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Abstract: This paper addresses the problem of state estimation for hybrid systems, with
special emphasis on the uncertainty associated with the discrete mode estimates. The nature of
hybrid systems, which are composed by both discrete modes and continuous states, requires a
specific description of the uncertainty associated with the computed estimates. The estimation
uncertainty is shown to depend both on the estimation algorithm and on the actual trajectory
followed by the system. A new definition of observability for the discrete mode of a hybrid
system is proposed determining the best accuracy obtainable when estimating the discrete
mode. A simple numerical example with a PWA system clarifies the presented concepts.
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1. INTRODUCTION

Hybrid systems are dynamical systems composed by both
discrete valued and continuous states. Basically, the dy-
namics of a hybrid system is governed by a mode selector
that determines, at each time instant, the discrete mode
from endogenous and/or exogenous variables. The contin-
uous state can then updated through a linear dynamic
relation that is selected from a set of linear dynamics
according to the value of the discrete mode. Hybrid sys-
tems are usually analyzed using tools developed for linear
systems, however, extreme care must be taken because the
influence of the discrete dynamics is usually very intricate.

There are two main approaches to the hybrid state estima-
tion problem: the simpler one considers that the discrete
mode is known in advance and the problem is reduced
to the state estimation of a linear time-varying system.
This approach has been used by several authors such as
Alessandri and Coletta [2001], Böker and Lunze [2002].
The main difficulty lies on ensuring convergence of the
estimates for every admissible sequence of discrete modes.
If, on the other hand, the discrete mode must also be
estimated the estimation problem becomes much more
complex and every discrete mode sequence (dms) must
be checked to choose the one that better fits the observed
data. The continuous state estimates are then computed
for the estimated dms. Several works address this problem,
see Balluchi et al. [2002], Ferrari-Trecate et al. [2002], Pina
and Botto [2006].

The truly optimal way of simultaneously estimating the
discrete mode and the continuous state of a hybrid system
was derived in Athans and Chang [1977] using Bayesian
methodologies. The objective was to perform simultane-
⋆ This work was supported in part by projects
POCI/EME/59522/2004 and PTDC/EME-CRO/69117/2006
co-sponsored by FEDER, Programa Operacional Ciência e Inovação
2010, and by the grant SFRH/BD/12208/2003, from FCT, Portugal.

ous system identification and state estimation for linear
systems but the derivation is quite general and is directly
applicable to the hybrid state estimation problem. This
method requires the consideration of all admissible dms

starting from the initial time instant, being obviously
unpractical since the number of dms grows exponentially
in time, and so, suboptimal methods were developed. From
the various possibilities, considering all the admissible dms

of a given length is usually the preferred methodology.

The method of characterizing the discrete mode uncer-
tainty proposed in this paper is rather general and appli-
cable to most of the existing models for hybrid systems
subject to disturbances with explicitly known probability
density function. In Heemels et al. [2001], PWA systems
are proven to be equivalent to many other classes of hybrid
systems under some mild assumptions, and so, a PWA
system subject to uniformly distributed disturbances will
be considered to clarify the proposed concepts.

The remainder of this paper is organized as follows: the
considered models of hybrid systems and disturbances are
presented in section 2, along with the example system.
Section 3 presents the detailed analysis of the uncertainty
associated with discrete mode estimates. Finally, in section
4 some conclusions are drawn.

2. SYSTEM DESCRIPTION

PWA systems were introduced in Sontag [1981]. Here, the
following stochastic PWA model will be considered:

x(k + 1) = Ai(k)x(k)+Bi(k)u(k)+fi(k)+Li(k)w(k) (1a)

y(k) = Ci(k)x(k)+Di(k)u(k)+gi(k)+v(k) (1b)

iff

[
x(k)
u(k)
w(k)

]
∈ Ωi(k) (1c)

where k is the discrete time, x(k) ∈ X ⊂ R
nx is the

continuous state, u(k) ∈ U ⊂ R
nu is the input, w(k) ∈

R
nw is the input disturbance, y(k) ∈ R

ny is the output,
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and v(k) ∈ R
nv is the measurement noise. i(k) ∈ I =

{1, . . . , s} ⊂ N
+ is the discrete mode and s is the total

number of discrete modes.

