

Redundant Robot Kinematics Control
with HCMAC Neural Network Manipulability Enhancement

V. Řikovský*. Š. Kozák**

*Institute of Control and Industrial Informatics, Slovak University of Technology, Ilkovičova 3,

 812 19 Bratislava, Slovakia (e-mail:vrikovsky@googlemail.com).

**Institute of Applied Informatics, Faculty of Informatics and Information Technology, Slovak University of Technology

Ilkovičova 3, 812 19 Bratislava, Slovakia (e-mail: stefan.kozak@stuba.sk).

Abstract: The kinematics problems of redundant robots have been investigated for many years. A plenty

of different robot redundancy usages were successfully implemented. In practice, e.g. redundant robot

manipulability improvement, and robot obstacle avoidance are commonly used. Conventional methods use

the manipulability gradient computation to improve the end-effector manipulability. However, the

computational effort of this approach brings about many difficulties in real-time control when used with

plenty of constraints. Recently, neural networks have found wide application in robotics, because of their

feature to learn any complicated system model. This paper deals with new numerically efficient procedures

and an application of HCMAC (Hierarchical Cerebellar Model Arithmetic Controller) neural network for

manipulability gradient computation and consecutive robot control improvement. The conventional

CMAC can be viewed as a basis function network (BFN) with supervised learning well-performing in the

terms of its fast learning speed and local generalization capability for approximating nonlinear functions.

Nevertheless, due to the redundant robot high-dimensional function approximation the conventional

CMAC is enormously memory-demanding. HCMAC indeed has low memory requirements and very good

learning ability. Furthermore, it shows a better performance compared with the conventional approach and

conventional CMAC.

1. INTRODUCTION

Robotic manipulators are nowadays important devices in

many different industries. The control of manipulator

involves trajectory planning, inverse kinematics and inverse

dynamics. This paper deals with the kinematics control of

redundant manipulator. Kinematical redundant robots are of

special interest due to their redundancy that can be used for

additional tasks as avoiding obstacles, singularities etc.

The inverse kinematics of redundant robots can be solved in

many ways. (Crane and Duffy, 1998) One of the main widely

used algorithms is the Jacobian Pseudoinverse algorithm.

This algorithm allows the manipulator to satisfy the

additional constraints through mapping the corresponding

velocities to the null space motions, while the end-effector

tracks the desired trajectory. One of the additional constraints

can be the manipulability. This manipulability measure and

its improvement using HCMAC neural network is the focus

of this paper.

CMAC neural-network was first proposed by J. Albus in

1975 (Albus, 1975). With its fast learning, good

generalization capability and easy hardware implementation,

CMAC has been applied in many real-world applications, e.g.

robot control (Hu et al,1999), signal processing (Glany and

Duffy, 1998), pattern recognition (Miller and Glanz, 1990)

etc. Previous CMAC studies have focused mainly on how to

develop CMAC learning algorithms (Cotter and Guillerm,

1991), improve the CMAC topology structure (Lane et al,

1992) and select learning parameters (Lin and Li, 2000). The

convergence property has also received considerable

attention, when it was proved that CMAC’s learning always

converges with arbitrary accuracy on any training data set.

Further it was proved that CMAC learning results in a least

square error if the number of iterations approaches infinity

and the learning rate approaches zero. When the system

requires derivatives of input and output variables, new

nonconstant differentiable Gaussian basis function was

applied to CMAC. Beside that (Lane et al., 1992) developed

a higher order CMAC neural network by using B-Spline

receptive field function in conjunction with a general CMAC

weight addressing scheme.

Nevertheless, the Albus’s CMAC model has two major

limitations: enormous memory requirements when dealing

with high-dimensional problems, and difficulties in selecting

the memory structure parameters (Lin and Kim, 1995). The

fast memory size requirements limit the CMAC application

fields for real-world implementations. Problem of memory

requirements can be solved with hash-coding. It reduces the

required memory in the CMAC technique and works well for

some problems. This method associates several hypercubes to

the same weight, when the complete input space is not

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 5450 10.3182/20080706-5-KR-1001.2320

involved in learning. In such a case, although the memory

requirements can be reduced, the convergence may be

frustrated, i.e. it can lead to divergence. This may affect the

speed of convergence and degenerate the behavior of

convergence.

