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Abstract: The kinematics problems of redundant robots have been investigated for many years. A plenty 

of different robot redundancy usages were successfully implemented. In practice, e.g. redundant robot 

manipulability improvement, and robot obstacle avoidance are commonly used. Conventional methods use 

the manipulability gradient computation to improve the end-effector manipulability. However, the 

computational effort of this approach brings about many difficulties in real-time control when used with 

plenty of constraints. Recently, neural networks have found wide application in robotics, because of their 

feature to learn any complicated system model. This paper deals with new numerically efficient procedures 

and an application of HCMAC (Hierarchical Cerebellar Model Arithmetic Controller) neural network for 

manipulability gradient computation and consecutive robot control improvement. The conventional 

CMAC can be viewed as a basis function network (BFN) with supervised learning well-performing in the 

terms of its fast learning speed and local generalization capability for approximating nonlinear functions. 

Nevertheless, due to the redundant robot high-dimensional function approximation the conventional 

CMAC is enormously memory-demanding. HCMAC indeed has low memory requirements and very good 

learning ability. Furthermore, it shows a better performance compared with the conventional approach and 

conventional CMAC. 

 

1.  INTRODUCTION 

Robotic manipulators are nowadays important devices in 

many different industries. The control of manipulator 

involves trajectory planning, inverse kinematics and inverse 

dynamics. This paper deals with the kinematics control of 

redundant manipulator. Kinematical redundant robots are of 

special interest due to their redundancy that can be used for 

additional tasks as avoiding obstacles, singularities etc.  

The inverse kinematics of redundant robots can be solved in 

many ways. (Crane and Duffy, 1998) One of the main widely 

used algorithms is the Jacobian Pseudoinverse algorithm. 

This algorithm allows the manipulator to satisfy the 

additional constraints through mapping the corresponding 

velocities to the null space motions, while the end-effector 

tracks the desired trajectory. One of the additional constraints 

can be the manipulability. This manipulability measure and 

its improvement using HCMAC neural network is the focus 

of this paper.  

CMAC neural-network was first proposed by J. Albus in 

1975 (Albus, 1975). With its fast learning, good 

generalization capability and easy hardware implementation, 

CMAC has been applied in many real-world applications, e.g. 

robot control (Hu et al,1999), signal processing (Glany and 

Duffy, 1998), pattern recognition (Miller and Glanz, 1990) 

etc. Previous CMAC studies have focused mainly on how to 

develop CMAC learning algorithms (Cotter and Guillerm, 

1991), improve the CMAC topology structure (Lane et al, 

1992) and select learning parameters (Lin and Li, 2000). The 

convergence property has also received considerable 

attention, when it was proved that CMAC’s learning always 

converges with arbitrary accuracy on any training data set. 

Further it was proved that CMAC learning results in a least 

square error if the number of iterations approaches infinity 

and the learning rate approaches zero. When the system 

requires derivatives of input and output variables, new 

nonconstant differentiable Gaussian basis function was 

applied to CMAC. Beside that (Lane et al., 1992) developed 

a higher order CMAC neural network by using B-Spline 

receptive field function in conjunction with a general CMAC 

weight addressing scheme.  

Nevertheless, the Albus’s CMAC model has two major 

limitations: enormous memory requirements when dealing 

with high-dimensional problems, and difficulties in selecting 

the memory structure parameters (Lin and Kim, 1995). The 

fast memory size requirements limit the CMAC application 

fields for real-world implementations. Problem of memory 

requirements can be solved with hash-coding. It reduces the 

required memory in the CMAC technique and works well for 

some problems. This method associates several hypercubes to 

the same weight, when the complete input space is not 
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involved in learning. In such a case, although the memory 

requirements can be reduced, the convergence may be 

frustrated, i.e. it can lead to divergence. This may affect the 

speed of convergence and degenerate the behavior of 

convergence.  