The matrices and vectors Ai, Bi, fi, Li, Ci, Di, gi depend
on the discrete mode i and have appropriate dimensions.

The discrete mode i(k) is a piecewise constant function
of the state, input and input disturbance whose value is
defined by a given polytopic region Ωi:

Ωi : Si x(k) + Ri u(k) + Qi w(k) ≤ Ti (2)

As the subsequent analysis will consider sequences of
measurements and discrete modes, some helpful notation
regarding the time-compressed representation presented
in Kamen [1992] will now be introduced for system (1).
The time-compressed representation of a system defines
the dynamics of the system over a sequence of time
instants in opposition to the single time step state-space
representation. Consider the time interval [k, k+T−1], the
sequence of discrete modes over this interval is represented
as iT (k) � {i(k), . . . , i(k+T−1)}. To simplify the notation,
the time index k may be removed from the dms whenever
it is clear from the context. The output sequence over the
same interval is given by:

YT (k) = CiT x(k)+DiT UT (k)+giT +LiT WT (k)+VT (k) (3)

where the input, input disturbance and measurement noise
sequences, UT (k), WT (k), and VT (k), respectively, are

defined in the same way as the output sequence YT (k) �

[y(k)T, . . . , y(k + T − 1)T]T. The matrices and vectors
CiT , DiT , giT , and LiT are directly computed from the
system dynamics (1a-1b) and will not be presented here
for brevity.

The same reasoning can be applied to the constraints ΩiT :

ΩiT : SiT x(k)+RiT UT (k)+QiT WT (k) ≤ TiT (4)

where, once again, the matrices SiT , RiT , QiT and TiT

can be computed from the system dynamics (1a) and the
polytopic region equation (2).

2.1 Disturbances

Despite the possibility of considering any model with
explicitly known probability density function for distur-
bances, the example system considered in this paper is
subject to uniformly distributed disturbances defined by
polytopes centered at the origin:

w(k) ∈ W ⊂ R
nw , ∀k ;

∫

W

w dw = 0 (5a)

v(k) ∈ V ⊂ R
nv , ∀k ;

∫

V

v dv = 0 (5b)

The polytopes W and V are defined by a set of linear
inequalities:

W � {w ∈ R
nw : Hww − hw ≤ 0} (6a)

V � {v ∈ R
nv : Hvv − hv ≤ 0} (6b)

where Hw is a (pw×nw) matrix and hw is a pw-dimensional
vector. pw represents the number of linear constraints
defining W. The same applies to Hv and hv but the
dimensions of Hv are (pv × ny).

Remark I: The disturbances properties in a PWA system
may depend on the actual mode of the system. Each
mode i may have some particular input disturbance and
measurement noise distributions associated, resulting in
different probability density functions associated.

2.2 Example system

The following PWA system will be used to clarify the
presented concepts:

x(k + 1) =

{
−0.5x(k) + u(k) , iff x(k) ≤ 0

−x(k) + u(k) , iff x(k) > 0

y(k) =

{
x(k) + v(k) , iff x(k) ≤ 0
x(k) + v(k) − 0.5 , iff x(k) > 0

x(k) ∈ X �
[
− 2 , 2

]

u(k) ∈ U �
[
− 1 , 1

]
{

v(k) ∈ V1 �
[
− 0.2 , 0.2

]
, iff x(k) ≤ 0

v(k) ∈ V2 �
[
− 0.5 , 0.5

]
, iff x(k) > 0

(7)

The measurement noises are uniformly distributed over the
respective intervals. No input disturbances were considered
to simplify the analysis. This system will be analyzed
considering sequences of 2 time instants, T = 2.

