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Abstract: In this paper are investigated several types of fractional-order PID controllers in the velocity 
control of a servo system. The fractional controller is more flexible and gives the possibility of adjusting 
carefully the dynamical properties of a control system. The servo system is controlled by using a real-time 
digital control system based on MATLAB/Simulink. Results are compared with those obtained from 
classical PID controllers. Experimental responses are presented and analyzed, showing the effectiveness of 
the proposed fractional-order algorithms. 

 

1. INTRODUCTION 

Nowadays, the fractional calculus (FC) is applied in science 
and engineering, being recognized its ability to yield a 
superior modeling and control in many dynamical systems. 
We may cite its adoption in areas such as viscoelasticity and 
damping, diffusion and wave propagation, electromagnetism, 
chaos and fractals, heat transfer, biology, electronics, signal 
processing, robotics, system identification, traffic systems, 
genetic algorithms, percolation, modeling and identification, 
telecommunications, chemistry, irreversibility, physics, 
control, economy and finance (Oldham and Spanier, 1974; 
Podlubny, 1999a). 

In what concerns the area of control systems, the fractional 
controllers are now extensively investigated (Machado, 1997; 
Barbosa et al., 2004; Podlubny, 1999a, 1999b). The 
advantages of this type of controllers is well acknowledged, 
particularly, in the control of fractional-order systems. Ma 
and Hori (2003) use a PIαD controller for the speed control of 
two-inertia system. The superior robustness performance 
against input torque saturation and load inertia variation are 
shown by comparison with integer order PID control. Feliu-
Batlle et al. (2007) apply fractional algorithms in the control 
of main irrigation canals, which reveals to be robust to 
changes in the time delay and the gain. Valério and Sá da 
Costa (2004) introduce a fractional controller in a two degree 
of freedom flexible robot, achieving a stable response for the 
position of its tip. However, in spite of the increasing number 
of publications related to this subject, simple and effective 
tuning rules, such as those for classical PID controllers, are 
still lacking.  

In this article we investigate the use of fractional PID 
controllers in the velocity control of a laboratory servo 
system. The method used for the tuning of the fractional 
controllers is based on the well-known Ziegler-Nichols 
tuning rules (Ziegler and Nichols, 1942). The authors believe 
that these rules constitute a good starting point to tune a 
fractional PID controller and to analyze the effect of the 

fractional orders upon the real-system control performance. 
The Ziegler-Nichols rules are used to tune the conventional 
PID controller and the final tuning of the fractional-order PID 
controller is obtained by adjusting the fractional orders and 
the controller gain in order to yield a satisfactory control.  

This paper is organized as follows. Section 2 presents the 
fundamentals of fractional calculus. Section 3 introduces the 
fractional-order systems and fractional PID controllers. 
Section 4 outlines the Oustaloup’s frequency approximation 
method used to implement the fractional-order operators. 
Section 5 describes the laboratory modular servo system 
setup used in the experiments. Section 6 gives the Ziegler-
Nichols tuning rules based on oscillatory behaviour. The 
controller settings obtained with this method will serve as 
basis for the tuning of the fractional PID controllers. Section 
7 illustrates the experimental results obtained from the 
different fractional-order controllers used. Finally, section 8 
draws the main conclusions and addresses perspectives of 
future developments. 

2. FUNDAMENTALS OF FRACTIONAL CALCULUS 

Fractional calculus (FC) is the area of mathematics that 
extends derivatives and integrals to an arbitrary order (real or, 
even, complex order) and emerged at the same time as the 
classical differential calculus. FC generalizes the classical 
differential operator nnn

t dtdD ≡  to a fractional operator 
, where α is a real number (Spanier and Oldham, 1974; 

Samko et al., 1993; Podlubny, 1999a). However, its inherent 
complexity delayed the application of the associated 
concepts. 

