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Abstract: In this paper, the stability and stabilization problems of a class of continuous-
time and discrete-time Markovian jump linear system (MJLS) with partly unknown transition
probabilities are investigated. The system under consideration is more general, which covers the
systems with completely known and completely unknown transition probabilities as two special
cases, the latter is hereby the switched linear systems under arbitrary switching. Moreover,
in contrast with the uncertain transition probabilities studied recently, the concept of partly
unknown transition probabilities proposed in this paper does not require any knowledge of the
unknown elements. The sufficient conditions for stochastic stability and stabilization of the
underlying systems are derived via LMIs formulation, and the relation between the stability
criteria currently obtained for the usual MJLS and switched linear systems under arbitrary
switching are exposed by the proposed class of hybrid systems. Two numerical examples are
given to show the validness and potential of the developed results.

1. INTRODUCTION

In past decades, Markovian jump systems (MJS) have
been widely investigated and many useful results have
been obtained, see for example, Boukas [2005], Costa et al.
[2005]. The motivation on the study of the class of systems
is the fact that many dynamical systems subject to random
abrupt variations can be modeled by MJS such as man-
ufacturing system, networked control system (NCS), etc.
Typically, MJS are described by a set of classical differ-
ential (or difference) equations and a Markov stochastic
process (or Markov chain) governing the jumps among
them. As a dominant factor, the transition probabilities
in the jumping process determine the system behavior to
a large extent, and so far, many analysis and synthesis
results have been reported assuming the complete knowl-
edge of the transition probabilities. Recently, an inter-
esting extension is to consider the uncertain transition
probabilities, which aims to utilize robust methodologies
to deal with the norm-bounded or polytopic uncertainties
presumed in the transition probabilities, see for example,
Karan et al. [2006], Xiong et al. [2005]. Unfortunately, the
structure and “nominal” terms of the considered uncertain
transition probabilities have to be known a priori in these
burgeoning references.

The ideal knowledge on the transition probabilities are
definitely expected to simplify the system analysis and
design, however, the likelihood to obtain such available
knowledge are actually questionable and the cost are
probably expensive. A typical example can be found in
NCS, where the packet dropouts and channel delays are
well-known to be modeled by Markov Chains with the
⋆ This work was supported by NSERC-Canada, Grant OPG0035444

usual assumption that all the transition probabilities are
completely accessible, Krtolica et al. [1994], Seiler and
Sengupta [2005], Zhang et al. [2005]. However, in almost
all types of communication networks, either the variation
of delays or the packet dropouts can be vague and random
in different running period of networks, all or part of the
elements in the desired transition probabilities matrix are
hardly or costly to obtain. The same problems may arise
in other practical systems with jumps. Therefore, rather
than the large complexity to measure or estimate all the
transition probabilities, it is significant and necessary from
control perspectives to further study more general jump
systems with partly unknown transition probabilities.

In this paper, the basic stability and stabilization problems
of a class of continuous-time and discrete-time Markovian
jump linear system (MJLS) with partly unknown transi-
tion probabilities are investigated. The considered systems
are more general than the systems with completely known
or completely unknown transition probabilities, which can
be viewed as two special cases of the ones tackled here.
Moreover, in contrast with the recent research on uncertain
transition probabilities, our proposed concept of the partly
unknown transition probabilities does not require any
knowledge of the unknown elements, such as the bounds
or structures of uncertainties. In addition, the relation
between the stability criteria currently obtained for the
usual MJLS and switched linear system under arbitrary
switching are exposed by our proposed systems. The re-
mainder of the paper is organized as follows. In Section 2,
the considered systems are formulated and the purposes of
the paper are stated. In Section 3, the stochastic stability
and stabilization conditions for the underlying systems are
derived via LMIs formulation in the continuous-time and
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discrete-time cases, respectively. Two numerical examples
are provided to illustrate the validness and applicability of
the developed results in Section 4, and Section 5 concludes
the paper.

