
Robust controller synthesis for disturbance

filter uncertainty described by dynamic

integral quadratic constraints.

S.G. Dietz, C.W. Scherer and H. Köroğlu ∗
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Abstract: Robust controller synthesis is considered for disturbances generated by an uncertain
filter. The uncertainties are characterized by an integral quadratic constraint (IQC) with general
frequency dependent multipliers. By exploiting the problem structure originating from the fact
that the uncertainty enters the disturbance filter but not the plant, it is shown how to derive
LMI-synthesis conditions for an a priori specified L2-induced gain. For a specific sinusoidal
disturbance rejection problem, it is shown that specifying a bound on the rate-of-variation of
an uncertain parameter can improve performance if compared to earlier results based on static
scalings.
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1. INTRODUCTION

In all sorts of dynamical systems, in particular in the
field of mechatronics, it is well understood that the effect
of external disturbances acting on the system can be
eliminated by using active control. The precise layout
of controlled systems strongly depends on the available
knowledge of these disturbances. Roughly speaking, feed-
forward controllers are suitable in case the disturbance
signal is known a priori or measurable online and an
accurate model of the plant is available. In other cases,
feed-back control is needed in order to maintain stability
and guarantee performance. During the past decades,
optimal H∞- and H2-control have proven to be successful
tools in handling disturbance attenuation problems for
linear time-invariant systems. Both methods have a clear
interpretation in terms of input/output signals. An H∞-
norm performance level bounds the worst-case induced
energy gain caused by all finite energy input signals, while
the H2-norm indicates the amplification of the process in
terms of the variance, assuming the input is generated by
a white noise source.

The H∞- or H2-synthesis procedure amounts to adding
suitable transfer functions at the plant input/output so
that norm minimization of the weighted plant results in
satisfactory performance of the closed-loop system. In
case the nature of disturbances can be nicely captured
by a single filter, this filter typically acts as the input
weighting. The modelling power of using a single filter
to characterize disturbance classes is limited though. For
example, in applications containing rotational mechanics
such as helicopters, CD players or disk drives, sinusoidal
disturbances prevail, see Lee and Chung [1998] and refer-
ences therein. The periods/frequencies of these sinusoidal
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disturbance change in time, leading to non-stationary si-
nusoidal signals. Such signals can in fact be modelled as
the output of a parameter dependent oscillator, in which
the parameter is not constant but varies in time. Despite
the fact that various parameterized disturbance models
are available, e.g. for describing wind turbulence acting on
aircraft, Hoblit [1988], water waves acting on ships, Lloyd
[1989], or models of the road roughness used in ride quality
analysis of land vehicles, Hać [1985], most controller syn-
thesis techniques do not exploit this knowledge as already
recognized by some authors, see Davison [1995].

Whereas robust controller synthesis in general appears
to be a non-convex problem, recent developments by
Dietz et al. [2007] have shown that in case the uncertain
perturbation affects the disturbance filter but not the
plant, convex synthesis conditions can be derived. There,
parametric uncertainties were treated using the so-called
D/G scales. With these static multipliers, the resulting
L2-gain performance level is guaranteed for arbitrary fast
parameter variations.

A powerful framework for handling various types of un-
certainties is based on integral quadratic constraints, see
Megretski and Rantzer [1997]. By a suitably chosen set
of multipliers one can describe non-linearities, paramet-
ric or dynamic linear time-varying uncertainties. Despite
this modelling power of dynamic IQCs, only few results
are available on robust controller synthesis using IQCs,
see for example Apkarian and Noll [2006]. As shown in
Jönsson and Rantzer [1994], Helmersson [1997], a time-
varying parameter with rate-of-variation bounds can be
characterized in terms of an IQC by using the so-called
’swapping lemma’. Recent extensions of these results can
be found in Köroğlu and Scherer [2007, 2006]. Let us
point the reader to an alternative approach for handling
time-varying parameters based on parameter dependent
Lyapunov functions, see Wu et al. [1996], Haddad and
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Fig. 1. Systems interconnection with uncertain filter W .