3. UNCERTAINTY ANALYSIS

The uncertainty present when the continuous state x(k)
and dms iT (k) of system (1) are estimated from sequences
of measurements YT (k) and inputs UT (k) will now be ana-
lyzed. First some important concepts must be introduced:

Definition 1. Hybrid Trajectory:

The triplet
(
x,UT , iT

)
∈ X×U

T ×IT ⊂ R
(nx+T.nu)×N

+T

defines a hybrid trajectory for the PWA system (1), where
x is the initial state, UT is the input sequence and iT is
the discrete mode sequence. The length T of iT and UT is
the same and defines the length of the trajectory.
A hybrid trajectory is feasible if and only if:

∃ WT ∈ W
T
iT

⊂ R
T.nw ⇒

[ x
UT

WT

]
∈ ΩiT (8)

As there are several different mathematical formulations
for hybrid systems, many other definitions of hybrid trajec-
tories have been proposed in Bemporad and Morari [1999],
Hu et al. [2000], Branicky et al. [1998].

The following sets arise directly from Definition 1:

Definition 2. Hybrid Trajectory Feasibility Polytope:
The Hybrid Trajectory Feasibility Polytope (HTFP) of
a discrete mode sequence iT is defined as the set of all
feasible hybrid trajectories of iT :

HiT �

{(
x,UT , iT

)
∈ R

(nx+T.nu) × N
+T

:

∃WT ∈ WiT ⇒
[ x

UT

WT

]
∈ ΩiT

} (9)

The point-to-set map HiT :RT.nu �→2R
(nx+T.nu)×N

+T

defines
the HTFP for a given input sequence U of length T :

HiT (U) �

{(
x,UT , iT

)
∈ R

(nx+T.nu) × N
+T

:

UT = U , ∃WT ∈ WiT ⇒
[ x

UT

WT

]
∈ ΩiT

} (10)

Figures 1 and 2 show the HTFP HiT of all dms, with length
1 and 2, respectively, from the example system (7).

−2 −1 0 1 2

x

(a) iT = [ 1 ]

−2 −1 0 1 2

x

(b) iT = [ 2 ]

Fig. 1. Hybrid trajectory feasibility polytopes, HiT , for the
example system (7), length T = 1.
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(d) iT = [2 2]

Fig. 2. Hybrid trajectory feasibility polytopes, HiT , for the example system (7), length T = 2.

The hybrid trajectories of length 1 are defined by the
initial state alone, while the trajectories of length 2 are
defined by the initial state and the initial input. As the
last component of the input sequence UT has no effect
on the continuous state evolution, neither on the output
sequence or the partitions, it will not be represented. The
HTFP for a given input sequence, HiT (U), are obviously
horizontal lines in figure 2.

Output trajectories corresponding to a given hybrid tra-
jectory can also be defined as follows:

Definition 3. Output Trajectory:
The map

Y : X×U
T×W

T×V
T×IT⊂R

(nx+T (nu+nw+nv))×N
+T

�→R
T.ny

defines the output trajectory Y
(
x,UT ,WT , VT , iT

)
cor-

responding to the hybrid trajectory
(
x,UT , iT

)
of the

PWA system (1) with input disturbance sequence WT and
measurement noise sequence VT , and is computed using
equation (3).
An output trajectory is feasible if and only if:[ x

UT

WT

]
∈ ΩiT (11)

Y
(
x,UT , 0, 0, iT

)
is the corresponding nominal output

trajectory.

As can be seen from definition 3, a hybrid trajectory may
produce various distinct output trajectories depending
on the actual input disturbance and measurement noise
sequences that acted on the system. The following sets
arise directly from definition 3:

Definition 4. Output Trajectory Feasibility Polytope:
The Output Trajectory Feasibility Polytope (OTFP) of
a discrete mode sequence iT is defined as the set of all
admissible output trajectories of iT :

YiT �

{
Y

(
x,UT ,WT , VT , iT

)
∈ R

T.ny :

WT ∈ WiT , VT ∈ ViT ,
[ x

UT

WT

]
∈ ΩiT

} (12)

The point-to-set map YiT : R
T.nu �→ 2R

T.ny

defines the
OTFP for a given input sequence U of length T :

YiT (U) �

{
Y

(
x,UT ,WT , VT , iT

)
∈ R

T.ny :

UT = U,WT ∈ WiT , VT ∈ ViT ,
[ x

UT

WT

]
∈ ΩiT

} (13)

Figures 3 and 4 show the OTFP YiT of all dms, with length
1 and 2 respectively, from the example system (7). When
the length of the output trajectories is 1, they only depend
on the initial state.

