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Abstract: This paper proposes a new second order sliding mode output feedback controller.
In the continuous case for which sampling frequency is supposed infinite, this controller uses
only the output information and ensures desired trajectory tracking in a finite time in spite of
uncertainties and perturbations. Moreover, in case of finite sampling frequency, it is shown that
the controller needs also the sign of output time derivative to ensure the finite time convergence
to an origin neighborhood.
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1. INTRODUCTION

High order sliding mode control is a nonlinear control
strategy, robust with respect to uncertainties and pertur-
bation. Several algorithms have been published, more or
less usable on practical applications (Levant [2001], Bar-
tolini et al., [2000], Laghrouche et al., [2007], Plestan et
al., [2008]). Since few years, applications to experimental
set-up have proved the feasibility and applicability of these
approaches for robots (high-order sliding mode observers
in (Lebastard et al., [2006], Lebastard et al., [2006a]),
electrical machines (Plestan et al., [2008]), pneumatic
actuators (Laghrouche et al., [2006]), (Girin et al., [2007]).
However, a lack of higher order sliding mode control is the
use of high order time derivatives of sliding variables; by a
practical point-of-view, it can decrease the interest of such
controllers, due to the bad effect of measurement noise
on the control. In order to remove this lack, a mean is to
consider output feedback. The objective is then to propose
output feedback control which ensures both robustness
and accuracy by minimizing the noise effect. Two kinds of
approaches are possible: the first one consists in designing
state observer coupled to a controller: it is necessary to
verify the stability of the observer-based controlled system
which is in main cases a hard task. In the case of high order
sliding mode, it has been done in (Levant [2003]) but this
solution suffers of a lack of constructibility.
Very few results are available on second order sliding mode
static output feedback. In (Khan et al., [2003]), a second
order sliding mode output feedback controller is proposed:
its main drawback is the absence of a formal proof of the
closed-loop system stability. This current paper proposes a
constructive method for the design of an output feedback
controller. It ensures the convergence in a finite time to
the origin of the theoretical system and to a neighborhood
of the origin of the real system.
The paper is organized as follows. Section 2 states the
problem of high order sliding mode output feedback con-
troller. Section 3 displays the design of the output feedback
controller by detailing both bases of infinite (ideal) and

finite sampling frequency. Section 4 applies the controller
for speed control of a series DC motor.

2. PROBLEM STATEMENT

Consider a single-input nonlinear system

ẋ = f(x) + g(x)u
y = h(x)

(1)

with x ∈ IRn the state variable, u ∈ IR the input, and
y ∈ IR a smooth output function. Let s(x, t) denote the
sliding variable defined as

s(x, t) = h(x) − hd(t)

hd(t) being the smooth desired trajectory. f and g are
smooth uncertain functions. Assume that

H1. The relative degree of (1) with respect to s is constant
and equal to 2, and the associated zero dynamics are
stable. Only the sliding variable s is measured.

The control objective is to fulfill the constraint s(x, t) = 0
in finite time and to keep it exactly by discontinuous
output feedback control. Let us recall the definition of
second order sliding mode given in Levant [2001]

Definition 1. Consider the nonlinear system (1), and
let the system be closed by some possibly-dynamical
discontinuous feedback. Then, provided that s and ṡ are
continuous functions, and the set

S = {x | s(x, t) = ṡ(x, t) = 0},

called “second order sliding set”, is non-empty and is locally
an integral set in the Filippov sense (see Filippov [1988]),
the motion on S is called second order sliding mode with
respect to the sliding variable s.

The second order sliding mode output feedback control
problem allows the finite time stabilization to zero of the
sliding variable s and its first time derivatives by defining
a suitable control function. The output s fulfills

s̈ = ā(x) + b(x)u(s) − ḣd(t) := a(x, t) + b(x)u(s) (2)

Assume that
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H2. The solutions are understood in the Filippov sense
(see Filippov [1988]), and the system trajectories are sup-
posed to be infinitely extendible in time for any bounded
Lebesgue measurable input.