Kapila [1998], Apkarian and Tuan [2000]. In this method,
the L2-gain analysis problem is transformed into a pa-
rameter dependent LMI that must hold on a specified
parameter region. This technique allows for controller syn-
thesis for linear parameter varying systems, provided that
the parameter is on-line measurable. To the best of our
knowledge, it is unknown how to design robust robust
controllers in case the time-varying parameters cannot be
measured online.

In the next section the main problem is described. Then,
LMI synthesis conditions are derived in Section 3. In the
numerical example of Section 4 we consider sinusoidal
disturbances with slowly varying frequency. By making
use of the recent work in Köroğlu and Scherer [2006] we
are able to improve closed-loop performance by specifying
parameter rate-of-variation bounds.

Notation. L2+ denotes the space of vector-valued square
integrable functions defined on [0,∞) equipped with the
inner product 〈., .〉.

2. PROBLEM FORMULATION

We consider the problem of designing a robust optimal
controller for the interconnection of Figure 1 in order
to obtain a guaranteed L2-gain performance level for all
disturbance signals that are given by an uncertain filter.
Let us be given a minimal realization of the linear time-
invariant (LTI) plant P as

P :=




A Bv Bu

Cz Dzv Dzu

Cy Dyv 0





where A ∈ R
n×n. Assume that the disturbance filter W is

perturbed by an uncertain element ∆ of dimension nq×np

that is allowed to be any element in a given set of linear
operators ∆. The dependence on ∆ is modelled by a linear
fractional transformation, written as ∆ ⋆ W = Wvw +
Wvp∆(I − Wqp∆)−1Wqw, in which the nominal filter W
has the realization

W :=

(
Wqp Wqw

Wvp Wvw

)
=




AW Bp Bw

Cq Dqp Dqw

Cv Dvp Dvw





where AW ∈ R
nW ×nW . All eigenvalues of AW are assumed

to lie in the left half plane since the controller is unable to
change the dynamics of W . The uncertain element ∆ can
consist of various types of gain bounded non-linearities or
norm bounded dynamic time-varying operators.

p

The problem that we consider is to design an LTI controller
denoted by

K :=

[
AK BK

CK DK

]
(1)

that, once interconnected with P , leads to a guaranteed a
priori specified L2-induced performance level of w to z.

3. MAIN RESULT

Let us start with the required analysis results by merging
the dynamics of W with those of plant P into generalized
plant N

N =

(
Mqp Mqw 0
Mzp Mzw Nzu

Nyp Nyw Nyu

)
(2)

as indicated by the dashed box in Figure 1. Note that
Nqu = 0 is a consequence of the fact that uncertainty
only affects W . We first focus on the analysis problem
of the uncontrolled plant after which we will discuss the
controller synthesis problem in Section 3.3.

3.1 Robust performance analysis with dynamic multipliers

Adopting the IQC methodology, let uncertainty ∆ be
described in terms of a dynamic multiplier Π, Hermitian
valued and essentially bounded on the imaginary axis, such
that∫

∞

−∞

(
q̂(iω)

∆̂q(iω)

)∗

Π(iω)

(
q̂(iω)

∆̂q(iω)

)
≥ 0 ∀q̂ ∈ L2+ (3)

holds, in which q̂ indicates the Fourier transform of a
finite energy signal q. Once a suitable set of parameterized
multipliers Π is known, investigating the stability and
performance of the loop ∆,M as shown in Figure 1 is
done as follows. Under the assumption that M is stable
and for every τ ∈ [0, 1] and ∆ ∈ ∆ the IQC (3) is satisfied
for τ∆ as well as (I − Mqpτ∆)−1 is well-posed, we have
that the L2-gain of w → z is smaller than γ if there exists
a multiplier Π that satisfies (3) as well as

( .. )
′




Π11 Π12 0
Π21 Π22 0

0 0 Jγ








Mqp Mqw

I 0

Mzp Mzw

0 I


 ≺ 0 (4)

where

Jγ =

(
I 0
0 −γ2I

)
. (5)

Here Mqp is the transfer function from input p to output
q and Mzp,Mzw,Mqw are defined in a similar fashion. De-
tails on results on IQC analysis can be found in Megretski
and Rantzer [1997]. Very often the dynamic multiplier Π is
restricted to RH∞. We will fix some basis transfer matrix
Ψ and parameterize Π as

Π = Ψ∗QΨ, Q ∈ Q. (6)

For a given set ∆ it is assumed that for every Q ∈ Q the
IQC (3) defined by Π = Ψ∗QΨ is satisfied for all ∆ ∈ ∆.
In a later section, we will construct Ψ and Q for the case
of a time-varying parameter with rate-bounds.