α
tD

For the definition of the generalized operator , where a 
and t are the limits and α the order of operation, one often 
adopts the Riemann-Liouville (RL) and the Grünwald-
Letnikov (GL) definitions. The RL definition is given by 

α
ta D

( )0>α : 
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where  represents the Gamma function of z. The GL 
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where h is the time increment and [v] means the integer part 
of v. Definitions (1) and (2) show that the fractional-order 
operators are global operators having a memory of all past 
events, making them adequate for modeling hereditary and 
memory effects in most materials and systems. 

Another useful definition is given through the Laplace 
transform. It is shown that the Laplace transform (L) of a 
fractional derivative of a signal x(t) is given by: 

( ){ } ( ) ( )∑
−

=
=

−−ααα −=
1

0
0

1
n

k
t

kk txDssXstxDL  (3) 

where . Considering null initial conditions, (3) 
reduces to the simple form (α ∈ ℜ): 

( ) ( ){ }txLsX =

( ){ } ( )sXstxDL αα =  (4) 

Expression (4) is a direct generalization of the integer-order 
scheme with the multiplication of the signal transform X(s) 
by the Laplace s-variable raised to a non-integer value α. The 
Laplace transform is a valuable tool for the analysis and 
synthesis of fractional-order control systems. 

3. FRACTIONAL-ORDER SYSTEMS AND 
FRACTIONAL PID CONTROLLERS 

In general, a fractional-order system can be described by a 
Linear Time Invariant (LTI) fractional-order differential 
equation of the form: 
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or by a continuous transfer function of the form: 
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where  are real numbers, ( K,2,1,0, =αβ kkk )
0101 , α>α>>αβ>β>>β LL kk and  

are arbitrary constants. 
( K,2,1,0, =kba kk )

A discrete transfer function of (6) can be obtained by using a 
discrete approximation of the fractional-order operators, 
yielding (Vinagre et al., 2000): 
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where ( )1−zw  denotes the discrete equivalent of the Laplace 
operator s, expressed as a function of the complex variable z 
or the shift operator 1−z . 

The fractional-order controllers were introduced by 
Oustaloup (1991), who developed the so-called Commande 
Robuste d’Ordre Non Entier (CRONE) controller. Oustaloup 
demonstrated the superior performance of the CRONE 
controller over the conventional PID controller. More 
recently, Podlubny (1999b) proposed a generalization of the 
PID controller, the fractional-order PIλDμ-controller, 
involving an integrator of order λ and a differentiator of order 
μ. The transfer function  of such a controller has the 
form: 

( )sG c

( ) ( )
( )

μλ sKsKK
sE
sUsG DIPc ++== − ,    0, >μλ (8) 

where ( )sE  is the error signal and  the controller’s 
output. The constants 

( )sU
( )DIP KKK ,,  are the proportional, 

integral, and derivative gains of the controller, respectively. 

The PIλDμ-controller is represented by a fractional integro-
differential equation of type: 

( ) ( ) ( ) teDKteDKteKtu DIP
μλ− ++= ( )

)

 (9) 

Clearly, depending on the values of the orders λ and μ, we 
get an infinite number of choices for the controller’s type 
(defined continuously on the ( μλ, -plane). For instance, 
taking ( ) ( )1,1, ≡μλ  gives a classical PID controller, 
( ) ( )0,1, ≡μλ  gives a PI controller, ( ) ( 1,0, ≡ )μλ  gives a PD 
controller and ( ) ( )0,0, ≡μλ  gives a P controller. All these 
classical types of PID controllers are the particular cases of 
the fractional PIλDμ-controller (8). Therefore, the PIλDμ-
controller is more flexible and gives the possibility of 
adjusting more carefully the dynamical properties of a control 
system. 