To reduce enormous memory requirements (Lin and Li, 

2000) presented a unique learning structure composed of 

small two-dimensional CMACs to solve high-dimensional 

problems. However, their proposed structure has its 

limitations. To get a good learning capability for nonlinear 

functions, many parameters are to be obtained heuristically. 

This results to high dependence on parameter specification, 

and if the architecture is not properly considered the network 

does not work well.  

In this paper, the HCMAC (Hierarchical CMAC) neural 

network for modeling the manipulability of redundant robot 

is proposed. This type of neural network can effectively 

overcome the problem of enormous memory requirement in 

the original CMAC model, because the new structure can 

partition high-dimensional problems into several manageable 

two-dimensional subproblems. The gradient-descent learning 

rule to train the proposed HCMAC model is presented as 

well. 

The experiments with manipulability measure modeling 

using CMAC neural network showed that this neural network 

can faster compute the manipulability gradient. It means that 

the computation time for one robot configuration is much 

smaller than the conventional method based on nonlinear 

optimization. Thus, the CMAC neural network can substitute 

the original computation even sparing some computation 

time. The only disadvantage of CMAC neural network model 

is the need for hash-coding for the redundant robot high-

dimensional function. Also the memory requirement to cover 

the whole input space would be too high for such a high-

dimensional function. To solve these problems the new 

HCMAC neural network was chosen.  

This paper is organized in 5 sections. Section 2 describes the 

inverse kinematics and manipulability measure. In Section 3 

the structure of CMAC and HCMAC neural networks are 

shown. Section 4 presents verification results of modelling 

manipulability gradient on a 7 DOF redundant manipulator 

model using these neural networks. The last Section 5 

summarizes the achieved results. 

2. REDUNDANT ROBOT KINEMATICS 

2.1  Pseudoinverse kinematics 

For a kinematic redundant manipulator, the end-effector 

velocity is a function of the joint velocities which is 

expressed as follows  

)())(()( tqtqJtx && = ,  (1) 

where )(tx&  is the 1×m  end-effector velocity, )(tq&  is the 

1×n  joint velocity vector, and ))(( tqJ  is the nm ×  Jacobian 

matrix. The main goal is to obtain the inverse kinematics 

equation: 

)())(()( 1
txtqJtq &&

−=
 (2) 

Since the manipulator is redundant )( mn > , the Jacobian 

matrix is not square. Equation (2) is solved by pseudoinverse 

of the Jacobian matrix that locally minimizes the norm of 

joint velocities. Equation (2) is then transformed into 

)())(()( txtqJtq &&
+=  (3) 

with the pseudoinverse Jacobian matrix 

1)( −+ = TT
JJJJ . (4) 

Furthermore, 

)()()())(()( tqJJItxtqJtq a
&&&

++ −+=  (5) 

where aq&  is a vector of arbitrary joint velocities projected in 

the null-space of J . The vector aq&  specifies the additional 

redundancy constraints. For the Jacobian pseudoinverse 

computation the Moore-Penrose pseudoinverse method has 

been used. 

2.2  Redundant robot manipulability 

As mentioned before, robot joint variables are denoted by n-

dimensional vector q . It is then considered that the set of all 

end-effector velocities that are realizable by joint velocities is 

such that the Euclidean norm of q&  

2/122

2

2

1 )...( nqqqq &&&& +++= , (6) 

satisfies 1≤q& . This set is an ellipsoid in the m-dimensional 

Euclidean space (m is the dimension of end-effector position 

and orientation vector). In the direction of the ellipsoid major 

axis the end-effector can move at a high speed. On the other 

hand, in the direction of the minor axis it can move only at a 

low speed. If the ellipsoid is almost a sphere, the end-effector 

can move uniformly in all directions y. This ellipsoid is 

called the manipulability ellipsoid. 