The output trajectories of length 2, as there is a very im-
portant dependence of the OTFP on the input sequences,
are represented for several input sequences. To make the

−2 −1 0 1 2

y
1

(a) iT = [ 1 ]

−2 −1 0 1 2

y
1

(b) iT = [ 2 ]

Fig. 3. Output trajectory feasibility polytopes, YiT , for the
example system (7), length T = 1.

figures easier to read, the projection of all YiT (U) is also
presented. Once again, the last element of the input se-
quences is not relevant and so the input sequences are
represented only by the first input.

3.1 Uncertainty in the Discrete Mode Sequence

The uncertainty in the discrete mode sequence arises from

the possibility of estimating a dms îT different from the
true dms iT . The process of estimating a dms from the
input and output sequences is of most importance and the
following definition is required:

Definition 5. Discrete Mode Sequence Estimator:

The map îτ : R
T.ny×R

T.nu×2Jτ �→
{
Jτ ,0

}
defines a Dis-

crete Mode Sequence Estimator (DMSE) îτ
(
YT , UT ,Jτ

)

which computes a discrete mode sequence estimate îτ of
length τ from the set of candidate discrete mode sequences
with length τ , Jτ , as a function of the measurement se-
quence YT and input sequence UT with lengths T , (τ ≤ T ).
The estimate 0 /∈ Jτ is produced when the estimator
rejects all discrete mode sequences of Jτ .

Definition 5 allows the estimation of dms with lengths τ
smaller than the length of the measurement and input se-
quences T . This is related with the delay of the estimation.
The following definition states the notation for the dms

that share the same prefix:

Definition 6. Set of Prefixed Discrete Mode Sequences:
The set of discrete mode sequences of length T that share
the same prefix discrete mode sequence iτ of length τ is
defined as:

[
iτ , . . .

]
T

�

{[
jτ , j[τ+1,T ]

]
∈ IT ⊂ N

+T
: jτ = iτ

}
(14)

Definition 5 describes a DMSE as a function whose output
is either one of the candidate dms represented by Jτ , or
the error output 0. This last case happens, for instance,
when the measurement sequence YT does not belong to
the OTFP, Y[jτ ,...]T , of any dms

[
jτ , ...

]
T
, with jτ ∈ Jτ .

Figure 5 presents the outcome from a DMSE, îeT , for the

example system (7), where e stands for example. îeT is
only one from the infinite possible DMSE, and its specific
algorithm is not relevant for the present development.
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Pa
iT ,{iT ,jT }

(
(x,UT , iT )

)
= Pr

(
îaT

(
Y (x,UT ,WT , VT , iT ), UT , {iT , jT }

)
= iT

∣∣(x,UT , iT )
)

=

=

∫

RT.nw

∫

RT.nv

[
îaT

(
Y (x,UT ,WT , VT , iT ), UT , {iT , jT }

)
= iT

]
Pr

(
WT , VT

∣∣(x,UT , iT )
)

dVT dWT

(15)

Pa
jT ,{iT ,jT }

(
(x,UT , iT )

)
= Pr

(
îaT

(
Y (x,UT ,WT , VT , iT ), UT , {iT , jT }

)
= jT

∣∣(x,UT , iT )
)

=

=

∫

RT.nw

∫

RT.nv

[
îaT

(
Y (x,UT ,WT , VT , iT ), UT , {iT , jT }

)
= jT

]
Pr

(
WT , VT

∣∣(x,UT , iT )
)

dVT dWT

(16)
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(b) iT = [1 2]
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(c) iT = [2 1]
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Fig. 4. Output trajectory feasibility polytopes, YiT , for the example system (7), length T = 2.
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Fig. 5. DMSE îeT for the example system (7).
(

Dark

blue - îeT = [1 1], Light blue - îeT = [1 2], Light red -

îeT = [2 1], Dark red - îeT = [2 2], White - îeT = 0.
)

From now on, only trajectories of length T = 2 will be
considered since these can provide better insight on the
methodology of defining the uncertainty properties.