Notation: The notation used in this paper is fairly stan-
dard. The superscript “T” stands for matrix transposi-
tion, R

n denotes the n dimensional Euclidean space; N
+

represents the sets of positive integers, respectively. For
notation (Ω,F ,P), Ω represents the sample space, F is the
σ-algebra of subsets of the sample space and P is the prob-
ability measure on F . E [·] stands for the mathematical ex-
pectation. In addition, in symmetric block matrices or long
matrix expressions, we use * as an ellipsis for the terms
that are introduced by symmetry and diag{· · · } stands
for a block-diagonal matrix. Matrices, if their dimensions
are not explicitly stated, are assumed to be compatible for
algebraic operations. The notation P > 0 (≥ 0) means P
is real symmetric positive (semi-positive) definite, and Mi

is adopted to denote M(i) for brevity. I and 0 represent
respectively, identity matrix and zero matrix.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Fix the probability space (Ω,F ,P) and consider the fol-
lowing continuous-time and discrete-time Markovian jump
linear systems, respectively:

ẋ(t) = A(rt)x(t) + B(rt)u(t) (1)

x(k + 1) = A(rk)x(k) + B(rk)u(k) (2)

where x(t) ∈ R
n (respectively, x(k)) is the state vector

and u(t) ∈ R
l (respectively, u(k)) is the control input.

The jumping process {rt, t ≥ 0} (respectively, {rk, k ≥
0}), taking values in a finite set I , {1, ..., N}, governs
the switching among the different system modes. For
continuous-time, {rt, t ≥ 0} is a continuous-time, discrete-
state homogeneous Markov process and has the following
mode transition probabilities:

Pr(rt+h = j|rt = i) =

{

λijh + o(h), if j 6= i
1 + λiih + o(h), if j = i

where h > 0, limh→0(o(h)/h) = 0 and λij ≥ 0 (i, j ∈ I,
j 6= i) denotes the switching rate from mode i at time t
to mode j at time t + h, and λii = −

∑

j=1,j 6=i λij for all
i ∈ I. Furthermore, the Markov process transition rates
matrix Λ is defined by:

Λ =









λ11 λ12 · · · λ1N

λ21 λ22 · · · λ2N

. . .
λN1 λN2 · · · λNN









For discrete-time case, the process {rk, k ≥ 0} is described
by a discrete-time homogeneous Markov chain, which takes
values in finite set I with mode transition probabilities:

Pr(rk+1 = j|rk = i) = πij

where πij ≥ 0 ∀ i, j ∈ I, and
∑N

j=1
πij = 1. Likewise, the

transition probabilities matrix is defined by:

π =









π11 π12 · · · π1N

π21 π22 · · · π2N

. . .
πN1 πN2 · · · πNN









The set I contains N modes of system (1) (or system (2))
and for rt = i ∈ I (respectively, rk = i), the system
matrices of the ith mode are denoted by (Ai, Bi), which are
real known with appropriate dimensions. In addition, the
transition rates or probabilities of the jumping process in
this paper are considered to be partly accessed, i.e., some
elements in matrix Λ or π are unknown. For instance,
for system (1) or system (2) with 4 operation modes, the
transition rates or probabilities matrix Λ or π may be as:







λ11 ? λ13 ?
? ? ? λ24

? λ32 λ33 ?
? ? λ43 λ44






,







π11 ? π13 ?
? ? ? π24

π31 ? π33 ?
? ? π43 π44







where “?” represents the unaccessible elements. For nota-
tion clarity, ∀i ∈ I, we denote I = Ii

K+ Ii
UK with

Ii
K , {j : λij (or πij) is known},

Ii
UK , {j : λij (or πij) is unknown}, (3)

Moreover, if Ii
K 6= ∅, it is further described as

Ii
K = (Ki

1, ...,K
i
m), ∀1 ≤ m ≤ N (4)

where Ki
m ∈ N

+ represent the mth known element with
the index Ki

m in the ith row of matrix Λ or π. Also, we

denote λi
K ,

∑

j∈Ii

k

λij , πi
K ,

∑

j∈Ii

k

πij throughout the
paper.