Once the multiplier set Π is fixed, the robustness anal-
ysis problem amounts to satisfying (4) for some Π ∈ Π,
a frequency domain inequality that can be recast as a
genuine LMI by using the KYP Lemma. As discussed
in Balakrishnan [2002], the resulting ”KYP certificate”
(i.e. the Lyapunov matrix) need not be positive definite
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even if M is stable, as a consequence of using dynamic
multipliers. Since closed-loop stability is a vital aspect in
the controller design process, a new characterization of
nominal stability is needed for the case of using dynamic
IQC uncertainty descriptions. This result has recently been
derived in Scherer and Köse. Adopting their notation, let

Ψ = (Ψ1 Ψ2) ∈ RH
nQ×(nq+np)
∞ be partitioned according

to the columns/rows of Mqp, with minimal realization

Ψ = ( Ψ1 Ψ2 ) =




A11 A12 B11 B12

0 A22 0 B22

C1 C2 D1 D2



 (7)

and let (A11, B11) be controllable. Denote the dimensions
of matrices A11, A22 by n1, n2 respectively. Moreover,
introduce the composite transfer matrix




Ψ1 Ψ2 0 0

0 0 I 0

0 0 0 I








Mqp Mqw 0
I 0 0

Mzp Mzw Nzu

0 I 0

Nyp Nyw Nyu


 =




Ψ1Mqp + Ψ2 Ψ1Mqw 0

Mzp Mzw Nzu

0 I 0

Nyp Nyw Nyu


 , (8)

with realization shown in (9) at the bottom of the next
page. For the current discussion, the following more com-
pact realization is preferred.




Ã B̃p B̃w B̃

C̃q D̃qp D̃qw 0

C̃z D̃zp D̃zw Dzu

0 0 I 0

C̃ D̃yp D̃yw 0




. (10)

The symbol ˜ is used to indicate that the matrices are
constructed from the realization matrices of the subsys-
tems P,W and the realization of Ψ. The following theorem
characterizes (upper bounds on) the worst-case L2 gain
when the uncertainties are described in terms of dynamic
IQCs.

Theorem 1. Consider Figure 1, let M in (2) be stable and
Π = Ψ∗QΨ be defined as in (6). Moreover, construct
realization (9),(10) of the composite plant (8). Then, the
L2-induced gain of w → z is bounded by γ if for some
Q ∈ Q there exist solutions X (partitioned according to

Ã) and X̌ satisfying

( .. )
′




0 X 0 0
X 0 0 0

0 0 Q 0

0 0 0 Jγ







I 0 0

Ã B̃p B̃w

C̃q D̃qp D̃qw

C̃z D̃zp D̃zw

0 0 I




≺ 0, (11)

( .. )
′




0 X̌ 0
X̌ 0 0
0 0 Q




(

I 0
A11 B11

C1 D1

)
≻ 0, (12)

and the coupling condition


X11 X12 X14

X T
12 X22 − X̌ X24

X T
14 X T

24 X44



 ≻ 0. (13)

Proof. The stability characterization can be found in
Scherer and Köse and can be extended to L2-gain analysis
in a straightforward manner.

Remark 2. It is important to note that for static multipli-
ers, i.e. Ψ = I, condition (12) vanishes and (13) reduces to
X ≻ 0, the (standard) stability characterization as it was
used in Dietz et al. [2007].