From figure 4 is obvious that the same output sequence can
be reproduced by different dms. For instance YT = [ 0

0 ] can
be obtained, for UT = [ 0

0 ], from iT = [1 1], from iT = [1 2],
or from iT = [2 1]. As any DMSE can only provide one
dms estimate for given YT and UT , the possibility of
incorrectly estimating the dms is unavoidable. Considering
this, a method for determining the probability of correctly
estimating the dms is required and will now be presented.

For simplicity and without loss of generality, consider
that there are only two admissible dms, the true one
iT and the incorrect one jT . Each hybrid trajectory(
x,UT , iT

)
can produce various different output trajecto-

ries Y (x,UT ,WT , VT , iT ) depending on the input distur-
bance and measurement noise sequences. Each of these
measurement sequences has a given probability of be-
ing produced, Pr

(
LiT WT + VT = Y (x,UT ,WT , VT , iT ) −

Y (x,UT , 0, 0, iT )
)
. Considering a specific DMSE, a ,

îaT
(
Y (x,UT ,WT , VT , iT ), UT , {iT , jT }

)
, each output trajec-

tory generates only one discrete mode sequence estimate

from the two candidate dms iT and jT . Thus, there will
be a region of the output trajectories space, R

T.ny , where

îaT
(
Y (x,UT ,WT , VT , iT ), UT , {iT , jT }

)
= iT and another

one where îaT
(
Y (x,UT ,WT , VT , iT ), UT , {iT , jT }

)
= jT . In-

tegrating the probability of these two regions one arrives
at the probability of correctly reconstructing the discrete
mode sequence (15), and the probability of incorrectly
reconstructing the discrete mode sequence (16), when the
system follows the hybrid trajectory

(
x,UT , iT

)
.

The following function is used in (15) and (16) and
compares the dms estimate with the desired dms:
[
îaT (YT , UT ,JT )= jT

]
=

{
1 iff îaT = jT

0 iff îaT 	= jT
, îaT (·) ∈

{
JT ,0

}

(17)
where the estimate is chosen from the candidate discrete
mode sequence set JT ,0.

Despite the integrals of (15) and (16) being defined in the

whole space R
T.nw×R

T.nv , the term Pr
(
WT , VT

∣∣(x,UT , iT )
)

will account for existing bounds on the disturbances and
feasibility of the hybrid trajectory

(
x,UT , iT

)
with WT .

These introductory concepts lead to the definition of
the probability of correct mode estimation for a given
algorithm:

Definition 7. Probability of Correct Mode Estimation:

For a given PWA system (1), the DMSE a, îaT (·), according
to definition 5, has Probability of Correct Mode Estima-

tion pcme at τ in H ⊂ R
nx+T.nu ×N

+T
if the measurement

sequence YT and input sequence UT with lengths T allow
the correct estimation of the initial discrete mode sequence

iτ , îaτ (YT , UT , Iτ ) = iτ , of any feasible hybrid trajectory(
xi,UT , [iτ , i[τ+1,T ]]

)
∈H, with no a priori knowledge of the

initial state xi and, with probability no smaller than pcme.
Equivalently, for any feasible hybrid trajectory(
xi, UT , [iτ , i[τ+1,T ]]

)
∈ H, it holds:

Pa
iτ ,Iτ

((
x,UT , [iτ , i[τ+1,T ]]

))
≥ pcme (18)
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As the dms of each hybrid trajectory can only be correctly
estimated with a given probability in the interval [0; 1],
the following sets will group the hybrid trajectories whose
probabilities of correct mode estimation are at least p.