Remark 1. The accessibility of the jumping process {rt,
t ≥ 0} (or {rk, k ≥ 0}) in the existing literature is
commonly assumed to be completely accessible (Ii

UK = ∅,
Ii
K = I) or completely unaccessible (Ii

K = ∅, Ii
UK = I).

Moreover, the transition rates or probabilities with poly-
topic or norm-bounded uncertainties require the knowl-
edge of bounds or structure of uncertainties, which can
still be viewed as accessible in the sense of this paper.
Therefore, our transition rates or probabilities matrix con-
sidered in the sequel is a more natural assumption to the
Markovian jump systems and hence covers the existing
ones.

For the underlying systems, the following definitions will
be adopted in the rest of this paper. The more details can
be referred to Boukas [2005], Costa et al. [2005] and the
references therein.

Definition 1. System (1) is said to be stochastically stable
if for u(t) ≡ 0 and every initial condition x0 ∈ R

n and
r0 ∈ I, the following holds,

E

{
∫ ∞

0

‖x(t)‖2 |x0, r0

}

< ∞

Definition 2. System (2) is said to be stochastically stable
if for u(k) ≡ 0 and every initial condition x0 ∈ R

n and
r0 ∈ I, the following holds,

E
{

∑∞

k=0
‖x(k)‖2 |x0, r0

}

< ∞)

The purposes of this paper are to derive the stochastic
stability criteria for system (1) and system (2) when the
transition rates or probabilities are partly unknown, and
to design a state-feedback stabilizing controller such that
the resulting closed-loop systems are stochastically stable.
The mode-dependent controller is considered here with the
form:

u(t) = K(rt)x(t) (respectively, u(k) = K(rk)x(k)) (5)
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where Ki (∀rt = i ∈ I, or rk = i ∈ I) is the controller
gain to be determined. To this end, the following Lemmas
on the stochastic stability of systems (1) and (2) are
firstly recalled and their proofs can be found in the cited
references.

Lemma 1. Boukas [2005] System (1) is stochastically sta-
ble if and only if there exists a set of symmetric and
positive-definite matrices Pi, i ∈ I satisfying

AT
i Pi + PiAi + Pi < 0 (6)

where Pi ,
∑

j∈I λijPj .

Lemma 2. Costa et al. [2005] System (2) is stochastically
stable if and only if there exists a set of symmetric and
positive-definite matrices Pi, i ∈ I satisfying

AT
i P

iAi − Pi < 0 (7)

where Pi ,
∑

j∈I πijPj .

3. MAIN RESULTS

In this section, we will develop the stability and stabiliza-
tion results based on Lemmas 1 and 2, for the underlying
systems in the continuous-time and discrete-time context,
respectively.

3.1 Continuous-time case:

Let us first give stability analysis for the unforced system
(1) with u(t) ≡ 0. The following theorem presents a suffi-
cient condition on the stochastic stability of the considered
system with partly unknown transition probabilities (3).

Theorem 3. Consider unforced system (1) with partly un-
known transition probabilities (3). The corresponding sys-
tem is stochastically stable if there exist matrix Pi > 0, i ∈
I such that

(1 + λi
K)(AT

i Pi + PiAi) + Pi
K < 0,∀j ∈ Ii

K (8)

AT
i Pi + PiAi + Pj ≥ 0,∀j ∈ Ii

UK, j = i (9)

AT
i Pi + PiAi + Pj ≤ 0,∀j ∈ Ii

UK, j 6= i(10)

where Pi
K ,

∑

j∈Ii

K

λijPj .

