b)

n∑

j=1

pij(t) + e
sup

θ∈[−τ,0]

{
∫

t

t+θ
r(s)ds} n∑

j=1

qij(t) < −r(t). (3)

If the initial condition satisfies

ui(t) ≤ κe
−

∫
t

σ
r(s)ds

, κ ≥ 0, t ∈ [σ − τ, σ], (4)

then for i = 1, . . . , n

ui(t) ≤ κe
−

∫
t

σ
r(s)ds

, t ∈ [σ, b). (5)

3. STABILITY ANALYSIS

In this section, we will give our main results on stability
conditions.

In order to obtain the exponential stability of (1), we first
show the following L-operator inequalities.

Theorem 1. Let Vi(t, x) ∈ C2,1([tk−1, tk) × Rn;R+)
satisfy





LVi(t, x) ≤
m∑

j=1

[pij(t)Vj(t, x) + qij(t)Ṽj(t, x)], t 6= tk,

Vi(tk, xi + Iik(tk, ·)) ≤

m∑

j=1

[b
(k)
ij Vj(tk, x) + d

(k)
ij Ṽj(tk, x)],
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where Ṽi = sup
θ∈(0,τ ]

Vi(t, x(t + θ)), i = 1, 2, . . . ,m, k ∈ N . If

there exist γ ≥ 1 and α(t) ∈ PC[R, R+] satisfying
m∑

j=1

pij(t) + γ

m∑

j=1

qij(t) < −α(t), i = 1, . . . ,m,

then for t ≥ t0

EVi(t, x) ≤ (
∏

t0<tk≤t

ηk)e
−

∫
t

t0
β(s)ds

sup
θ∈[−τ,0]

m∑

i=1

EVi(θ),

where β(t) := min{α(t), ln γ
τ , Bk = (b

(k)
ij ), Dk = (d

(k)
ij ),

ηk = max{1, ‖Bk‖1 + ‖Dk‖1e

∫
tk−τ

tk

β(s)ds
}.

Proof. Let h > 0, x(t) = (x1(t), x2(t), . . . , xm(t)) be
the solution process of (1). Then x(t) satisfies (2) when
[t, t + h] ⊂ [tk−1, tk). Employing Itô formula, we have

Vi(t, x(t + h)) = Vi(x(t, x(t))) +

t+h∫

t

LVi(s, x(s))ds (6)

+

t+h∫

t

∂Vi(s, x(s))

∂x
σ(s, x(s), x(s − ν))dw(s). (7)

Hence

EVi(t, x(t + h)) = EVi(t, x(t)) +

t+h∫

t

ELVi(s, x(s))ds,

which implies

D+(EVi(t, x(t))) = ELVi(t, x(t))

≤
n∑

j=1

(pijEVj(t, x(t)) + aijEṼj(t, x(t))).

On the other hand,

xi(tk) − xi(tk − h)

=

tk∫

tk−h

[fi(s, xi(s)) + gi(s, x(s), x(s − µ))ds

+

tk∫

tk−h

σi(s, x(s), x(s − ν))dwi(s)

+

tk∫

tk−h

Iik(s, x(s), x(s − ς))δ(s − tk)ds.

Let h → 0+, we have

xi(tk) = xi(t
−
k ) + Iik(, x(t−k ), x((tk − ς))).

Then,

EVi(tk, x(tk)) = EVi(t
−
k , xi(t

−
k )

+Iik(t−k , x(t−k ), x((tk − ς))))

≤ ‖Bk‖V (t−k , x(t−k )) + ‖Dk‖Ṽ (t−k , x(t−k )). (8)

Since β(t) = min{α(t), ln γ
τ } ≥ 0, we have

sup
θ∈[−τ,0]

{

t∫

t+θ

β(s)ds} ≤

t∫

t−τ

ln γ

τ
ds = ln γ.

Thus,

m∑

j=1

pij(t) +
m∑

j=1

qij(t)e
sup

θ∈[−τ,0]

{
∫

t

t+θ
β(s)ds}

≤
m∑

j=1

pij(t) + γ

m∑

j=1

qij(t)

< −α(t) ≤ −β(t), t ≥ t0, i = 1, . . . ,m. (9)

Let η0 = 1, ui(t) = EVi(t, x(t)), and u0 = sup
θ∈[−τ,0]

m∑
i=1

Vi(θ).

Next, we shall prove that for any k ∈ N

ui(t) ≤ η0η1 . . . ηk−1u0e
−

∫
t

t0
β(s)ds

, tk−1 ≤ t < tk.

Since ui(t) ≤ u0e
−

∫
t

t0
β(s)ds

for t0 − τ ≤ t ≤ t0, by (8), (9)
and Lemma 1, we can get

ui(t) ≤ u0e
−

∫
t

t0
β(s)ds

, t0 ≤ t < t1.