Definition 8. Separating in Probability Trajectory Set:

Consider a specific DMSE a, îaT (·), according to definition
5. Given two discrete mode sequences iT and jT of the same
length T , the separating in probability trajectory set of iT
from jT is defined as:

HS,a
iT ,jT

(p)�

{(
x,UT , iT

)
∈HiT⊂ R

(nx+T.nu)× N
+T

:

Pa
iT ,{iT ,jT }

(
(x,UT , iT )

)
≥ p

} (19)

and the non-separating trajectory set of iT from jT is then
defined as:

H̄S,a
iT ,jT

(p) � HiT

⋂
HS,a

iT ,jT
(p) (20)

Figures 6 and 7 show the probability of correct mode
estimation of each hybrid trajectory of system (1). Figure
6 shows the probability of correctly estimating the whole
discrete mode sequence, while figure 7 shows the probabil-
ity of correctly estimating the initial discrete mode, with
one time instant delay. The probabilities of correct mode
sequence estimation ranging from 0 to 1 are represented
with colors ranging from Red (prob. 0) to Blue (prob.1),
respectively.

Remark II: As the integrals of equations (15) and (16) can
not be computed exactly in the general case, conservative
approximate numerical integration methods must be used
when computing probabilities of correct mode estimation.
Notice that conservative approximation for these probabil-
ities must respect the following relations:

P̃a
iT ,{iT ,jT }

(
(x,UT , iT )

)
≤ Pa

iT ,{iT ,jT }

(
(x,UT , iT )

)
(21)

P̃a
jT ,{iT ,jT }

(
(x,UT , iT )

)
≥ Pa

jT ,{iT ,jT }

(
(x,UT , iT )

)
(22)

The separating in probability trajectory sets can be easily
derived from the maps of figures 6 and 7.

Comparing figures 6 and 7 it can easily be seen that the
probability of correct mode estimation at τ increases for
decreasing values of τ . The following proposition states
this monotonic relation:

Proposition 1. Monotonicity of the Probability of Correct
Mode Estimation with the estimation delay:

For a given PWA system (1) and DMSE a, îaT (·), according
to definition 5, the probability of correct mode estimation

pcme at τ in H ⊂ R
(nx+T.nu) × N

+T
is monotonically non

increasing with τ :
pcme(τ + 1) ≥ pcme(τ) (23)

Proof: The proof arises directly from the following
relations:

Pa
iτ ,Iτ

((
x,UT , [iτ , i[τ+1,T ]]

))
�

�
∑

j∈I

Pa
[iτ ,j],Iτ+1

((
x,UT ,

[
[iτ , j], i[τ+2,T ]

]))
≥

≥ Pa
[iτ ,l],Iτ+1

((
x,UT ,

[
[iτ , l], i[τ+2,T ]

]))
,∀ l∈I

(24)

�

Proposition 1 states that the probability of correctly
estimating the initial discrete mode sequence iτ of a hybrid
trajectory

(
x,UT , [iτ , i[τ+1,T ]]

)
is given by the probability

of correctly estimating the discrete mode sequence iτ+1

plus the probability of incorrectly estimating the discrete
mode sequences of length τ+1 that start with iτ . So, it must
increase or remain constant with the considered delay.

The following proposition states the conditions that deter-
mine the probability of correct mode estimation of a given
algorithm in a given region of the hybrid trajectories space.

Proposition 2. Probability of Correct Mode Estimation of
a DMSE:
For a given PWA system (1), the DMSE a, îaT (·), according
to definition 5, has probability of correct mode estimation

pcme at τ in H ⊂ R
(nx+T.nu) × N

+T
if it holds:

H

⋂
H̄S,a

iτ ,Iτ
(pcme) = ∅ , ∀ iT ∈ ITH (25)

Proof: If the DMSE a has probability of correct mode
estimation pcme at τ in H then it holds:

Pa
iτ ,Iτ

((
x,UT , iT

))
≥pcme , ∀

(
x,UT , iT

)
∈H

⋂
HiT (26)

The proof continues by contradiction.
Consider that there exists a hybrid trajectory

(
xi, UT , iT

)
∈

H
⋂

HiT with iT = [iτ , i[τ+1,T ]] such that:

Pa
iτ ,Iτ

(
(x,UT , iT )

)
< pcme (27)

Then, according to definition 8,
(
xi, UT , iT

)
/∈ HS,a

iτ ,Iτ
(pcme)

implying that
(
xi, UT , iT

)
∈ H̄S,a

iτ ,Iτ
(pcme).