Proof. Based on Lemma 1, we know that the system (1)
is stochastically stable if (6) holds. Since one always has
∑

j∈I λij = 0, we can rewrite the left-hand side of (6) as:

Θi , AT
i Pi + PiAi + Pi +

∑

j∈I
λij

(

AT
i Pi + PiAi

)

Thus, from (3), we have

Θi = (1 +
∑

j∈Ii

K

λij)
(

AT
i Pi + PiAi

)

+
∑

j∈Ii

K

λijPj

+
∑

j∈Ii

UK

λij

(

AT
i Pi + PiAi

)

+
∑

j∈Ii

UK

λijPj

= (1 + λi
K)

(

AT
i Pi + PiAi

)

+ Pi
K

+
∑

j∈Ii

UK

λij

(

AT
i Pi + PiAi + Pj

)

Then, ∀j ∈ Ii
UK and if i ∈ Ii

K, it is straightforward that
Θi < 0 by (8), (10) and λij ≥ 0 (∀i, j ∈ I, j 6= i). On
the other hand, ∀j ∈ Ii

UK and if i /∈ Ii
K, one can further

obtain

Θi = (1 + λi
K)

(

AT
i Pi + PiAi

)

+ Pi
K

+λii

(

AT
i Pi + PiAi + Pi

)

+
∑

j∈Ii

UK
,j 6=i

λij

(

AT
i Pi + PiAi + Pj

)

Since we have λii = −
∑

j=1,j 6=i λij < 0, then according to

(8)-(10), one can also readily obtain Θi < 0. Therefore, if
(8)-(10) hold (obviously, no knowledge on λij ,∀j ∈ Ii

UK

is needed therein), we conclude that the system (1) is
stochastically stable against the partly unknown transition
probabilities (3), which completes the proof. �

Remark 2. Note that if Ii
UK = ∅, ∀i ∈ I, the underly-

ing system is the one with completely known transition
probabilities, which becomes the MJLS in the usual sense.
Consequently, the conditions (8)-(10) are reduced to (8),
which is equivalent to (6). Also, if Ii

K = ∅, ∀i ∈ I, i.e., the
transition probabilities are completely unknown, then the
system can be viewed as a switched linear system under ar-
bitrary switching. Correspondingly, the condition (8)-(10)
are reduced to −Pi ≤ AT

i Pi + PiAi ≤ −Pj , which implies
Pi = Pj = P > 0, AT

i P + PAi = −P < 0, namely, a la-
tent quadratic common Lyapunov function will be shared
among all the modes. Therefore, in the continuous-time
context, the condition is such that the resulting switched
linear system is globally uniformly asymptotically stable
Liberzon [2003].

Now let us consider the stabilization problem of system
(1) with control input u(t). The following theorem presents
sufficient conditions for the existence of a mode-dependent
stabilizing controller with the form (5).

Theorem 4. Consider system (1) with partly unknown
transition probabilities (3). If there exist matrices Xi > 0
and Yi, ∀i ∈ I such that





(1 + λi
K)(AiXi + XiA

T
i + BiYi + Y T

i BT
i )

+λiiXi
Si
K

∗ −X i
K



 < 0,

∀(j ∈ Ii
K, j = i) (11)

[

(1 + λi
K)(AiXi + XiA

T
i + BiYi + Y T

i BT
i ) Si

K

∗ −X i
K

]

< 0,

∀(j ∈ Ii
K, j 6= i) (12)

AiXi + XiA
T
i + BiYi + Y T

i BT
i + Xj ≥ 0,

∀
(

j ∈ Ii
UK, j = i

)

(13)
[

AiXi + XiA
T
i + BiYi + Y T

i BT
i Xi

∗ −Xj

]

≤ 0,

∀
(

j ∈ Ii
UK, j 6= i

)

(14)

where

Si
K ,

[
√

λiKi

1

Xi, ...,
√

λiKi
m

Xi

]

(15)

X i
K , diag

[

XKi

1

, ...,XKi
m

]

(16)

with Ki
1,...,K

i
m described in (4), then there exists a mode-

dependent stabilizing controller of the form (5) such that
the resulting system is stochastically stable. Moreover, if
the LMIs (11)-(14) have a solution, an admissible con-
troller gain is given by

Ki = YiX
−1

i (17)
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Proof. Consider system (1) with the control input (5) and
replace Ai by Ai + BiKi in (8)-(10), respectively. Then,
performing a congruence transformation to (8) by P−1

i ,
we can obtain

(1 + λi
K)