To reduce enormous memory requirements (Lin and Li,

2000) presented a unique learning structure composed of

small two-dimensional CMACs to solve high-dimensional

problems. However, their proposed structure has its

limitations. To get a good learning capability for nonlinear

functions, many parameters are to be obtained heuristically.

This results to high dependence on parameter specification,

and if the architecture is not properly considered the network

does not work well.

In this paper, the HCMAC (Hierarchical CMAC) neural

network for modeling the manipulability of redundant robot

is proposed. This type of neural network can effectively

overcome the problem of enormous memory requirement in

the original CMAC model, because the new structure can

partition high-dimensional problems into several manageable

two-dimensional subproblems. The gradient-descent learning

rule to train the proposed HCMAC model is presented as

well.

The experiments with manipulability measure modeling

using CMAC neural network showed that this neural network

can faster compute the manipulability gradient. It means that

the computation time for one robot configuration is much

smaller than the conventional method based on nonlinear

optimization. Thus, the CMAC neural network can substitute

the original computation even sparing some computation

time. The only disadvantage of CMAC neural network model

is the need for hash-coding for the redundant robot high-

dimensional function. Also the memory requirement to cover

the whole input space would be too high for such a high-

dimensional function. To solve these problems the new

HCMAC neural network was chosen.

This paper is organized in 5 sections. Section 2 describes the

inverse kinematics and manipulability measure. In Section 3

the structure of CMAC and HCMAC neural networks are

shown. Section 4 presents verification results of modelling

manipulability gradient on a 7 DOF redundant manipulator

model using these neural networks. The last Section 5

summarizes the achieved results.

2. REDUNDANT ROBOT KINEMATICS

2.1 Pseudoinverse kinematics

For a kinematic redundant manipulator, the end-effector

velocity is a function of the joint velocities which is

expressed as follows

)())(()(tqtqJtx && = , (1)

where)(tx& is the 1×m end-effector velocity,)(tq& is the

1×n joint velocity vector, and))((tqJ is the nm × Jacobian

matrix. The main goal is to obtain the inverse kinematics

equation:

)())(()(1
txtqJtq &&

−=
 (2)

Since the manipulator is redundant)(mn > , the Jacobian

matrix is not square. Equation (2) is solved by pseudoinverse

of the Jacobian matrix that locally minimizes the norm of

joint velocities. Equation (2) is then transformed into

)())(()(txtqJtq &&
+= (3)

with the pseudoinverse Jacobian matrix

1)(−+ = TT
JJJJ . (4)

Furthermore,

)()()())(()(tqJJItxtqJtq a
&&&

++ −+= (5)

where aq& is a vector of arbitrary joint velocities projected in

the null-space of J . The vector aq& specifies the additional

redundancy constraints. For the Jacobian pseudoinverse

computation the Moore-Penrose pseudoinverse method has

been used.

2.2 Redundant robot manipulability

As mentioned before, robot joint variables are denoted by n-

dimensional vector q . It is then considered that the set of all

end-effector velocities that are realizable by joint velocities is

such that the Euclidean norm of q&

2/122

2

2

1)...(nqqqq &&&& +++= , (6)

satisfies 1≤q& . This set is an ellipsoid in the m-dimensional

Euclidean space (m is the dimension of end-effector position

and orientation vector). In the direction of the ellipsoid major

axis the end-effector can move at a high speed. On the other

hand, in the direction of the minor axis it can move only at a

low speed. If the ellipsoid is almost a sphere, the end-effector

can move uniformly in all directions y. This ellipsoid is

called the manipulability ellipsoid.