3.2 Robust analysis against rate-bounded parameters.

In order to illustrate the power of dynamic IQC multipliers
of the form (6) in describing uncertainty classes, let us
assume ∆ = δ(t)Ir where δ(t) is a time-varying parameter
satisfying

(δ(t), δ̇(t)) ∈ R ⊂ R
2 for all t ≥ 0. (14)

The IQC multiplier theorem for this type of uncertainty
is taken from Köroğlu and Scherer [2006] and leads to
an extended uncertainty structure depending on both
the parameter and its rate-of-variation by applying the
swapping Lemma, Köroğlu and Scherer [2006], Jönsson
and Rantzer [1994]. For the given region of variation R,
let Q be a parameterized set of matrices such that for any
Q ∈ Q,


I 0
0 I

δIl 0
0 νIk


Q




I 0
0 I

δIl 0
0 νIk


 � 0 for all (δ, ν) ∈ R. (15)

Then, the class of dynamic multiplier is constructed by
first fixing a (stable) basis matrix H as

H = Ir ⊗




1

(s + β)−1

.

.

.

(s + β)−α


 =

[
AH BH

CH DH

]
, (16)

after choosing the pole β > 0 and the order α. This defines
the dimensions k, l in (15) as l = (α + 1)r and k = rα.
Assume that the realization of H is minimal. Next, form
the extended transfer matrices

H1 =




AH BH

CH DH

I 0



 , H2 =




AH BH I
CH DH 0
0 0 I



 . (17)

Then the structure of the multiplier class becomes

Π = Ψ∗QΨ withΨ = ( Ψ1 Ψ2 ) =

(
H1 0
0 H2

)
. (18)

For the next IQC analysis result, we need to extend the
generalized plant N by adding k zero columns as follows

Ne :=




Mqp 0 Mqw 0

Mzp 0 Mzw Nzw

Nyp 0 Nyw Nyu



 .

which corresponds to the following substitutions

Bp → (Bp 0),
Dqp → (Dqp 0),
Dvp → (Dvp 0).

We adopt the notation in (10) and introduce B̃p,e, D̃qp,e,

D̃zp,e and D̃yp,e to indicate that (9)-(10) have been con-
structed with these modified matrices Bp, Dqp, Dvp. More-
over, the restriction of Ne to the first two input/output
channels is denoted by Me.
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Theorem 3. Consider the interconnection of Figure 1. Let
∆ = δ(t)Ir where δ(t) satisfies (14) for some specified
region R and let multiplier Π be of the form (18), where
H1,H2 have been constructed after fixing the parameter
α, β in (16). Assume Me is stable. Then, the L2-induced
gain of w → z is bounded by γ for all parameter trajec-
tories δ(t) with (δ(t), δ̇(t)) ∈ R for all t ≥ 0 if there exist
solutions X , X̌ and Q ∈ Q satisfying (15) for which

( .. )
′




0 X 0 0
X 0 0 0

0 0 Q 0

0 0 0 Jγ







I 0 0

Ã B̃p,e B̃w

C̃q D̃qp,e D̃qw

C̃z D̃zp,e D̃zw

0 0 I




≺ 0,

as well as (12)-(13) hold.

Proof. See Köroğlu and Scherer [2006, 2007].

Relaxing the (generally non-tractable) condition (15) in
order to implement the property Q ∈ Q is relatively simple
for polytopic regions R, by using convexity arguments. If
R is described by polynomial inequalities, as in case of
ellipsoidal regions, sum-of-squares relaxations are needed
to numerically handle (15), see Dietz et al. [2006], Scherer
[2006].

3.3 Robust L2-gain synthesis with dynamic scalings

After introducing the main IQC analysis results for dy-
namic IQC multipliers, let us derive the main robust
synthesis result of the paper. To be particular, we restrict
ourselves to the case of having a single time-varying pa-
rameter δ(.) characterized by a specified region R as done
in (14). We emphasize that the synthesis result derived in
this section holds for arbitrary dynamic multipliers of the
form (6).

For notational convenience, we make use of the abbre-
viation in (9) as considered for the extended plant Ne.
As explained in Dietz et al. [2007], a suitable congruence
transformation allows to convexify the robust synthesis
problem for the case of using static multipliers. There,
the essential structure needed in the derivation was that
the control input u is unobservable from the output q.
By choosing the particular realization (9), this structure
is preserved. As a consequence, the analysis conditions
(11)-(13), as considered for the closed loop system, can
be turned into an LMI problem.