The ellipsoid volume is one of the representative measures 

for the manipulation ability derived from the manipulability 

ellipsoid. It is given by wcm  ( mc is a constant) 

mw σσσ ...21=  (7) 

where the scalars mσσσ ,,, 21 K  are singular values of J  and 

the variable w  is called the manipulability measure for the 

manipulator configuration q . The manipulability measure w  

has the following properties (Sciavicco and Siciliano, 1996)  

))()(det( qJqJw T=  (8) 

If nm = , i.e. when non-redundant manipulators are 

considered, the measure w reduces to: 

))(det( qJw =  (9) 

Usually 0≥w  is satisfied; in such a case 0=w  if and only 

if mqJrank ≤))(( , i.e. when the manipulator is in a singular 

configuration. From this fact the manipulability measure can 
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be regarded as a kind of distance of the manipulator 

configuration from the singular one. 

The increase in manipulability measure during the robot 

movement cannot influence the end-effector movement. The 

vector aq&  is used, because it is projected with )( JJI
+−  into 

the null space and doesn’t affect the end-effector motion. If 

the null space motion of the robot is to be increased the 

manipulability measure the vector aq&  has to satisfy 

)(qHqa ∇=&  (10) 

where )(qH  is the objective function in the optimization 

process and )(qH∇  is the gradient of the manipulability 

measure w  (Nakamura, 1991). 

3. CMAC AND HCMAC NEURAL NETWORK 

To derive the HCMAC neural network, we first briefly 

introduce the CMAC neural network based on different basis 

functions. 

3.1  CMAC neural network 

The CMAC, a look-up table neurocomputing technique, has 

fast learning ability and good local generalization capability 

for approximating nonlinear functions, and can be viewed as 

a basis function network (BFN). Several types of basis 

functions are used in CMAC neural networks. The basic type 

is the constant basis function that is usually implemented in 

association memory selection.  

Before applying the basis function, the input data of each 

state variable must be quantized into discrete regions. Herein, 

the number of discrete regions is termed a resolution. Each 

input data can be mapped to several actual memory units via 

an association memory selection vector.  

These mapped actual memory units are called hypercubes, 

i.e. each input data is distributively mapped on each 

hypercube. 

For an input state, the actual output is obtained as the sum of 

stored contents for hypercubes covering the state, i.e. the 

actual output of a specific input state s can be mathematically 

expressed as follows: 

∑
=

==
hN

j

jj

T
wsawsasy

1

)()()(  (11) 

where w=[w1, w2,….,wNh]
T
 is the vector of actual memory 

contents, Nh is the entire memory size, a
T
=[a1(s), a2(s),…, 

aNh(s)]  is the memory selection vector.  

To adjust the weight values during each learning cycle, the 

conventional CMAC uses a supervised learning approach. Its 

learning rule can be described as follows: 

 

))()(ˆ)(( 11 −− −+= t

T

e

tt wsasysa
N

ww
α

 (12) 

where wt is the vector of actual memory contents at time t,  

wt-1 is the vector of actual memory contents at previous time 

t-1, α  is the learning rate, )(ˆ sy  is the desired output value, 

and 1)()(ˆ
−− t

T wsasy  is the error for the input training state s.  

The conventional CMAC uses a constant basis function. The 

non-differentiability leads to some limitations when using 

conventional CMAC in real-world applications. Therefore, 

the constant basis function is replaced by various 

differentiable functions e.g. the Gaussian basis function. The 

mathematical formulation of one-dimensional Gaussian basis 

function φ  can be described as follows : 

2
)/)(()( σφ mses −−=  (13) 

where m is a hypercube centre, σ  is a hypercube radius, and 

s is a specific input state. The output of CMAC neural 

network with Gaussian basis function with Nv dimensional 

problem is revised to become: 

∑ ∏
= =
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where aj(s) is the j
th

 element of association memory selection 

vector for a specific input space s, wj is the j
th

 memory 

allocation of the actual memory, si is the input value of i
th

 

dimension for a specific input state s, mji is the corresponding 

hypercube centre, and jiσ  is the corresponding hypercube 

radius. The CMAC with a Gaussian basis function as the 

nonconstant differentiable basis function is termed GCMAC. 