H3. Functions a(x, t) and b(x) are bounded uncertain
functions and b(x) is strictly positive. Thus, there exists
positive constants bm > 0, bM > 0 and aM ≥ 0 such that
0 < bm < b(x) < bM and

|a(x, t)| ≤ aM

for x ∈ X ⊂ IRn, X being a bounded open subset of IRn

within which the boundedness of the system dynamics is
ensured, and t > 0.

Then, by setting z1 = s and z2 = ṡ, the second order
sliding mode output feedback control of (1) with respect
to the sliding variable s is equivalent to the finite time
stabilization of the system

ż1 = z2, ż2 = a(·) + b(·) · u(z1) (3)

under Assumptions H1-H3.

3. A FINITE TIME SECOND ORDER SLIDING
MODE OUTPUT FEEDBACK CONTROLLER

In this section, solutions of output feedback controllers for
linear systems and time-varying ones are proposed. These
control laws will be used in order to define sliding surface
and switching variables in the next section.

3.1 Preliminaries

From (3), consider the following double integrator without
uncertainties

ż1 = z2, ż2 = u (4)
where the control input u is a discontinuous output feed-
back reading as

u(z1) = −K sign (z1)

with K > 0. As z̈1 = −K sign (z1), one gets

z1 (t) = −K sign (z1)
t2

2
+ z2,0t + z1,0

z2 (t) = −K sign (z1) t + z2,0

(5)

with z1,0 := z1(0) and z2,0 := z2(0). The equation of the
phase portrait reads as

z2
2 + 2K |z1| = z2

2,0 + 2Ksign (z1) z1,0. (6)

This equation leads to two branches of parabola P+
K and

P−
K , with horizontal z1−axis of symmetry in the half-

planes z1 > 0 and z1 < 0 (see Figure 1 for different
values of K). The vertices which are the intersection points
between the branches of parabola and the z1−axis are
given by (see Figure 1)

V =

(

z2
2,0

2K sign (z1)
+ z1,0, 0

)

. (7)

The intersection points I between the branches of
parabola and the z2−axis are given by

I+ =
(

0,
√

z2
2,0 + 2K sign (z1) z1,0

)

I− =
(

0,−
√

z2
2,0 + 2K sign (z1) z1,0

)

.

(8)

Note that I+ and I− are symmetric with respect to the
horizontal z1−axis. Without loss of generality, suppose
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Fig. 1. Phase portrait of system (4) for several values of
K.

that system (4) starts from initial values z0
1 > 0, z0

2 > 0.
System (4) evolves on a branch of parabola P+

K with vertex

V + =

(

z2
2,0

2K
+ z1,0, 0

)

. (9)

From (5), it is obvious that, after a finite amount of time,
system (4) reaches the vertical z2−axis at the point I−.
Then, control input switches and system (4) is initialized
at I− by new values given by

(z1,0, z2,0) =
(

0,−
√

z2
2,0 + 2K z1,0

)

.

It leads to a new branch of parabola P−
K with a new vertex

V − =

(

z2,0
2

2K sign (z1)
+ z1,0, 0

)

=

(

z2
2,0 + 2K z1,0

−2K
, 0

)

=

(

−z2
2,0

2K
− z1,0, 0

)

.

(10)

P−
K is symmetric to P+

K with respect to the z2−axis. By
the same way, it can be shown that, after a finite amount
of time, system (4) reaches point I+ and slides on P+

K .
Finally, system (4) evolves on the two branches of parabola
P+

K and P−
K and P−

K ∪ P+
K is symmetric with respect to

the z1−axis and the z2−axis. Note also that initial point
(

z0
1 , z

0
2

)

belongs to the curve P−
K .

Theorem 1. Under initial conditions (z1,0, z2,0), system
(4) controlled by

u(z1) = −K sign(z1), K > 0

is practically stable and evolves on two branches of
parabola P−

K ∪ P+
K whose equations are given by (6) and

vertices V by (7).