[

(Ai + BiKi) P−1

i + P−1

i (Ai + BiKi)
T
]

+P−1

i Pi
KP−1

i < 0

Setting Xi , P−1

i , Yi , KiXi and considering (15) and
(16), by Schur complement, one can obtain that the above
inequality is equivalent to (11) for j ∈ Ii

K, j = i, and (12)
for j ∈ Ii

K, j 6= i, respectively. Similarly, (13) and (14) can
be worked out from (9) and (10). Therefore, if (11)-(14)
hold, (8)-(10) will be satisfied in Theorem 1 such that the
underlying system is stochastically stable. Moreover, the
desired controller gain is given by (17). This completes the
proof. �

Remark 3. It is worth noting that (11) and (13) in Theo-
rem 2 will not be checked simultaneously due to the fact
Ii
K ∩ Ii

UK = ∅.

3.2 Discrete-time case:

The following theorem presents a sufficient condition on
the stochastic stability of the unforced system (2) with
partly unknown transition probabilities (3).

Theorem 5. Consider the unforced system (2) with partly
unknown transition probabilities (3). The corresponding
system is stochastically stable if there exists matrix Pi >
0, i ∈ I such that

AT
i P

i
KAi − πi

KPi < 0, ∀j ∈ Ii
K, (18)

AT
i PjAi − Pi < 0, ∀j ∈ Ii

UK (19)

where Pi
K ,

∑

j∈Ii

K

πijPj .

Proof. Based on Lemma 2, we know that the system (1) is
stochastically stable if (6) holds. Now due to

∑

j∈I πij = 1,

we rewrite the left-hand side of (7) as

Ψi , AT
i

(

∑

j∈I
πijPj

)

Ai − (
∑

j∈I
πij)Pi

Thus, from (3), we have

Ψi = AT
i

(

∑

j∈Ii

K

πijPj

)

Ai − (
∑

j∈Ii

K

πij)Pi

+AT
i

(

∑

j∈Ii

UK

πijPj

)

Ai − (
∑

j∈Ii

UK

πij)Pi

= AT
i P

i
KAi − πi

KPi +
∑

j∈Ii

UK

πij

(

AT
i PjAi − Pi

)

Then, since one always has πij ≥ 0,∀j ∈ I, it is straight-
forward that Ψi < 0 if (18) and (19) hold. Obviously, no
knowledge on πij ,∀j ∈ Ii

UK is needed in (18) and (19), we
can hereby conclude that the system (1) is stochastically
stable against the partly unknown transition probabilities
(3), which completes the proof. �

Remark 4. Analogous to Remark 2 for continuous-time
case, if Ii

UK = ∅, ∀i ∈ I, the conditions are reduced to
(7), the classical criterion to check the stochastic stability
for the usual discrete-time MJLS. Also, if Ii

K = ∅, ∀i ∈ I,
the system becomes a discrete-time switched linear system

under arbitrary switching. The conditions (18) and (19)
are reduced to AT

i PjAi − Pi < 0, which is the criterion
obtained in Daafouz et al. [2002] by a switched Lyapunov
function approach to guarantee the system is globally
uniformly asymptotically stable in discrete-time context.

Now consider the system (2) with control input u(k), the
following theorem presents sufficient conditions for the
existence of a mode-dependent stabilizing controller with
the form (5).

Theorem 6. Consider system (2) with the partly unknown
transition probabilities (3). If there exist matrices Xi > 0
and Yi, ∀i ∈ I such that

[

−X i
K Li

K (AiXi + BiYi)
∗ −πi

KXi

]

< 0, ∀j ∈ Ii
K, (20)

[

−Xj AiXi + BiYi

∗ −Xi

]

< 0, ∀j ∈ Ii
UK, (21)

where

Li
K ,

[

√

πiKi

1

I, ...,
√

πiKi
m

I
]T

, ∀j ∈ Ii
K (22)

X i
K , diag

[

XKi

1

, ...,XKi
m

]