3.2  HCMAC neural network 

The HCMAC neural network consists at least of three 

differentiable GCMACs. 

 

Fig. 1 Topology of the HCMAC neural network structure 

Fig. 1 illustrates the smallest topology of the HCMAC neural 

network indicating that each GCMAC includes two input 

values, and the output values of the first-layer GCMACs 

serve as input values for the second-layer GCMACs.  

The structure of HCMC in Fig. 1 comprises four inputs si 

where si(i=1,2,….,4)  represents the i
th

 input value, yj(j=1,2) 
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is the j
th

 output of the hidden layer, and y(s) is the output of 

the whole HCMAC neural network for a specific input state 

s. Using the HCMAC neural network is a problem of four 

input values divided into two two-dimensional GCMACs. 

The gradient steepest-descent method has been chosen as the 

learning method for the HCMAC neural network training. 

First the error cost function E is defined as follows 

2
))()(ˆ(

2

1
sysyE −=  (15) 

where )(ˆ sy  and y(s) are the desired and actual HCMAC 

neural network output values for the input state s, 

respectively. In the GCMAC neural network equation there 

are three parameters to be tuned during the learning process: 

the weight w, the radius σ  and the center m. First the 

GCMAC output layer is trained, where the updates for the 

GCMAC parameters are as follows: 

∏
=

−−
−=

∂

∂
−=∆

2

1

)/)(( 2
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i
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N

w
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N
w
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where jw∆  is the updated weight value of the j
th

 actual 

memory in the GCMACA, wj is the weight value of the j
th 

 

actual memory, α  is a learning rate and Ne is the number of 

mapped hypercubes for the input state s. 

3
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where jiσ∆  is the updated radius of the i
th

  dimension for the 

j
th

 mapped hypercube for the input state s in the GCMACA, 

jiσ  is radius of the i
th

  dimension for the j
th

 mapped 

hypercube of  the input state s.  

2
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where jim∆  is the updated centre value of the i
th

  dimension 

for the j
th

 mapped hypercube of the input state s in the 

GCMACA, jim  is the radius of the i
th

  dimension for j
th

 

mapped hypercube of the input state s. The parameters in 

GCMACB and GCMACC are updated according to the 

conventional backpropagation rule, where the derivatives 

1/ yy ∂∂  and 2/ yy ∂∂  represent the error backpropagated to 

GCMACB and GCMACC.. 

4.  EXPERIMENTS 

In this paper the objective of the neural network is to 

approximate the manipulability gradient computation 

function. In order to test the control system with the neural 

network, the kinematics of a 7-DOF redundant robotic system 

model was considered. 

The neural network was tested on a position control system in 

Fig. 2. The control system input is the desired position and 

the output is the robot end-effector position.  

 

Fig. 2 Position control scheme with null-space motion and 

CMAC training 

From Fig. 2 it is evident that the pseudoinverse kinematics 

(5) was used to compute the desired robot joint velocities. 

Apart this, the null-space motion has been added, whereby 

the manipulability measure is maximized. It learns the 

gradient values of the manipulability measure. The neural 

network needs 7 input values (robot joint positions) and 7 

output values. The conventional CMAC neural network 

allows to use any number of inputs and outputs. Otherwise, 

HCMAC neural network needs to implement appropriate 

GCMACs according to the number of inputs. This is done 

using a full binary tree approach, or it can be optimized 

according to the input requirements. In this paper the 

structure of the full binary tree was optimized to get a 

minimal GCMACs structure.  

 

Fig. 3 Optimized HCMAC neural network structure for 7 

inputs and 7 outputs. 

To implement 7 outputs to the HCMAC structure the output 

GCMACA was extended with 6 additional memories to store 

the other 6 output values. Fig. 3 shows the optimized 

HCMAC neural network structure with 7 inputs and 7 

outputs. 