Theorem 4. Given the interconnection in Figure 1, let
∆ = δ(t)Ir with (δ(t), δ̇(t)) ∈ R for all t ≥ 0, Π ∈ Π
as in (18) with Q ∈ Q parameterized as in (15). Moreover,
partition T,X according to the system matrix in (9) as

T =

(
T̄11 T̄12

T̄T
12 T̄22

)
, X =

(
X̄11 X̄12

X̄T
12 X̄22

)

in which T̄11, X̄11 has compatible dimensions with A
Further. let K̄, L, M̄ be partitioned as(

M̄
K̄

)
=

(
M̄1 M̄2

K̄1 K̄2

)
, L =

(
L1

L2

)

in which K̄1, M̄1, L
T
1 and K̄2, M̄2, L

T
2 have n and n1 +n2 +

nW columns respectively. Then, there exists a controller
such that the robust L2-induced gain of w → z is smaller
than γ if there exists {T,X, K̄, L, M̄ , N, X̌,H} and Q ∈ Q
for which

( .. )
′




0 I 0 0
I 0 0 0

0 0 Q 0

0 0 0 Jγ







I 0 0
A Bp,e Bw

Ce D̃qp,e D̃qw

Cz Dzp,e Dzw

0 0 I




≺ 0, (19)

( .. )
′




0 X̌ 0
X̌ 0 0
0 0 Q




(

I 0
A11 B11

C1 D1

)
≻ 0 (20)

and coupling condition


T̄11 0
0 T̄22

I T̄12

0 T̄22

I 0
T̄ ′

12 T̄22

X̄11 X̄12

X̄21 X̄22


−

(
1 1

1 1

)
⊗




0 0 0 0

0 X̌ 0 0
0 0 H 0
0 0 0 0



 ≻ 0,

(21)
hold. Here A,Cz are given in (22) at the bottom of the
next page, Jγ as given by (5) and

Bp,e =




B̃e1
+ T̄12B̃e2

+ BuND̃yp,e

T̄22B̃e2

X̄11B̃e1
+ X̄12B̃e2

+ L1D̃yp,e

X̄21B̃e1
+ X̄22B̃e2

+ L2D̃yp,e


 ,

Bw =




B̃w1
+ T̄12B̃w2

+ BuNDyw

T̄22B̃w2

X̄11B̃w1
+ X̄12B̃w2

+ L1Dyw

X̄21B̃w1
+ X̄22B̃w2

+ L2Dyw


 ,

Dzp,e = D̃zp,e + DzuND̃yp,e,

Dzw = D̃zw + DzuND̃yw,
Ce =

(
0 C̃q2

0 C̃q2

)
.

(23)

Note that all boldface symbols depend on the decision
variables in an affine fashion. In order to reconstruct the
controller matrices, let

Y =

(
T̄11 + T̄12T̄

−1
22 T̄ ′

12 −T̄12T̄
−1
22

−T̄−1
22 T̄ ′

12 T̄−1
22

)
(24)

and find matrices U, V such that UV T = I − XY . Then,
with (

K̂

M̂

)
=

(
K̄
M̄

)(
I 0

T̄ ′

12 T̄22

)
−1

,




A 0 0 BvCv BvDvp BvDvw Bu

0 A11 A12 B11Cq B12 + B11Dqp B11Dqw 0
0 0 A22 0 B22 0 0
0 0 0 AW Bp Bw 0

0 C1 C2 D1Cq D2 + D1Dqp D1Dqw 0

Cz 0 0 DzvCv DzvDvp DzvDvw Dzu

0 0 0 0 0 I 0

Cy 0 0 DyvCv DyvDvp DyvDvw 0




=




A Ã12 B̃e1
B̃w1

Bu

0 Ã2 B̃e2
B̃w2

0

0 C̃q2 D̃qp,e D̃qw 0

C̃z1
C̃z2

D̃zp,e D̃zw Dzu

0 0 0 I 0

C̃1 C̃2 D̃yp,e D̃yw 0




(9)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1328



the controller matrices can be obtained as
DK := N

CK := (M̂ − DKC̃X)U−T

BK := V −1(L − Y B̃DK)