4. OUSTALOUP’S APPROXIMATION METHOD 

In order to implement the term  (α ∈ ℜ) of the fractional 
controller, a frequency-band limited approximation is used by 
cutting out both high and low frequencies of transfer 

αs

( )αωus  
to a given frequency range [ , distributed 

geometrically around the unit gain frequency 

]hb ωω ,

( ) 21
hbu ωω=ω  

(Oustaloup, 2000). The resulting continuous transfer function 
of such approximation is given by the formula: 
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where the zero and pole of rank k can be evaluated, 
respectively, as:  
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Taking N,   and α, permits the determination of the 
values of the set of zeros and poles of (11) and, consequently, 
the synthesis of the desired transfer function (10). This 
algorithm is easily implemented in a language like 
MATLAB. 

,bω ,hω

5. THE LABORATORY MODULAR SERVO SYSTEM 

The laboratory Modular Servo System (MSS) consists of the 
Inteco (http://www.inteco.com.pl) digital servomechanism 
and open-architecture software environment for real-time 
control experiments. The MSS supports the real-time design 
and implementation of advanced control methods, using 
MATLAB and Simulink tools. The MSS setup (Fig. 1) 
consists of a several modules mounted at the metal rail and 
coupled with small clutches. The modules are arranged in the 
chain. The DC motor with the generator module is at the 
front of the chain and the gearbox with the output disk is 
placed at the end of the chain. 

The DC motor can be coupled with the following modules: 
the inertia module, magnetic brake module, backlash and 
gearbox (M = 100) modules with the output disk. The angle 
of rotation of the DC motor shaft is measured using an 
incremental encoder. The generator is connected directly to 
the DC motor and generates voltage proportional to the 
angular velocity. 

The servomechanism is connected to a computer where a 
control algorithm is implemented based on the measurement 
of the angular position and velocity. The accuracy of 
measurement of the position is 0.1% while the accuracy of 
measured velocity is 5%. The armature voltage of the DC 
motor is controlled by a PWM signal v(t) excited by a 
dimensionless control signal in the form u(t) = v(t)/vmax. The 
admissible controls satisfy |u(t)| ≤ 1 and vmax = 12 [V] 
(Manual Inteco, 2006). 
 

 

 

Fig. 1. The MSS setup (from Manual Inteco (2006)). 

6. ZIEGLER-NICHOLS TUNING RULES 

Ziegler and Nichols (1942) proposed two methods for tuning 
the controller parameters based on the transient response 
characteristics of a given plant. In the first method, the choice 
of the controller parameters is based on a decay ratio of 
approximately 0.25. In the second method, the criterion for 
tuning the controller parameters consists in evaluating the 
system at the limit of stability (ultimate sensitivity method) 
(Ziegler and Nichols, 1942). Therefore, the proportional gain 
is increased until we observe continuous oscillations, that is, 
until the system becomes marginally stable. The 
corresponding gain Ku and the period of oscillation Pu (also 
called ultimate gain and ultimate period, respectively) are 
then determined (Franklin et al., 1994). In this work, we 
apply the oscillation method. 

Ziegler and Nichols suggest to tune the proportional gain Kp, 
integral time TI, and derivative time TD according with the 
formulae shown in Table 1. Once the values of TI and TD 
have been obtained, the gains KP  and KI, are computed as: 

I

P
I T

KK = ,    DPD TKK = (12) 

In general, the controller settings according to 
Ziegler−Nichols rules provide a good closed-loop response 
for many systems. 

7. EXPERIMENTAL RESULTS 

For this experiment the MSS setup includes the modules of 
the DC motor with tacho-generator, inertia load, encoder 
module and gearbox module with the output disk (see Fig. 1).  

All real-time experiments related to the fractional PID 
velocity control are performed using the MATLAB/Simulink 
real-time model given in Fig. 2. A fixed-step solver (Euler’s 
integration method) of a fixed-step size set to 0.01 (sampling 
period of T = 0.01 s) is chosen.  

First, a proportional controller is applied to the velocity servo 
system until the system shows nondecaying oscillations, as 
represented in Fig. 3. The ultimate gain and period yield 
Ku = 0.08 and Pu = 0.74 s, respectively. The controller 
parameters are then calculated according the Ziegler-Nichols 
rules illustrated in Table 1. 