3.2 Robustness analysis

In order to evaluate the robustness of previous out-
put feedback control class, consider system (3) with
AssumptionsH1-H3 fulfilled and

u(z1) = −K sign(z1).

From the previous result, it yields that system (3) is
practically stable if for all t ≥ 0,

a (·) − b (·) K < 0, z1 > 0

a (·) + b (·) K > 0, z1 < 0.

This latter condition is fulfilled if (for t ≥ 0)
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K >
|a(·)|

b(·)
, t ≥ 0 ⇒ K >

aM

bm

Theorem 2. Under initial conditions (z1,0, z2,0) and as-
sumptions H1-H3, system (3) controlled by

u = − K sign(z1)

with K >
aM

bm

, is practically stable and evolves on

P =
⋃

αm≤α≤αM

P−
α ∪

⋃

βm≤β≤βM

P+
β .

where αm = −aM −bMK, αM = aM −bmK, βm = −aM +
bmK and βM = aM + bMK.

The second part of Theorem 2 is due to the fact that, on
P− for z1 < 0, we have

−aM − bMK < a (t) − b (t) K < aM − bmK

and on P+ for z1 > 0, we have

−aM + bmK < a (t) + b (t) K < aM + bMK.

Remark 1. In the case where a and b are constant (b 6= 0),
z1-dynamics reads as

z̈1 = a − b K sign (z1)

It yields
z̈1 = a − b K, z1 > 0
z̈1 = a + b K, z1 < 0

(11)

The fact that the system is no more symmetric in the half-
planes z1 > 0 and z1 < 0, implies that P+

K and P−
K are no

more symmetric with respect to the z2−axis. The vertices
are now defined by

V + =

(

z2
2,0

2 (a − bK)
+ z1,0, 0

)

,

V − =

(

z2
2,0

−2 (a + bK)
+ z1,0, 0

)

and are not symmetric with respect to the z2−axis (Figure
2).
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Fig. 2. Phase portrait of system (3) for a = 1, b = 2 and
K = 1.

3.3 Extension in case of finite sample frequency

Suppose now that system (4) is viewed under a practical
point-of-view, i.e. the sample frequency is finite inducing
that the “sign” function does not switch instantaneously.
Due to the finite sample time Te, control input usually
does not switch exactly on the z2−axis, but with a delay
bounded by the sample time value. From this latter
remark, discontinuous control input of system (3) can

be applied with a bounded delay d(t), such that 0 ≤
d(t) < Te: it yields that, under the finite sample frequency
hypothesis, system (3) behavior is equivalent to behavior
of

ż1 (t) = z2 (t)
ż2 (t) = a (·) − b (·) K sign (z1 (t − d (t)))

(12)

Due to the time delay, solutions of system (12) can switch
on branches of parabola which are more and more far away
from the origin (see Figure 3 with constant functions a and
b). System (12) can become unstable which is proved by
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Fig. 3. Phase portrait of system (12) with a = 1, b = 2,
K = 1, d = 0.1 and Te = 0.01 s.

using Pontrjagin’s conditions to time delay systems (see
[Bhatt et al., , 1966, Case 1, Subcase 1B]). In order to
ensure the stability of the system, a solution consists in
modifying the control input.
For a sake of clarity, before extending the following result
to system (3), consider the double integrator system (4)
and the following theorem 1 .