Fig.3 shows that for a 7 inputs system at least 6 GCMACs are 

needed.  
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The testing simulation was the robot task to move from one 

point in space to another one; during the motion the 

manipulability of the robot configurations was increased. 

During simulation, the exact robot motion started at the 

position (0.1455, 0.6588, 1.3896) and stopped at the position 

(0.25, 0.15, 0.5). The whole simulation movement took 5 

seconds.  

4.1 Simulation results 

The first neural network tested for manipulability modeling 

was the conventional CMAC neural network with the  

Gaussian basis function. The learning process of this neural 

network was performed online during the robot motion from 

the starting to the end point. After 10 training cycles, CMAC 

replaced the gradient computation and the system was tested 

with this neural network. Fig. 4 shows the comparison of 

manipulability measures obtained with CMAC neural 

network and the original gradient computation. It is evident 

that the CMAC neural network very well approximates the 

gradient computation and manipulability measure.  

 

Fig. 4 Manipulability measure obtained with CMAC and with 

gradient computation after 10 trainings 

To measure the approximation performance the integral 

absolute error (IAE) was used, defined as follows 

dttwtwIAE

T

∫ −=
0

21 )()(  (19) 

where 1w  and 2w  are manipulability measures for the 

CMAC and the original gradient computation. 

In our case the IAE values obtained for the CMAC and the 

gradient computation were 0.0744 and 7.44*10
-5

 per one 

training sample, respectively. Time responses of the CMAC 

and the gradient computation outputs are in Fig. 5 which 

shows that the CMAC very well approximates all elements of 

the manipulability gradient vector. CMAC outputs follow all 

the desired gradient values. Each curve represents one 

gradient vector element. 

 

Fig. 5 Comparison between conventional CMAC and 

analytical gradient computation after 10 training cycles 

The second tested neural network was the HCMAC. The 

same training samples were taken as for the CMAC neural 

network. After the training, HCMAC neural network also 

replaced the original gradient computation and was compared 

with the conventional approach. Fig. 6 shows the results.   

 

Fig. 6 Manipulability measure obtained with HCMAC and 

with gradient computation 

It can be seen that the HCMAC neural network approximates 

the manipulability measure better than the CMAC neural 

network. For this approximation the total IAE computed was 

0.0028, what is 2.8*10
-6

 per one training sample. The exact 

approximation of the manipulability gradient vector is shown 

in Fig. 7; it can be seen that all gradient vector elements were 

approximated better than in case of the CMAC neural 

network and the HCMAC neural network output function is 

much smoother than the CMAC neural network. The reason 

for this result is a better distribution of input elements among 

6 GCMACs. Beside the approximation improvement, also the 

speed of computation for the HCMAC, CMAC and the 

Gradient method were tested. 
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Fig. 7 Gradient values obtained using HCMAC and 

conventional gradient computation 

For this experiment, the gradient was computed for 100 and 

1000 randomly chosen robot configurations. The task 

function for measuring speed was the manipulability measure 

function. In Table 1 the results of this testing are presented. 

Table 1.  HCMAC, CMAC and conventional gradient 
method computation speeds 

Number of 

configurations

Gradient in 

[s] 

CMAC in [s] HCMAC in 

[s] 

100 0.1250 0.0310 0.09852 

1000 1.0935 0.2580 0.86217 

 

The results prove that CMAC and HCMAC neural networks 

compute the gradient faster than the original gradient method. 

This is the advantage of using HCMAC or CMAC neural 

networks.  

The CMAC or the HCMAC neural networks can be used as 

an alternative to the commonly used computation method and 

can compute the outputs even faster than the original one. 

This is an advantage in the redundant robot kinematics 

control, where any saved computation time allows more time 

to be used for additional tasks. Compared with CMAC, the 

HCMAC neural network has better approximation abilities. 

The purpose of using it is the spare of memory without loss 

of precision. This was fully achieved using HCMAC instead 

of CMAC neural network.  