 

Table 1.  Ziegler-Nichols tuning for controller 
( ) ( )sTsTKsG DIPc ++= 11  based on oscillatory behavior 

Type of 
controller Kp TI TD

P 0.5Ku ∞ 0 

PI 0.45Ku uP
2.1

1  0 

PID 0.6Ku uP
2
1  uP

8
1  
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Fig. 2. Real-time model of the servo with the fractional PID 
controller. 
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Fig. 3. Ultimate gain K  =0.08 and ultimate period P . u u

The fractional operator sα (α ∈ ℜ) in the PID controller 
transfer function (8) is implemented by using the Oustaloup’s 
frequency approximation method described in section 4. The 
values used are N = 5,  = 1 rad/s and  = 1000 rad/s.  bω hω

The fractional-order controllers are implemented in digital 
form by discretization of the continuous controller transfer 
functions. The discretization technique used consists in the 
bilinear (or Tustin’s) approximation with a sampling period 
of T = 0.01 s. 

A step input of amplitude 40 rad/s is applied to the servo 
system and the angular velocity versus time is acquired. 

In the following, we apply several types of fractional-order 
PID controllers for the control of the angular velocity of the 
servo system. The experimental results are presented and 
analyzed. 

7.1 The Dμ -controller 

The transfer function of a Dμ -controller is given by (ΚP = 0 
and KI = 0 in (8)): 

( ) 0, >μ= μsKsG Dc  (13) 

We have two parameters to be tuned, namely the gain KD and 
the derivative order μ of the fractional controller. 

The fractional controller is designed by adopting the 
proportional gain of the P-controller obtained from the 
Zigler-Nichols rules, that is, . In the 
following experiments 

04.05.0 == uD KK
( )μ,DK  are varied and the effect upon 

the control system performance is analyzed. 

Figure 4 depicts the experimental step responses of the 
angular velocity for several values of derivative order 
μ = {0.05, 0.15, 0.25, 0.35, 0.45, 1} while maintaining the 
derivative gain K  = 0.04D . The plots for variation of gain K  
(with derivative order 

D

μ = 0.2 fixed) are illustrated in Fig. 5. 
As expected, the system reveals a steady-sate error that 
diminishes as the gain KD increases. Note also that the 
derivative order μ produces the same effect in the response, 
with an increasing steady state error as the order μ increases. 
However, the overshoot and settling time are more acceptable 
for the case where the order μ is changed. In fact, we verify 
that the extra degree of tuning provided by the fractional 
controller, in comparison to the classical P-controller, may be 
useful to yield a satisfactory control, as shown in Figs. 4-5. 
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Fig. 4. Sensitivity of angular velocity to variation of order μ 
(with a fixed value of gain K  = 0.04).  D
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Fig. 5. Sensitivity of angular velocity to variation of gain KD 
(with a fixed value of derivative order μ = 0.2).  
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7.2 The Iλ -controller 

The transfer function of an Iλ-controller is given by (KP = 0 
and KD = 0 in (8)): 

( ) 0, >λ=
λs

KsG I
c  (14) 

We have also two parameters to be tuned, namely the gain KI 
and the integration order λ of the fractional controller. 

In order to assure a good steady state error, the term 
λs1 must be implemented by means of an integer integrator 

(Axtell and Bise, 1990; Franklin et al., 1994). The modified 
fractional-order controller is then given in the form:  

( ) 10,
1

<λ<=
λ−

s
sKsG Ic  (15) 

Like in the case of the Dμ-controller, the Iλ-controller is 
designed by adopting the proportional gain of the P-controller 
obtained from the Ziegler-Nichols rules, that is, 

. In the following experiments 04.05.0 == uI KK ( )λ,IK  are 
varied and the effect on the control system performance is 
analyzed.  