Theorem 3. Under initial conditions (z1,0, z2,0), system
(4) converges to the domain

D =
{

(z1, z2) | |z1| ≤ ǫ + KT 2
e , |z2| ≤ 3KTe]

}

under the control input

u = −K sign(z1 + ǫ sign(z2)) (13)

if K > 0 and

ǫ > Te

√

z2
2,0 + 2K|z1,0| −

KT 2
e

2
. (14)

Proof. Without loss of generality, suppose that, at t = t0,
system (4) is initialized at (z1,0, z2,0) such that 0 < ǫ <
z1,0 < ∞ and 0 < z2,0 < ∞. As it has been previously
mentioned, the continuous function z1(t) reads as

z1(t) = −K
t2

2
+ z2,0t + z1,0. (15)

Then, there exists a time instant t0 such that z1(t) = 0
which reads as

t0 =
z2,0

K
+

√

z2
2,0

K2
+

2z1,0

K
(16)

A sufficient condition for the convergence of system (4) to
D is that trajectories reach a parabola closer to the origin
through the commutation of the input in the z1-interval
[0, ǫ], which yields

1 Working with sign(z2) does not matter in an outpout feedback
control scheme with a finite sampling period because, for all t > Te,

z2(t) may be approximated by
z1(t)−z1(t−Te)

Te
.
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z1(t0 − Te) < ǫ

leading to

−K
(t0 − Te)

2

2
+ z2,0(t0 − Te) + z1,0 < ǫ.

From the previous inequality and (16), one gets (14). It
yields that there exists a time instant t1 such that

|z1(t1)| < ǫ, z2(t1) > 0

and z2(t1 + Te) with an opposite sign of z2(t1). Let z1,1

(resp. z2,1) denote z1,1 := z1(t1) (resp. z2,1 := z2(t1)). For
a sake of clarity, suppose that z2,1 > 0 and z2(t1 +Te) < 0.
Then, one gets, at t = t1, (see Figure 4) 2

ż1(t1) = z2,1, ż2(t1) = −K

It yields

z2(t1 + Te) = z2,1 − KTe < 0,

z1(t1 + Te) = z1,1 + z2,1Te.

Note that one has

0 < z2,1 < KTe.

Then, two cases have to be considered.

First case. Without loss of generality, suppose that

0 < z1(t1 + Te) < ǫ

Then, one gets

ż1(t1 + Te) = z2(t1 + Te), ż2(t1 + Te) = K

At t = t1 + 2Te, one gets

z2(t1 + 2Te) = z2,1,

z1(t1 + 2Te) = z(t1 + Te) + z2(t1 + Te)Te

= z1,1 + 2z2,1Te − KT 2
e .

It means that, between t1 and t1 + 2Te, varible z2 is
keeping the same value. From previous equation, as it is
not possible to establish the behavior of z1, it is necessary
to consider now two subcases (see Figure 4).

• Point (a). Fig. 4: KTe/2 < z2,1 < KTe. This in-
equality on z2-value at t = t1 implies

0 < 2z2,1Te − KT 2
e < KT 2

e .

Then, one gets

z1(t1 + 2Te) > z1,1.

This latter value of z1 is displayed by point (c)
whereas z1(t1 + Te) is displayed by point(b). It yields
that z1 is increasing between t1 to t1+2Te, its average
velocity being

z2,1 −
KTe

2
> 0

2 In the sequel of the proof, two cases of initial conditions at t = t1
are considered: point (a) is such that KTe/2 < z1(t1) < KTe,
whereas point (d) is such that 0 < z1(t1) < KTe/2.

• Point (d). Fig. 4: KTe/2 < z2,1 < KTe. This in-
equality on z2-value at t = t1 implies

−KT 2
e < 2z2,1Te − KT 2

e < 0.

Then, one gets

z1(t1 + 2Te) < z1,1.

This latter value of z1 is displayed by point (f)
whereas z1(t1 + Te) is displayed by point(e). It yields
that z1 is decreasing between t1 and t1 + 2Te, its
average velocity being

z2,1 −
KTe

2
< 0

Fig. 4. Trajectories evolution in phase plan (z1, z2). State
vector [z1 z2]

T at t = t1 is plotted in (a) when
KTe/2 < z2(t1) < KTe (resp. (e) when 0 < z2(t1) <
KTe/2 ), which induces a constant positive (resp.
negative) average z2-velocity positive.