To reduce the memory requirements, CMAC neural network 

with 7 inputs needs hashing algorithm because it is 

impossible to implement a memory able to cover the whole 

hyperspace R
7
; however the hashing algorithm brings more 

difficulties as hash collisions. The HCMAC neural network 

covers the whole input space, but the computation is more 

complex than in CMAC neural network. 

5.  CONCLUSION 

In this paper a new HCMAC neural network for 

manipulability gradient modelling was proposed and possible 

replacements of the original gradient computation method 

were tested. Simulation results obtained with the inverse 

kinematics control scheme for a 7 DOF redundant robot show 

that the HCMAC can learn this gradient values replace the 

original computation method with very good results. This 

neural network was also compared with the conventional 

CMAC neural network with Gaussian basis function. Testing 

results proved that the HCMAC can better approximate 

gradient computation, but the computation time for one 

output value is higher than in case of CMAC. Both neural 

networks showed than they are able compute the gradient 

faster than the original method. Moreover, in cases when the 

redundant robot control system is applied the designer always 

needs some computation time savings and this might be the 

way to succeed.  

REFERENCES 

Albus J. S. (1975), A new approach to manipulator control: 

The Cerebellar model articulation controller (CMAC) 

Trans. ASME J. Dynam. Syst., Meas. Contr., vol. 97, no. 

8, pp 220-227, 1975. 

Cotter N.E. and Guillerm T. J.(1991), The CMAC and a 

theorem of Komogorov,. Neural Networks, vol. 5, pp. 

221-228 

Crane D., Duffy J. (1998), Kinematic Analysis of Robot 

Manipulators, Cambridge University Press. 

Glanz F. H., Miller W.T., and Kraft L.G. (1991), An 

overview of the CMAC neural network, in Proc. 1991 

IEEE Neural Networks Ocean Eng.,  pp. 301-308 

Hu J. and Pratt F. 1 (1999), Self-organizing CMAC neural 

networs and adaptive dynamic control, in Proc. 1999 

IEEE Intel. Contr/Intell. Syst. Semiotics, 1999, pp. 259-

265. 

Hu J., Pratt J., Pratt G. (1999), Stable adaptive control of 

bipedal walking; Robot with CMAC neural networks, in 

Proc. 1999 IEEE Int. Conf. Robot. Automat., vol. 2 

Miller W. T. and Glanz F.H.(1990) , CMAC: And associative 

neural network alternative to backpropagation, in Proc. 

IEEE, vol. 78, pp. 1561-1567 

Lane S.H., Handelman D. A., and Gelfand J. J. (1992), 

Theory and development of higher-order CMAC neural 

networks, IEEE Contr. Syst. Mag., vol. 12,pp. 23-30. 

Li Y., Leong S.H., (2000) Kinematics Control of Redundant 

Manipulators Using CMAC Neural Network, The 5
th

 

World Multiconference on Systemics, Cybernetics and 

Informatics (SCI2001). pages 274-279., Orlando, USA.  

Lin C.S. and Li C.K. (2000), A sum-of-product neural 

network (SOPNN), Neurocomput., vol. 30, pp. 273-291. 

Lin C.S. and Li C.K. (1999), A memory based self generated 

basis function neural network, Int. J. Neural Syst., vol. 9, 

no. 1,pp. 41-59.  

Lin C.S. and Kim H., (1995) Selection of learning parameters 

for CMAC-based adaptive critic learning, IEEE Trans. 

Neural Networks, vol. 6, pp. 642-647. 

Nakamura Y., (1991) Advanced Robotics: Redundancy and 

Optimization, Addison-Wesley Publishing Company, 

Inc., Reading, Massachusetts.  

Sciavicco L., Siciliano B. (1996), Modeling And Control of 

Robot Manipulators, The McGraw-Hill Companies, Inc. 

Zhang K. and Qian F.(2000), Fuzzy CMAC and its 

application, in Proc. 3th World Congr. Intell. Contr. 

Automat., Hefei, China, pp. 944-947. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5455