Suppose that for k = 1, . . . , l

ui(t) ≤ η0η1 . . . ηk−1u0e
−

∫
t

t0
β(s)ds

, tk−1 ≤ t < tk. (10)

Then, from (8),

ui(tl)≤ ‖Bk‖ui(t
−
l ) + ‖Dk‖ũi(t

−
l )

≤ ‖Bk‖η0 . . . ηl−1u0e
−

∫
tl

t0
β(s)ds

+‖Dk‖η0 . . . ηl−1u0e

∫
tl−τ

tl

β(s)ds
e
−

∫
tl

t0
β(s)ds

≤ η0 . . . ηl−1ηlu0e
−

∫
tl

t0
β(s)ds

,

and so

ui(t)≤ η0 . . . ηl−1ηlu0e
−

∫
t

t0
β(s)ds

, tl − τ ≤ t ≤ tl.

Using Lemma 1 again, we obtain

ui(t) ≤ η0 . . . ηl−1ηlu0e
−

∫
t

t0
β(s)ds

, tl ≤ t < tl+1.

By the induction, the conclusion holds. Q.E.D.

With the L-operator inequalities, we then discuss the
stability of hybrid systems (1).

Theorem 2. Let sup
k∈N

{tk − tk−1} < ∞. Assume that for

t ∈ R, xi, yi ∈ Rni , x, y ∈ Rn, i = 1, . . . ,m,

(H1) there exist bounded functions ai(t) such that

xT
i fi(t, xi) ≤ ai(t)x

T
i xi;

(H2) there exist bounded functions bij(t), b̄ij(t) such that

gT
i (t, x, y)gi(t, x, y) ≤

m∑

j=1

bij(t)x
T
j xj +

m∑

j=1

b̄ij(t)y
T
j yj ;

(H3) there exist bounded functions cij(t), c̄ij(t) such that
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trace σT
i (t, x, y)σi(t, x, y) ≤

m∑

j=1

cij(t)x
T
j xj +

m∑

j=1

c̄ij(t)y
T
j yj ;

(H4) there exist bounded functions dij(t), d̄ij(t) such that

IT
i (t, x, y)Ii(t, x, y) ≤

m∑

j=1

dij(t)x
T
j xj +

m∑

j=1

d̄ij(t)y
T
j yj ;

(H5) there are constants ǫi, δi > 0, γ > 1 and function
α ∈ PC[R, R+], i = 1, 2, . . . ,m such that

ai(t) +
1

ǫi
+

m∑

j=1

[ǫibij(t) + cij(t)]

+γ

m∑

j=1

[ǫib̄ij(t) + c̄ij(t)] < −α(t); (11)

(H6) let

sup
k∈N

{ln θk +

tk∫

tk−1

β(s)ds} < 0, (12)

where β(t) := min{α(t), ln γ
τ } and

θk = max{1, ρk + ̺ke

∫
tk−τ

tk

β(s)ds
},

ρk = max
1≤i≤m

{(1 +
1

δi
) + (1 + δi)

m∑

j=1

dij(t)},

̺k = max
1≤i≤m

{(1 + δi)
m∑

j=1

d̄ij(t)}.

Then the origin of the hybrid impulsive systems (1) is
globally exponentially stable in mean square.

Proof. Let x(t) = (x1(t), . . . , xm(t))T be a solution
through (t0, φ), where xi ∈ Rni . Define Vi(t) = Vi(t, x) =
xT

i (t)xi(t), i = 1, 2, . . . ,m. From (H1)-(H3), for t 6= tk, k ∈
N , we calculate the derivative LVi along the solution x(t)
of (2)

LVi(t) = 2xT
i (t)fi(t, xi(t)) + 2xT

i (t)gi(t, x(t), x(t − µ))

+trace (σT
i (t, x, x(t − ν))σi(t, x, x(t − ν)))

≤ 2ai(t)x
T
i xi +

1

ǫi
xT

i xi

+ǫig
T
i (t, x(t), x(t − µ))gi(t, x(t), x(t − µ))

+
m∑

j=1

cij(t)x
T
j xj +

m∑

j=1

c̄ij(t)x
T
j (t − ν)xj(t − ν)

≤ (ai(t) +
1

ǫi
)Vi(t) +

m∑

j=1

[ǫibij(t) + cij(t)]Vj(t)

+
m∑

j=1

[ǫib̄ij(t) + c̄ij(t)]Ṽj(t).