As the average value of z2 is constant, it implies that, in
a finite time, z1 is evolving until crossing ǫ-vertical axis.
Then, the system is evolving as in the sequel described by
“Second case” item.

Second case. As seen in the previous “First case”, there
exists a finite time instant t2 such that

|z1(t2)| < ǫ, |z1(t2 + Te)| > ǫ.

with z2(t2 +Te) with an opposite sign of z2(t2). For a sake
of clarity, but without loss of generality, suppose that (see
Figure 5 - Point (A))

0 < z1(t2) < ǫ, z1(t2 + Te) > ǫ, z2(t2) > 0.

From

ż1(t2) = z2(t2), ż2(t2) = −K

and previous assumptions, it yields (Point (B) of Figure
5)

z1(t2 + Te) > ǫ, z2(t2 + Te) < 0,

and

ż1(t2 + Te) = z2(t2 + Te), ż2(t2 + Te) = −K.

As z1(t2) < ǫ and z1(t2 + Te) > ǫ, it means that

ǫ − KT 2
e < z1(t2) < ǫ, ǫ < z1(t2 + Te) < ǫ + KT 2

e .

Furthermore, one has
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−KTe < z2(t2 + Te) < 0.

Then, at t = t2 + 2Te, from

z1(t2 + 2Te) = z1(t2 + Te) + z2(t2 + Te)Te,

z2(t2 + 2Te) = z2(t2 + Te) − KTe,

one gets

ǫ − KT 2
e < z1(t2 + 2Te) < ǫ + KT 2

e ,

−2KTe < z2(t2 + 2Te) < −KTe.

Then, two subcases must now be considered

Fig. 5. Trajectories in phase plan (z1, z2) around ǫ-vertical
axis.

• Point (C). Fig. 5: ǫ < z1(t2 + 2Te) < ǫ + KT
2

e
.

One has

ż1(t2 + 2Te) = z2, ż2(t2 + 2Te) = −K

At t = t2 + 3Te, one has

ǫ − 2KT 2
e < z1(t2 + 3Te) < ǫ

which ensures that trajectories cross ǫ-vertical axis
to reach point (E) of Figure 5. Furthermore, at point
(E), z2 and dynamics of z1 and z2 are such that

−3KTe < z2(t2 + 3Te) < −2KTe

and

ż1(t2 + 3Te) = z2(t1 + 3Te), ż2(t2 + 3Te) = K

Then, z2 is encreasing while z1 is decreasing (see
arrow at point (E)).

• Point (D). Fig. 5: ǫ − KT
2

e
< z1(t2 + Te) < ǫ. One

has

ż1(t2 + 2Te) = z2, ż2(t2 + 2Te) = K

At t = t2 + 3Te, one has

ǫ − 3KT 2
e < z1(t2 + 3Te) < ǫ − KT 2

e

which ensures that trajectories stay in the left part
of (z1, z2) plan w.r.t. ǫ-vertical. Furthermore, z2 and
dynamics of z1 and z2 are such that

−KTe < z2(t2 + 3Te) < 0

and

ż1(t2 + 3Te) = z2(t2 + 3Te), ż2(t2 + 3Te) = K

Then, z2 is encreasing while z1 is decreasing (see
arrow at point (D)).

By the same way, for all initial condition (z1,0, z2,0), it
can be shown that, for K > 0, z2(t) is evolving in
[−3KTe , 3KTe] whereas z1(t) in [−ǫ − KT 2

e , ǫ + KT 2
e ].

3.4 Extension to uncertain systems second order sliding
mode control

Consider now system (3): Theorem 3 is rewritten for this
class of system. Note that the convergence proof takes the
same way than previously, with condition

K >
aM

bm

which is the classical sliding mode gain condition ensuring
that dynamics of z2 is controlled by sign-function in spite
of uncertainties.