The ellipsoid volume is one of the representative measures

for the manipulation ability derived from the manipulability

ellipsoid. It is given by wcm (mc is a constant)

mw σσσ ...21= (7)

where the scalars mσσσ ,,, 21 K are singular values of J and

the variable w is called the manipulability measure for the

manipulator configuration q . The manipulability measure w

has the following properties (Sciavicco and Siciliano, 1996)

))()(det(qJqJw T= (8)

If nm = , i.e. when non-redundant manipulators are

considered, the measure w reduces to:

))(det(qJw = (9)

Usually 0≥w is satisfied; in such a case 0=w if and only

if mqJrank ≤))((, i.e. when the manipulator is in a singular

configuration. From this fact the manipulability measure can

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5451

be regarded as a kind of distance of the manipulator

configuration from the singular one.

The increase in manipulability measure during the robot

movement cannot influence the end-effector movement. The

vector aq& is used, because it is projected with)(JJI
+− into

the null space and doesn’t affect the end-effector motion. If

the null space motion of the robot is to be increased the

manipulability measure the vector aq& has to satisfy

)(qHqa ∇=& (10)

where)(qH is the objective function in the optimization

process and)(qH∇ is the gradient of the manipulability

measure w (Nakamura, 1991).

3. CMAC AND HCMAC NEURAL NETWORK

To derive the HCMAC neural network, we first briefly

introduce the CMAC neural network based on different basis

functions.

3.1 CMAC neural network

The CMAC, a look-up table neurocomputing technique, has

fast learning ability and good local generalization capability

for approximating nonlinear functions, and can be viewed as

a basis function network (BFN). Several types of basis

functions are used in CMAC neural networks. The basic type

is the constant basis function that is usually implemented in

association memory selection.

Before applying the basis function, the input data of each

state variable must be quantized into discrete regions. Herein,

the number of discrete regions is termed a resolution. Each

input data can be mapped to several actual memory units via

an association memory selection vector.

These mapped actual memory units are called hypercubes,

i.e. each input data is distributively mapped on each

hypercube.

For an input state, the actual output is obtained as the sum of

stored contents for hypercubes covering the state, i.e. the

actual output of a specific input state s can be mathematically

expressed as follows:

∑
=

==
hN

j

jj

T
wsawsasy

1

)()()((11)

where w=[w1, w2,….,wNh]
T
 is the vector of actual memory

contents, Nh is the entire memory size, a
T
=[a1(s), a2(s),…,

aNh(s)] is the memory selection vector.

To adjust the weight values during each learning cycle, the

conventional CMAC uses a supervised learning approach. Its

learning rule can be described as follows:

))()(ˆ)((11 −− −+= t

T

e

tt wsasysa
N

ww
α

 (12)

where wt is the vector of actual memory contents at time t,

wt-1 is the vector of actual memory contents at previous time

t-1, α is the learning rate,)(ˆ sy is the desired output value,

and 1)()(ˆ
−− t

T wsasy is the error for the input training state s.

The conventional CMAC uses a constant basis function. The

non-differentiability leads to some limitations when using

conventional CMAC in real-world applications. Therefore,

the constant basis function is replaced by various

differentiable functions e.g. the Gaussian basis function. The

mathematical formulation of one-dimensional Gaussian basis

function φ can be described as follows :

2
)/)(()(σφ mses −−= (13)

where m is a hypercube centre, σ is a hypercube radius, and

s is a specific input state. The output of CMAC neural

network with Gaussian basis function with Nv dimensional

problem is revised to become:

∑ ∏
= =

−−




















=

h v

jijii

N

j

N

i

ms

jj ewsasy
1 1

)/)((2

.).()(
σ

 (14)

where aj(s) is the j
th

 element of association memory selection

vector for a specific input space s, wj is the j
th

 memory

allocation of the actual memory, si is the input value of i
th

dimension for a specific input state s, mji is the corresponding

hypercube centre, and jiσ is the corresponding hypercube

radius. The CMAC with a Gaussian basis function as the

nonconstant differentiable basis function is termed GCMAC.