For t = tk, k ∈ N ,

V (tk, xi + Iik(tk, ·))

= (xi(t
−
k ) + Iik(t−k , x(t−k ), x(tk − ς)))T

×(xi(t
−
k ) + Iik(t−k , x(t−k ), x(tk − ς)))

= xT
i xi + 2xT

i Iik(t−k , x(t−k ), x(tk − ς))

+IT
ik(t−k , ·)Iik(t−k , ·)

≤ (1 +
1

δi
)xT

i xi + (1 + δi)

m∑

j=1

[dij(t)x
T
j xj

+d̄ij(t)x
T
j (t − ς(t))xj(t − ςς(t))]

≤ (1 +
1

δi
)Vi + (1 + δi)

m∑

j=1

dij(t)Vj

+(1 + δi)
m∑

j=1

d̄ij(t)Ṽj(t)).

By Theorem 1, we have, for t ≥ t0

EVi(t, x) ≤ (
∏

t0<tk≤t

θk)e
−

∫
t

t0
β(s)ds

V0,

where V0 = sups∈[−τ,0]

∑m
j=1 EVi(s), i = 1, 2, . . . ,m.

From the strict inequality (12), there must be a r > 0 such
that for k ∈ N

ln θk +

tk∫

tk−1

β(s)ds ≤ −r < 0.

Let 0 < T := sup
k∈N

{tk − tk−1} < ∞. Then, for k ∈ N

θk ≤ e
−

∫
tk

tk−1
β(s)ds−r

≤ e
−

∫
tk

tk−1
[β(s)+r/T ]ds

.

Since the functions ai, bij , cij , dij , b̄ij , c̄ij , d̄ij are bounded,
there is a constant b ≥ |β(t)|. For tk−1 ≤ t < tk, we have

EVi(t)≤ θ1 . . . θk−1e

∫
t

t0
β(s)ds

V0

≤ e
−

∫
tk−1

t0
[β(s)+r/T ]ds

e

∫
t

t0
β(s)ds

V0

≤ c e−(r/T )(t−t0)V0,

in which e

∫
t

tk−1
[β(s)+r/T ]ds

≤ c := ebT+r. Thus, the origin
of (1) is globally exponentially stable in mean square.
Q.E.D.

Then, we consider a linear hybrid impulsive system in the
following form:

dxi(t) = Aixi(t)dt +
m∑

j=1

[Bijxj(t)dt + B̄ijxj(t − µ)]dt

+
m∑

j=1

Cijxj(t)dwij(t) +
m∑

j=1

C̄ijxj(t − ν)dw̄ij(t)

+
∞∑

k=1

[Dikxi(t) + D̄ikxi(t − ς)]δ(t − tk), (13)

with matrices Ai, Bij , Cij , Dij , B̄ij , C̄ij , D̄ij ∈ Rni×nj , i =
1, . . . ,m.
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Applying the above results to system (13), we have the
following theorem.

Theorem 3. Let sup
k∈N

{tk − tk−1} < ∞. Suppose that

there are positive constants ǫi, δi, ζi, λ and positive definite
matrices Pi, i = 1, 2, . . . ,m such that

[ǫi + δi +
λM (AT

i Pi + PiAi)

λm(Pi)
]

+
1

λm(Pi)

m∑

j=1

[
m

ǫi
λM (BT

ijPiBij) + λM (CT
ijPiCij)]

+
eλτ

λm(Pi)

m∑

j=1

[
m

δi
λM (B̄T

ijPiB̄ij) + λM (C̄T
ijPiC̄ij)] < −λ.

If

sup
k∈N

{
lnϑk

tk − tk−1
} < λ, (14)

where

ϑk = max{1, ρk + ̺keλτ},

ρk = max
1≤i≤m

{(1 + ζi)
λM ((I + Dik)T Pi(I + Dik))

λm(Pi)
},

̺k = max
1≤i≤m

{
λM (D̄T

ikPiD̄ik)

ζiλm(Pi)
},

then the origin of the stochastic systems (13) is globally
exponentially stable in mean square.

Proof. Define Vi(t) = Vi(t, x) = xT
i (t)Pixi(t). Firstly, we

calculate the derivative LVi along the solution x(t) of (13),
for t 6= tk, k ∈ N

LVi(t) = xT
i [AT

i Pi + PiAi]xi

+2
m∑

j=1

xT
i Pi[Bijxj + B̄ijxj(t − µ)]

+
m∑

j=1

[xT
j CT

ijPiCijxj

+xT
j (t − ν)C̄T

ijPiC̄ijxj(t − ν)]

≤ λM (AT
i Pi + PiAi)x

T
i xi +

m∑

j=1

[(
ǫi

m
+

δi

m
)xT

i Pixi

+
m

ǫi
xT

j BT
ijPiBijxj + xT

j CT
ijPiCijxj ]

+
m∑

j=1

[
m

δi
xT

j (t − µ)B̄T
ijPiB̄ijxj(t − µ)

+xT
j (t − ν)C̄T

ijPiC̄ijxj(t − ν)]

≤ [ǫi + δi +
λM (AT

i Pi + PiAi)

λm(Pi)
]Vi(t)