AK := V −1
(
K̂ − V BKC̃X

−Y B̃CKUT − Y (Ã + B̃DKC̃)X
)
U−T

(25)

Proof. The proof is an extension of the proof given in
Dietz et al. [2007] that relies on combining two transfor-
mations from the literature. Here, a sketch of the proof is
given due to space limitations. Using the realization (10)
for the extended generalized plant Ne, closing the loop
with controller K defined in (1) leads to the closed-loop
system matrix

Acl =

(
Ã + B̃DKC̃ B̃CK

BKC̃ AK

)
. (26)

The first congruence transformation needed is taken from
Scherer et al. [1997] and resolves the bilinearity between
Acl and the Lyapunov matrix X as it arises in (11).

After applying this transformation to condition (11), as
considered for the closed-loop system, as well as intro-
ducing transformed controller parameters {K̄, L, M̄ , N},
condition (19) follows with the substitutions

A →

(
ÃY + B̃M Ã + B̃NC̃

K XÃ + LC̃

)
,

Bp →

(
B̃p,e + B̃ND̃yp,e

XB̃p,e + LD̃yp,e

)
,

Bw →

(
B̃w + B̃ND̃yw

XB̃w + LD̃yw

)
,

Cz →
(

C̃zY + DzuM C̃z + DzuNC̃
)
,

Dzp → D̃zp,e + DzuND̃yp,e,

Dzw → D̃zw + DzuND̃yw,
Ce → Cq =

(
C̃qY C̃q

)
.

(27)

Due to multiplication of Ce with Q, the matrix inequal-
ity (19) involves non-linear terms. By somehow rendering
Ce independent on Y this problem would be overcome.
Fortunately, due to the particular structure among Ã, B̃
and C̃q this is possible, as worked out in detail in Dietz
et al. [2007]. As a consequence, a suitable congruence
transformation turns condition (11), again using closed-
loop realization matrices, into (19) with substitutions as
in (23). As Ce no longer depends on Y , the expression
(19) becomes affine in all of the new decision variables
Θ := {T,X, K̄, L, M̄ , N, X̌,H} and Q ∈ Q.

The condition (12) for the closed loop system happens to
be convex in X̌ already, i.e. (20). In view of Theorem 1, the
coupling condition (13) is fundamentally different from the
usual X ≻ 0. Without providing the details, one can show
that a suitable congruence transformation turns coupling
condition (13) into an LMI in the same new variables Θ.

For the controller reconstruction formulae the reader is
referred to Scherer et al. [1997], Masubuchi et al. [1998],
where further details can be found.

Remark 5. Note that using static scalings corresponds
to A11, A22 being empty matrices and T̄22 having the
dimension of AW . The key insight for handling dynamic
IQC multipliers is therefore to start with a realization that
displays the fact that input u is unobservable in output q.

Remark 6. We strongly emphasize that the synthesis re-
sult holds in full generality, i.e. for any set of uncertainties
described by dynamic multipliers of the form (6).

4. ILLUSTRATIVE EXAMPLE

The robust controller synthesis algorithm of Theorem 4
is applied on an academic example. As shown in Section
3.2, time-varying parameters with specified bounds on the
rate-of-variation (rov) can be captured by using dynamic
multipliers. We will show that the proposed synthesis
algorithm can improve the results obtained with static
D/G scalings.

Let G be the plant model given as

G(s) =
s + 0.1

(s + 0.2)(s + 0.5)
.

We adopt the well-known S/KS methodology for solv-
ing the disturbance rejection problem. The performance
output shown in Figure 1 is z = col(e, u), in which e is
the tracking error. With additional weights Wu,We at the
control output and tracking error, the plant P becomes

P =

(
−We −WeG

0 Wu

−I −G

)
.