, ∀j ∈ Ii
K (23)

with Ki
1,...,K

i
m described in (4), then there exists a mode-

dependent stabilizing controller of the form (5) such that
the resulting system is stochastically stable. Moreover, if
the LMIs (20)-(21) have a solution, an admissible con-
troller gain is given by

Ki = YiX
−1

i (24)

Proof. First of all, by Theorem 3, we know that system (2)
is stochastically stable with the partly unknown transition
probabilities (3) if the inequalities (18) and (19) hold.
By Schur complement, (18) and (19) are respectively
equivalent to:

















−PKi

1

0 · · · 0
√

πiKi

1

PKi

1

Ai

∗ −PKi

2

...
√

πiKi

2

PKi

2

Ai

∗ ∗
. . . 0

...
∗ ∗ ∗ −PKi

m

√

πiKi
m

PKi
m

Ai

∗ ∗ ∗ ∗ −πi
KPi

















< 0, (25)

[

−Pj PjAi

∗ −Pi

]

< 0. (26)

Now, consider the system with the control input (5) and
replace Ai by Ai + BiKi in (25) and (26), respectively.

Setting Xi , P−1

i , performing a congruence transforma-
tion to (25) by diag[X i

K, Xi] and applying the change of

variable Yi , KiXi, we can readily obtain (20). Also, (21)
can be worked out from (26) in the same way. Therefore,
if (20) and (21) hold, (18) and (19) will be satisfied in
Theorem 3, i.e. the underlying system is stochastically
stable. Moreover, the desired controller gain is given by
(24). This completes the proof. �

Remark 5. It is seen from the above theorems that the
stochastic stability for the underlying system is actually
guaranteed by the two aspects, i.e., efficiently utilizing
the partly known transition probabilities (see (8) and
(18)), together with some requirements on the latent
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quadratic Lyapunov function Vi(xt, t) = xT
t Pixt,∀i ∈ I

(respectively, Vi(xk, k) = xT
k Pixk,∀i ∈ I). For continuous-

time case, the requirements are Vj(xt, t) ≤ −V̇i(xt, t),

∀
(

j ∈ Ii
UK, j 6= i

)

and −V̇i(xt, t) ≤ Vi(xt, t), ∀(j ∈ Ii
UK,

j = i) (from (8) and (9) respectively), which implies

V̇i(xt, t) < 0 and Vj(xt, t) ≤ Vi(xt, t). For discrete-time

case, the requirements are △Vi(xk, k) , Vi(xk+1, k + 1) −
Vi(xk, k) < 0,∀

(

j ∈ Ii
UK, j = i

)

and Vj(xk+1, k + 1) −

Vi(xk, k) < 0,∀
(

j ∈ Ii
UK, j 6= i

)

, which can be easily
deduced by (19).

From the development in the above theorems, one can
clearly see that our obtained stability and stabilization
conditions actually cover the results for the usual MJLS
and the switched linear systems under arbitrary switch-
ing (all the transition probabilities are unknown). There-
fore, the systems considered and corresponding criteria
explored in the paper are more general in hybrid systems
field.

4. NUMERICAL EXAMPLES

In this section, two numerical examples will be given
to show the validness and potential of our developed
theoretical results, respectively, in the continuous-time and
discrete-time cases.

Example 1. Consider the MJLS (1) with four operation
modes and the following data:

A1 =

[

−0.75 −0.75
1.50 −1.50

]

, A2 =

[

−0.15 −0.49
1.50 −2.10

]

,

A3 =

[

−0.30 −0.15
1.50 −1.80

]

, A4 =

[

−0.90 −0.34
1.50 −1.65

]

,

B1 =

[

5
−1

]

, B2 =

[

2
−1

]

, B3 =

[

1
−1

]

, B4 =

[

3
−1

]

.

The two cases for the transition probabilities matrix are
considered in Table 1:

case I
1 2 3 4

1 −1.3 0.2 ? ?
2 ? ? 0.3 0.3
3 0.6 ? −1.5 ?
4 0.4 ? ? ?

case II
1 2 3 4

1 ? ? 0.8 0.3
2 0.3 ? 0.3 ?
3 ? 0.1 −1.5 ?
4 ? 0.2 ? ?