+
1

λm(Pi)

m∑

j=1

[
m

ǫi
λM (BT

ijPiBij)

+λM (CT
ijPiCij)]Vj(t)

+
1

λm(Pi)

m∑

j=1

[
m

δi
λM (B̄T

ijPiB̄ij)

+λM (C̄T
ijPiC̄ij)]Ṽj(t)

Also,

Vi(tk) = [(I + Dik)xi(t) + D̄ikxi(t − ς)]T Pi

×[(I + Dik)xi(t) + D̄ikxi(t − ς)]

≤ (1 + ζi)
λM ((I + Dik)T Pi(I + Dik))

λm(Pi)
Vi(t

−
k )

+
λM (D̄T

ikPiD̄ik)

ζiλm(Pi)
Ṽi(t

−
k ).

By a similar process of Theorem 2, we can complete the
remainder of the proof. Q.E.D.

Before the end of this section, we introduce an illustrative
example.

Example 1. Consider the hybrid impulsive systems (13)
where xi = (xi1, xi2)

T , i = 1, 2, x = (xT
1 , xT

2 )T and

A1 =

(
−6 0
0 −5

)
, A2 =

(
−5 0
0 −6

)
,

Bij = Cij = D̄ij = 0, i, j = 1, 2,

B̄11 =

(
−0.5 0

1 0.8

)
, B̄12 =

(
1 −1
0 0.5

)
,

B̄21 =

(
0 −0.5
1 0.5

)
, B̄22 =

(
1 −0.5
−1 2

)
,

C̄11 =

(
0.5 0.1
0 0.5

)
, C̄12 =

(
0.2 −0.8
0 0.3

)
,

C̄21 =

(
0.5 0
−0.3 0.4

)
, C̄22 =

(
−0.2 0.5

0 0.3

)
,

D1k =

(
0.1 0
0 −0.1

)
, D2k =

(
−0.2 0.05

0 0.3

)
.

Take ǫi = 1, Pi = I, λ = 0.39 in Theorem 3. By a direct
calculation, we have ϑk ≈ 4.32.

If the impulsive moments satisfying tk − tk−1 ≥ 4.0, then

sup
k∈N

{
lnϑk

tk − tk−1
} ≤ 0.3658 < λ = 0.39.

It follows from Theorem 3 that the origin of (13) is globally
exponentially stable in mean square.

Figure 1 shows the stability when taking tk = 4k, µ = ς =
ν = 1.

4. CONCLUSION

In this paper, we discussed a class of hybrid stochastic
systems with impulses and time delays. The conditions
on the stability and global exponential stability in mean
square of the impulsive stochastic delayed systems were
obtained. An example was also given for illustration. In
fact, there are many unsolved problems for such systems.
The stabilization and other control issues of these systems
are under investigation.
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Appendix A. PROOF OF LEMMA 1

Proof. We first prove that for any number ǫ > 0, t ∈
[σ, b)

ui(t) ≤ (κ + ǫ)e
−

∫
t

σ
r(s)ds ∆

= y(t), i = 1, . . . , n. (A.1)

Let

J = {i|ui(t) > y(t) for some t ∈ [σ, b)},

θi = inf{t ∈ [σ, b)|ui(t) > y(t), i ∈ I}.

If the inequality (A.1) is not true, then J is a nonempty
set and there must exist some integer m ∈ J such that
θm = min

i∈I
{θi} ∈ [σ, b). Employing the continuity of

functions ui(t) and yi(t) for t ∈ [σ, b), i = 1, . . . , n, from
(4), we can get

ui(t) ≤ y(t), σ − τ ≤ t ≤ θm, i = 1, . . . , n, (A.2)

um(θm) = y(θm), D+um(θm) ≥ ẏ(θm). (A.3)

Combining with

[y(θm)]τ = (κ + ǫ) sup
θ∈[−τ,0]

{e
−

∫
θm+θ

σ
r(s)ds

}

= (κ + ǫ)e
−

∫
θm

σ
r(s)ds

sup
θ∈[−τ,0]

{e

∫
θm

θm+θ
r(s)ds

},

we have

D+um(θm)≤
n∑

j=1

[pmj(θm)uj(θm) + qmj(θm)[uj(θm)]τ ]

≤
n∑

j=1

[pmj(θm)y(θm) + qmj(θm)[y(θm)]τ ]

=
n∑

j=1

[pmj(θm) + qmj(θm)

× e
sup

θ∈[−τ,0]

{
∫

θm

θm+θ
r(s)ds}

](κ + ǫ)e
−

∫
θm

σ
r(s)ds

<−r(θm)(κ + ǫ)e
−

∫
θm

σ
r(s)ds

= ẏ(θm),

which contradicts the inequality in (A.3). Then, (A.1) is
true for any ǫ > 0. Letting ǫ → 0+, we obtain the estimate
(5). The proof is complete.
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