3.2 HCMAC neural network

The HCMAC neural network consists at least of three

differentiable GCMACs.

Fig. 1 Topology of the HCMAC neural network structure

Fig. 1 illustrates the smallest topology of the HCMAC neural

network indicating that each GCMAC includes two input

values, and the output values of the first-layer GCMACs

serve as input values for the second-layer GCMACs.

The structure of HCMC in Fig. 1 comprises four inputs si

where si(i=1,2,….,4) represents the i
th

 input value, yj(j=1,2)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5452

is the j
th

 output of the hidden layer, and y(s) is the output of

the whole HCMAC neural network for a specific input state

s. Using the HCMAC neural network is a problem of four

input values divided into two two-dimensional GCMACs.

The gradient steepest-descent method has been chosen as the

learning method for the HCMAC neural network training.

First the error cost function E is defined as follows

2
))()(ˆ(

2

1
sysyE −= (15)

where)(ˆ sy and y(s) are the desired and actual HCMAC

neural network output values for the input state s,

respectively. In the GCMAC neural network equation there

are three parameters to be tuned during the learning process:

the weight w, the radius σ and the center m. First the

GCMAC output layer is trained, where the updates for the

GCMAC parameters are as follows:

∏
=

−−
−=

∂

∂
−=∆

2

1

)/)((2

).()).()(ˆ(
i

my

j

e

je

j

jijiiesasysy
N

w

E

N
w

σα

α

 (16)

where jw∆ is the updated weight value of the j
th

 actual

memory in the GCMACA, wj is the weight value of the j
th

actual memory, α is a learning rate and Ne is the number of

mapped hypercubes for the input state s.

3

22

1

)/)(()(2
.).()).()(ˆ(

2

ji

jii

i

my

j

e

jie

ji

my
esasysy

N

E

N

jijii

σ

α

σ

α
σ

σ −








−=

∂

∂
−=∆

∏
=

−−

 (17)

where jiσ∆ is the updated radius of the i
th

 dimension for the

j
th

 mapped hypercube for the input state s in the GCMACA,

jiσ is radius of the i
th

 dimension for the j
th

 mapped

hypercube of the input state s.

2

2

1

)/)(()(2
.).()).()(ˆ(

2

ji

jii

i

my

j

e

jie

ji

my
esasysy

N

m

E

N
m

jijii

σ

α

α

σ −








−=

∂

∂
−=∆

∏
=

−−

 (18)

where jim∆ is the updated centre value of the i
th

 dimension

for the j
th

 mapped hypercube of the input state s in the

GCMACA, jim is the radius of the i
th

 dimension for j
th

mapped hypercube of the input state s. The parameters in

GCMACB and GCMACC are updated according to the

conventional backpropagation rule, where the derivatives

1/ yy ∂∂ and 2/ yy ∂∂ represent the error backpropagated to

GCMACB and GCMACC..

4. EXPERIMENTS

In this paper the objective of the neural network is to

approximate the manipulability gradient computation

function. In order to test the control system with the neural

network, the kinematics of a 7-DOF redundant robotic system

model was considered.

The neural network was tested on a position control system in

Fig. 2. The control system input is the desired position and

the output is the robot end-effector position.

Fig. 2 Position control scheme with null-space motion and

CMAC training

From Fig. 2 it is evident that the pseudoinverse kinematics

(5) was used to compute the desired robot joint velocities.

Apart this, the null-space motion has been added, whereby

the manipulability measure is maximized. It learns the

gradient values of the manipulability measure. The neural

network needs 7 input values (robot joint positions) and 7

output values. The conventional CMAC neural network

allows to use any number of inputs and outputs. Otherwise,

HCMAC neural network needs to implement appropriate

GCMACs according to the number of inputs. This is done

using a full binary tree approach, or it can be optimized

according to the input requirements. In this paper the

structure of the full binary tree was optimized to get a

minimal GCMACs structure.