(
xi, UT , iT

)
∈ H and

(
xi, UT , iT

)
∈ H̄S,a

iτ ,Iτ
(pcme), which is

in contradiction with (25). �

Finally, a notion of observability of the dms will be given.
As the observability properties of a given system can not
depend on the actual estimating procedures, the following
discrete mode observability definition is based on the
characteristics of the best DMSE that can be designed.

Definition 9. Discrete Mode Observability in Probability:
A PWA system (1) is mode observable with probability p

at τ in H ⊂ R
nx+T.nu × N

+T
if there exists a DMSE a,

îaτ (·), according to definition 5, with probability of correct
mode estimation p at τ in H. The higher such probability
p is the probability of mode observability pMO.

The probability of mode observability pMO is then the
highest probability of correct mode estimation that can
be achieved by any DMSE defined in accordance with
definition 5.

3.2 Uncertainty in the Continuous State

As was stated in the Introduction, the continuous state
is estimated assuming that the discrete mode sequence
has already been estimated. The associated uncertainty
can then be determined using the techniques available for
linear time-varying systems, being represented by a prob-
ability density function (or a conservative approximation)
Simon and Chia [2002], or by a set in the state space as
in Lin et al. [2003]. These uncertainties, one for each dms,
must then be gathered with the probabilities of equations
(15) and (16). The process of gathering the uncertainties
from the continuous state and dms estimates depends on
the specific application and falls out of the scope of this
paper.
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Fig. 6. Maps of probability of correct mode estimation at τ = 2 for the example system (7) using the DMSE îeT .(
Red - probability of correct mode estimation 0, Blue - probability of correct mode estimation 1.
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Fig. 7. Maps of probability of correct mode estimation at τ = 1 for the example system (7) using the DMSE îeT .(
Red - probability of correct mode estimation 0, Blue - probability of correct mode estimation 1.

)

4. CONCLUSIONS

The present paper provided a thorough insight on the
uncertainty associated with the estimation of the discrete
mode of a hybrid system. It was shown that the discrete
mode can not, in general, be uniquely reconstructed from
the knowledge of the applied inputs and measured outputs.

The accuracy of the estimates was shown to depend
both on the estimation algorithm and on the trajectory
followed by the system and, increases with the delay of
the estimates.

The uncertainty in the estimated discrete mode can be
represented in the form of maps of probability of correct
mode estimation, which can only be determined, for the
general case, in a conservative approximate way using
approximate numerical integration methods.

A new definition of observability for the discrete mode of
a hybrid system was proposed. This definition determines
the best accuracy obtainable by any DMSE.

Future research should focus on algebraic or efficient
numerical methods to determine the maps of probability
of correct mode estimation and to include recursiveness in
the DMSE algorithms.

REFERENCES

A. Alessandri and P. Coletta. Switching observers for
continuous-time and discrete-time linear systems. In
Proc. American Control Conference, pages 2516–2521,
Arlington, Virginia, June 2001.

M. Athans and C.B. Chang. Hypothesis testing and
state estimation for discrete systems with finite-valued
switching parameters. Technical Report ESL-P-758,
M.I.T. - Electronic Systems Laboratory, Cambridge,
Massachusetts, June 1977.

A. Balluchi, L. Benvenuti, M.D. Di Benedetto, and A.L.
Sangiovanni-Vincentelli. Design of observers for hybrid
systems. In Hybrid Systems: Computation and Control,
volume 2289 of Lecture Notes in Computer Science,
pages 76–89. Springer Verlag, 2002.

A. Bemporad and M. Morari. Control of systems integrat-
ing logic, dynamics, and constraints. Automatica, 35(3):
407–427, March 1999.
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