The disturbances v are (non-stationary) sinusoidal distur-
bances with nominal frequency ω0 that are generated as
the second state of the autonomous system

ξ̇ =

(
0 ω0(1 + δ)

−ω0(1 + δ) 0

)
ξ , ξ(0) =

(
1
0

)
, (28)

in which δ is the time-varying parameter bounded by δ̄.
Since the algorithm outlined in this paper requires the
filter to be robustly stable, we treat sinusoidal signals with
time-invariant frequency using the filter

Wδ(s, δ) = δI ⋆ W (s) = κ +
2ζωδs

s2 + 2ζωδs + ω2
δ

, (29)

where ωδ = ω0(1 + δ) and δ ∈ [−δ̄, δ̄]. For time-varying
frequency ωδ(.) we can rely on a realization of this filter
as in the interconnection of Figure 1 with matrices

[
AW Bp Bw

Cq Dqp Dqw

Cv Dvp Dvw

]
=




0 ω0 0 ω0 1
−ω0 −2ζω0 −ω0 −2ζω0 0

1 0 0 0 0
0 1 0 0 0
0 2ω0 0 2ω0 κ


 . (30)

(
A

Cz

)
=




AT̄11 + BuM̄1 −AT̄12 + Ã12 + T̄12Ã2 + BuM̄2 A + BuNC̃1 Ã12 + T̄12Ã2 + BuNC̃2

0 T̄22Ã2 0 T̄22Ã2

K̄1 K̄2

X̄11A + L1C̃1

X̄21A + L2C̃1

X̄11Ã12 + X̄12Ã2 + L1C̃2

X̄21Ã12 + X̄22Ã2 + L2C̃2

C̃z1
T̄11 + DzuM̄1 −C̃z1

T̄12 + C̃z2
+ DzuM̄2 C̃z1

+ DzuNC̃1 C̃z2
+ DzuNC̃2


 (22)
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Upper bounds on the worst case L2-gain from the weighted
input u to weighted output z = col(e, u) are computed
using the presented synthesis algorithm. The weights are
chosen to be Wu = 1 and

We =
0.5s + 0.35

s + 0.01
.

The numerical values of the filter W defined in (29) are
chosen as κ = 0.2, δ̄ = 0.3, ω0 = 0.05, ζ = 0.005. The
first design denoted by KDG was based on static D/G
scales, as done in Dietz et al. [2007]. It provides stability
and performance guarantees against arbitrarily fast time-
varying parameters. With a synthesis optimal value of
γ = 1.25, the resulting closed-loop sensitivity is shown
in Figure 2.

Now let us apply Theorem 4. Choose α = 1 and β = 1 and
define H in (16). For rov-bounds |δ̇| < 1 and |δ̇| < 0.06
the resulting controllers are denoted K1,K2 respectively.
As seen in Figure 2, the notch of design K1 shifts to lower
frequency, as compared to KDG. In case the rov-bound
is further reduced, the sharp notch essentially disappears.
The synthesis optimal values are γ = 1.32 and γ = 1.28 for
K1,K2 respectively. Time-domain simulations have been
performed with a non-stationary sinusoidal disturbance
input v generated as the initial response of the system
(30) in which ζ = κ = 0 and collected in Figure 3.

Remark 7. Since numerical algorithms (generally) provide
upper bound values on the worst case L2-gain, reducing
the rov-bound need not always result in lower optimal
values.

10
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10
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10
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10
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10
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K
DG

K
1
, rov−bound 1

K
2
, rov−bound 0.06

W(s,δ) for δ ∈ {−0.3, 0, 0.3}

Fig. 2. Closed-loop sensitivity v → e. Also shown is Wδ for
parameter values δ ∈ {−0.3, 0, 0.3}.

5. CONCLUSIONS

A complete solution to the robust controller synthesis
has been presented in which the uncertainty affects the
disturbance filter only. Adopting the IQC framework, our
algorithm minimizes an upper bound on the worst-case
L2-gain over the set of specified multipliers and all output
feed-back controllers. For a single time-varying parameter
a suitable IQC multiplier enables us to incorporate param-
eter rate bounds.
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