Fig. 3 Optimized HCMAC neural network structure for 7

inputs and 7 outputs.

To implement 7 outputs to the HCMAC structure the output

GCMACA was extended with 6 additional memories to store

the other 6 output values. Fig. 3 shows the optimized

HCMAC neural network structure with 7 inputs and 7

outputs.

Fig.3 shows that for a 7 inputs system at least 6 GCMACs are

needed.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5453

The testing simulation was the robot task to move from one

point in space to another one; during the motion the

manipulability of the robot configurations was increased.

During simulation, the exact robot motion started at the

position (0.1455, 0.6588, 1.3896) and stopped at the position

(0.25, 0.15, 0.5). The whole simulation movement took 5

seconds.

4.1 Simulation results

The first neural network tested for manipulability modeling

was the conventional CMAC neural network with the

Gaussian basis function. The learning process of this neural

network was performed online during the robot motion from

the starting to the end point. After 10 training cycles, CMAC

replaced the gradient computation and the system was tested

with this neural network. Fig. 4 shows the comparison of

manipulability measures obtained with CMAC neural

network and the original gradient computation. It is evident

that the CMAC neural network very well approximates the

gradient computation and manipulability measure.

Fig. 4 Manipulability measure obtained with CMAC and with

gradient computation after 10 trainings

To measure the approximation performance the integral

absolute error (IAE) was used, defined as follows

dttwtwIAE

T

∫ −=
0

21)()((19)

where 1w and 2w are manipulability measures for the

CMAC and the original gradient computation.

In our case the IAE values obtained for the CMAC and the

gradient computation were 0.0744 and 7.44*10
-5

 per one

training sample, respectively. Time responses of the CMAC

and the gradient computation outputs are in Fig. 5 which

shows that the CMAC very well approximates all elements of

the manipulability gradient vector. CMAC outputs follow all

the desired gradient values. Each curve represents one

gradient vector element.

Fig. 5 Comparison between conventional CMAC and

analytical gradient computation after 10 training cycles

The second tested neural network was the HCMAC. The

same training samples were taken as for the CMAC neural

network. After the training, HCMAC neural network also

replaced the original gradient computation and was compared

with the conventional approach. Fig. 6 shows the results.

Fig. 6 Manipulability measure obtained with HCMAC and

with gradient computation

It can be seen that the HCMAC neural network approximates

the manipulability measure better than the CMAC neural

network. For this approximation the total IAE computed was

0.0028, what is 2.8*10
-6

 per one training sample. The exact

approximation of the manipulability gradient vector is shown

in Fig. 7; it can be seen that all gradient vector elements were

approximated better than in case of the CMAC neural

network and the HCMAC neural network output function is

much smoother than the CMAC neural network. The reason

for this result is a better distribution of input elements among

6 GCMACs. Beside the approximation improvement, also the

speed of computation for the HCMAC, CMAC and the

Gradient method were tested.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5454

Fig. 7 Gradient values obtained using HCMAC and

conventional gradient computation

For this experiment, the gradient was computed for 100 and

1000 randomly chosen robot configurations. The task

function for measuring speed was the manipulability measure

function. In Table 1 the results of this testing are presented.

Table 1. HCMAC, CMAC and conventional gradient
method computation speeds

Number of

configurations

Gradient in

[s]

CMAC in [s] HCMAC in

[s]

100 0.1250 0.0310 0.09852

1000 1.0935 0.2580 0.86217

The results prove that CMAC and HCMAC neural networks

compute the gradient faster than the original gradient method.

This is the advantage of using HCMAC or CMAC neural

networks.

The CMAC or the HCMAC neural networks can be used as

an alternative to the commonly used computation method and

can compute the outputs even faster than the original one.

This is an advantage in the redundant robot kinematics

control, where any saved computation time allows more time

to be used for additional tasks. Compared with CMAC, the

HCMAC neural network has better approximation abilities.