Table 1. Different transition rates matrices.

Our purpose here is to design a mode-dependent stabiliz-
ing controller of the form of (5) such that the resulting
closed-loop system is stochastically stable with the partly
unknown transition rate probabilities (3). By solving (11)-
(17) in Theorem 2, the controller gains are solved as:

Case I: K1 = [−0.11 −0.25 ],K2 = [ 0.02 −1.31 ],

K3 = [−0.81 −0.70 ],K4 = [−0.09 −0.38 ]

Case II: K1 = [ 0.20 −0.33 ], K2 = [ 0.12 −1.10 ],

K3 = [−0.62 −0.38 ],K4 = [−0.04 −0.03 ]

Furthermore, applying the above controllers and giving
two possible system modes evolution, the state response
of the closed-loop system are shown in Figures 1-2 under
given initial condition x0 = [−1.2 0.6]T .

Now, the following example gives the verification on the
results for the discrete-time counterpart.

Example 2. Consider the MJLS (2) with four operation
modes and the following data:

A1 =

[

0.32 −0.40
0.8 −0.80

]

, A2 =

[

0.08 −0.26
0.80 −1.12

]

,

A3 =

[

0.16 −0.08
0.80 −0.96

]

, A4 =

[

0.48 −0.18
0.80 −0.88

]

,

B1 =

[

2
1

]

, B2 =

[

1
−1

]

, B3 =

[

1
1

]

, B4 =

[

0.8
−1

]

.

The two cases of the transition probabilities matrix are
considered as in Table 2:

case I
1 2 3 4

1 0.3 ? 0.1 ?
2 ? ? 0.3 0.2
3 ? 0.1 ? 0.3
4 0.2 ? ? ?

case II
1 2 3 4

1 0.3 ? ? 0.4
2 ? 0.2 0.3 ?
3 ? ? 0.5 0.3
4 ? ? 0.1 ?

Table 2. Different transition probabilities matrices.

Analogous to the continuous-time case, an admissible
controller can be solved by (20)-(24) in Theorem 4 with
the following control gains:

Case I: K1 = [−0.28 0.32 ],K2 = [ 0.36 −0.42 ],

K3 = [−0.48 0.52 ],K4 = [ 0.25 −0.45 ]

Case II: K1 = [−0.21 0.24 ],K2 = [ 0.35 −0.41 ],

K3 = [−0.47 0.51 ],K4 = [ 0.22 −0.42 ]

Figures 3-4 show the state response of the corresponding
closed-loop system for given initial condition x0 = [−0.3
0.4]T under two different modes evolution.

It is seen from the curves in Figures 1-4 that, despite
the partly unknown transition probabilities, the designed
controllers are feasible and effective ensuring the resulting
closed-loop systems are stable, in the continuous-time or
in discrete-time cases, respectively.

5. CONCLUSION

The stability and stabilization problems for a class of
continuous-time and discrete-time Markovian jump linear
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system (MJLS) with partly unknown transition probabili-
ties are investigated in this paper. The considered systems
are more general than the systems with completely known
or completely unknown transition probabilities, which can
be viewed as two special cases of the ones we tackled
here. The LMI-based stochastic stability and stabilization
conditions for the underlying systems are derived for both
continuous-time and discrete-time context. Numerical ex-
amples are presented to show the validness and applicabil-
ity of the developed results. As the proposed conditions are
LMI based, they can be easily extended to other control
or state estimation problems for the underlying systems,
such as H∞ control, filtering, etc.
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Fig. 1. State response of the closed-loop system under
mode evolution r1
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Fig. 2. State response of the closed-loop system under
mode evolution r2
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Fig. 3. State response of the closed-loop system under
mode evolution r1

k

−0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x
2

 

 

case I

Case II

0 5 10 15 20

1

2

3

4

Time in samples

s
y
s
te

m
 m

o
d
e

Fig. 4. State response of the closed-loop system under
mode evolution r2
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