Figure 6 shows the experimental step responses of the 
angular velocity for several values of integrative order 
λ = {0.1, 0.3, 0.5, 0.7} while maintaining the integral gain 
K  = 0.04I . The plots for variation of gain K  (with integrative 
order 

I

λ = 0.5 fixed) are illustrated in Fig. 7. As can be 
observed, the steady-state error is very small. Note that the 
real system is nonlinear and, therefore, the oscillations are 
damped very quickly. Once more, we verify that the 
fractional order λ is a very useful parameter for adjusting the 
dynamics of the control system. In fact, the order λ has a 
large influence upon the system dynamics, as illustrated in 
Fig. 6. The transient response of the system can be easily 
modified through the controller parameters. Note also that the 
system shows a large time delay, particularly when a weak 
integrator is used. One of the reasons for this phenomenon is 
related with the high order transfer function approximation 
used for the fractional controller. This aspect needs further 
investigation and will be addressed in future research. 

7.3 The PIλ -controller 

The transfer function of a PIλ-controller is given by (KD = 0 
in (8)): 

( ) 0, >λ+=
λs

KKsG I
Pc  (16) 

In this case, we have three parameters that can be tuned, 
namely the proportional gain KP, the integral gain KI and the 
integration order λ of the fractional controller. The term λs1  
is implemented through an integer integrator 

(
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Fig. 6. Sensitivity of angular velocity to variation of order λ 
(with a fixed value of gain constant K  = 0.04).  I
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Fig. 7. Sensitivity of angular velocity to variation of gain KI 
(with a fixed value of integration order λ = 0.5).  

The fractional controller is designed by adopting the 
controller parameters of the PI-controller obtained from the 
Ziegler-Nichols rules, that is, 0364.045.0 == uP KK and 

0590.02.1 == uPI PKK . In the following experiments 
( )λ,IK  are varied and the resulting effect is analyzed.  

Figure 8 shows the experimental step responses of the 
angular velocity for several values of integrative order 
λ = {0.1, 0.3, 0.5, 0.7, 0.9} while maintaining the gains 
K  = 0.0364 and K  = 0.0590. P I The plots for variation of 
integral gain K  (with integrative order I λ = 0.5 fixed) are 
illustrated in Fig. 9. As in previous case, the steady-state error 
is very small. The steady-state behavior could be also 
improved by multiplying the fractional controller by a term of 
the form ( ) ss η+ , with η being a small value (Feliu-Batlle 
et al., 2007). 

Note the influence of the order λ in the system overshoot and 
settling time. An adequate phase margin can be easily 
established by a proper choice of fractional order λ. 
However, the output converges to its final value more slowly, 
as should be expected by a weak fractional integral term.  

)101 <λ<λ− ss  in order to provide a good steady sate 
error, as mentioned in previous section. 
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Fig. 8. Sensitivity of angular velocity to variation of 
integration order λ (with K  = 0.0364 and K  = 0.0590).  P I
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Fig. 9. Sensitivity of angular velocity to variation of integral 
gain K   (with I λ = 0.5 and K  = 0.0364).  P

8. CONCLUSIONS 

In this article we investigated the velocity control of a servo 
system by using different types of fractional-order PID 
controllers. For the tuning of the controllers we adopted the 
well-known Ziegler-Nichols rules. It was shown that the 
fractional controllers can effectively enhance the control 
system performance providing extra tuning parameters useful 
for the adjustment of the control system dynamics. The 
Zeigler-Nichols rules revealed to be simple and effective in 
the final tuning of the fractional-order algorithms. In fact, 
with this kind of controllers the users have extra design 
possibilities over the desired system specifications. 

The results show that fractional controllers can produce (at 
least) the same performance as the classical PID controllers 
with the advantage of having less parameters to be tuned. 
More systematic approaches can be used to design the 
fractional controllers. Robustness against nonlinearities and 
perturbations need also to be tested. Thus, the study reported 
here represents only the first steps and a deeper investigation 
will be pursued in future research. 
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