The purpose of using it is the spare of memory without loss

of precision. This was fully achieved using HCMAC instead

of CMAC neural network.

To reduce the memory requirements, CMAC neural network

with 7 inputs needs hashing algorithm because it is

impossible to implement a memory able to cover the whole

hyperspace R
7
; however the hashing algorithm brings more

difficulties as hash collisions. The HCMAC neural network

covers the whole input space, but the computation is more

complex than in CMAC neural network.

5. CONCLUSION

In this paper a new HCMAC neural network for

manipulability gradient modelling was proposed and possible

replacements of the original gradient computation method

were tested. Simulation results obtained with the inverse

kinematics control scheme for a 7 DOF redundant robot show

that the HCMAC can learn this gradient values replace the

original computation method with very good results. This

neural network was also compared with the conventional

CMAC neural network with Gaussian basis function. Testing

results proved that the HCMAC can better approximate

gradient computation, but the computation time for one

output value is higher than in case of CMAC. Both neural

networks showed than they are able compute the gradient

faster than the original method. Moreover, in cases when the

redundant robot control system is applied the designer always

needs some computation time savings and this might be the

way to succeed.

REFERENCES

Albus J. S. (1975), A new approach to manipulator control:

The Cerebellar model articulation controller (CMAC)

Trans. ASME J. Dynam. Syst., Meas. Contr., vol. 97, no.

8, pp 220-227, 1975.

Cotter N.E. and Guillerm T. J.(1991), The CMAC and a

theorem of Komogorov,. Neural Networks, vol. 5, pp.

221-228

Crane D., Duffy J. (1998), Kinematic Analysis of Robot

Manipulators, Cambridge University Press.

Glanz F. H., Miller W.T., and Kraft L.G. (1991), An

overview of the CMAC neural network, in Proc. 1991

IEEE Neural Networks Ocean Eng., pp. 301-308

Hu J. and Pratt F. 1 (1999), Self-organizing CMAC neural

networs and adaptive dynamic control, in Proc. 1999

IEEE Intel. Contr/Intell. Syst. Semiotics, 1999, pp. 259-

265.

Hu J., Pratt J., Pratt G. (1999), Stable adaptive control of

bipedal walking; Robot with CMAC neural networks, in

Proc. 1999 IEEE Int. Conf. Robot. Automat., vol. 2

Miller W. T. and Glanz F.H.(1990) , CMAC: And associative

neural network alternative to backpropagation, in Proc.

IEEE, vol. 78, pp. 1561-1567

Lane S.H., Handelman D. A., and Gelfand J. J. (1992),

Theory and development of higher-order CMAC neural

networks, IEEE Contr. Syst. Mag., vol. 12,pp. 23-30.

Li Y., Leong S.H., (2000) Kinematics Control of Redundant

Manipulators Using CMAC Neural Network, The 5
th

World Multiconference on Systemics, Cybernetics and

Informatics (SCI2001). pages 274-279., Orlando, USA.

Lin C.S. and Li C.K. (2000), A sum-of-product neural

network (SOPNN), Neurocomput., vol. 30, pp. 273-291.

Lin C.S. and Li C.K. (1999), A memory based self generated

basis function neural network, Int. J. Neural Syst., vol. 9,

no. 1,pp. 41-59.

Lin C.S. and Kim H., (1995) Selection of learning parameters

for CMAC-based adaptive critic learning, IEEE Trans.

Neural Networks, vol. 6, pp. 642-647.

Nakamura Y., (1991) Advanced Robotics: Redundancy and

Optimization, Addison-Wesley Publishing Company,

Inc., Reading, Massachusetts.

Sciavicco L., Siciliano B. (1996), Modeling And Control of

Robot Manipulators, The McGraw-Hill Companies, Inc.

Zhang K. and Qian F.(2000), Fuzzy CMAC and its

application, in Proc. 3th World Congr. Intell. Contr.

Automat., Hefei, China, pp. 944-947.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5455