Theorem 4. Under initial conditions (z1,0, z2,0) and as-
sumptions H1-H3, system (3) converges to a bounded
neighbourhood of the origin of the plan (s, ṡ) in a finite
time under the control

u = −K sign(s + ǫ sign(ṡ)) (17)

if K >
aM

bm

and

ǫ > Max(ǫ1, ǫ2),

ǫ1 = Te

√

z2
2,0 + 2(aM + KbM)|z1,0| −

(aM + KbM )T 2
e

2
,

ǫ2 = Te

√

z2
2,0 + 2(−aM + Kbm)|z1,0| −

(−aM + Kbm)T 2
e

2
.

(18)

Sketch of proof. Consider system (3) with z1(0) = z1,0 >
0 and z2(0) = z2,0 > 0 and u given by (17). It yields

ż1(0) = z2,0 > 0, ż2(0) = a(·) − Kb(·) < 0.

Then, one has

−(KbM + aM )t + z2,0 < z2(t) <−(Kbm − aM )t + z2,0,

z1m(t) < z1(t) < z1M (t).

with

z1m(t) = −(KbM + aM )
t2

2
+ z2,0t + z1,0

and

z1M (t) = −(Kbm − aM )
t2

2
+ z2,0t + z1,0.

Then, there exists a time t0 such that z1(t0) = 0. It yields

t0,m < t0 < t0,M (19)

with

t0,m =
z2,0

KbM + aM

+

√

z2
2,0

(KbM + aM )2
+

2z1,0

KbM + aM

and

t0,M =
z2,0

Kbm − aM

+

√

z2
2,0

(Kbm − aM )2
+

2z1,0

Kbm − aM

A sufficient condition for the convergence of system (3)
is that trajectories reach a parabola closer to the origin
through the commutation of the input in the z1-interval
[0, ǫ], which yields
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z1(t0,m − Te) < ǫ and z1(t0,M − Te) < ǫ.

By replacing in the both previous inequalities t0,m and
t0,M by (19), one gets (18). The end of the proof takes a
similar way than the proof of Theorem 3.

4. EXAMPLE

In this section, the speed control of a series DC motor is
displayed. As detailed in (Chiasson [1994]), the model of
a such motor reads as

ẋ1 = −Kmx1x2 −
Ra + Rf

Ke

x1 + u

ẋ2 = −
B

J
x2 − x3 +

Km

J
Kx2

1

ẋ3 = 0

(20)

with x1 the field flux, x2 the rotor speed and x3 the ration
between load torque and inertia. Ra (= 0.00989 Ω) and Rf

(= 0.01485 Ω) denote the resistance of the armature and
fild windings, respectively. Km (= 0.004329 Nm/Wb−A)
denotes the torque/back-emf constant, whereas B (= .1 T )
is the magnetic field. Ke (= 0.057 SI) is a constant which
lies flux and current. J is the inertia. The control objective
is to drive the rotor speed to a reference value x2,ref =
1000 rad.s−1 by using only the information of speed and
the sign of acceleration: the desired trajectories have been
computed by using technique displayed in Plestan et al.,
[2008] which ensures a finite time convergence which is
a priori well-known. In this paper, the convergence has
been stated at tF = 3 s. The controller gain value equals
K = 105. Initial state variables are stated at x1(0) =
0.001, x2(0) = 0 rad.s−1 and x3(0) = 0 N.m, which give
ẋ2(0) = 8.2183e− 012 rad.s−1. Denoting z1 = x2 − x2,ref

and z2 = ẋ2, one gets a system as (3). From Theorem 4,
with Te = 1 ms, one states ǫ = 0.01. Figure 6 displays
the speed rotor in case of a constant load torque on the
rotor: it is shown that the motor reachs in a finite time a
neighborhhod (depending on ǫ) of the objective. Figure 7
displays the speed rotor in case of dynamical perturbation
load torque and thus shows the controller robustness.
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Fig. 6. Nominal case. Top. Rotor speed (rad.s−1) versus
time (sec.). Bottom. Rotor speed tracking error
(rad.s−1) versus time (s).
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