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Abstract: In this report, a control method for the stabilization of periodic orbits for a class
of discrete-time systems that are topologically conjugate to symbolic dynamics is proposed
and applied to a population model in an ecosystem and the Smale horseshoe map. A periodic
orbit is assigned as a target by giving a sequence in which symbols have periodicity. As a
consequence, it is shown that any periodic orbits can be globally stabilized by using arbitrarily
small control inputs. This work is the first attempt to systematically design a control system
based on symbolic dynamics in the sense that one estimates the magnitude of control inputs
and analyzes the Lyapunov stability.
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1. INTRODUCTION

Chaos, signifying randomness and irregularity, is ubiq-
uitous in nonlinear dynamical systems. The hallmark of
chaos is sensitive dependence of the system’s state on
initial conditions. That is, a small error in the initial con-
ditions can lead to a large error in the state of the system
after a finite time interval. In many practical situations it is
desirable if chaos can be avoided. The OGY-method (Ott
et al. [1990] ) was proposed as the first method controlling
chaos in 1990, and since then, much related research has
been carried out. The principal purpose of chaos control is
stabilization of a periodic orbit embedded in an attractor.

Symbolic dynamics is introduced in order to characterize
the orbit structure of a dynamical system via infinite
sequences of ”symbols” (Moser [1973], Wiggins [1991]).
The study on symbolic dynamics has a long history. The
first application was shown in Hadamard [1898]’s work
of geodesics on surfaces of negative curvature. Birkhoff
[1927] used symbolic dynamics in his studies of dynam-
ical systems. Morse and Hedlund [1938] studied symbolic
dynamics as an independent subject. Levinson [1949] ap-
plied it for the study of the forced van der Pol equation,
and from his result, Smale [1963] introduced the well-
known horseshoe mapping. In chaos engineering, symbolic
dynamics is used for chaos communication (Hayes et al.
[1993]) and the targeting problem 1 (Glenn and Hayes
[1996], Corron and Pethel [2003]).

The purpose of our study is the global stabilization of a
periodic orbit embedded in an attractor. To this end, first,
a control law is designed in the sequence space such that

1 The targeting problem is the problem of how to drive trajectories
from initial states to the neighborhood of a target orbit.

the target periodic orbit becomes asymptotically stable.
Next, the control law is transformed to the state space.
By the proposed method, we design a one-dimensional
control system for a population model in an ecosystem,
and a two-dimensional control system with one input for
the Smale horseshoe map. Our work is the first exposition
that uses symbolic dynamics in order to systematically
design control systems. The use of symbolic dynamics for
design is effective in the sense that it is possible to globally
stabilize any periodic orbit with arbitrarily small inputs by
a uniform control law that does not switch from targeting
to local stabilization, which is not an easy task with the
conventional state space approach.

2. SYMBOLIC DYNAMICS

2.1 Symbolic dynamics

Let us consider a discrete-time dynamical system that has
an invariant set X .

xn+1 = f(xn), xn ∈ X. (1)

Let S = {0, 1, · · · , N} be a set of symbols, and let (N +1)
subsets Xk for k ∈ S be disjoint sets, the union of which
is the invariant set X .

X = X0 ∪ X1 ∪ · · · ∪ XN , Xi ∩ Xj = ∅ (i �= j).

Let the symbol si ∈ S be as follows 2 .

f i(x) ∈ Xk =⇒ si = k.

Let also the set Σ be the infinite direct product of S,
Σ :=

∏∞

i=−∞ Si (Si = S), which is called the sequence
space. We define a mapping Ψ : X → Σ by

Ψ(x) = · · · s−2s−1•s0s1s2 · · · , x ∈ f−i(Xk),

2 f i(·) means taking the composition of f with itself i times.
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and describe this infinite sequence Ψ(x) as ρ. Here, we let
the symbol with a decimal point on the left of it be the
one corresponding to a current state. Furthermore, define
a mapping σ : Σ −→ Σ as follows.

σ(· · · s−2s−1•s0s1 · · · ) = · · · s−1s0•s1s2 · · · .

This mapping is called the shift.

Denote the dynamics of the mapping f on its invariant
set X as (X, f), and the dynamics of the mapping σ on
Σ as (Σ, σ). When Ψ is a homeomorphic mapping and
satisfies σ ◦Ψ = Ψ ◦ f , the pairs (X, f) and (Σ, σ) are said
to be topological conjugate, which is represented by the
commutative diagram in Fig. 1. Then, the system (Σ, σ)
is called symbolic dynamics for the system (X, f).

Σ Σ

X X

�

�

� �

f

σ
Ψ Ψ

Fig. 1. The commutative diagram

Remark 1. The study on symbolic dynamics has a history
of over a century. The advantages of using symbolic
dynamics are as follows. If symbolic dynamics can be
introduced for a dynamical system in the state space, the
description of its time evolution in the sequence space, that
is, shifting symbols, is simpler than that of the original
system. It is easier to focus on certain properties of a
dynamical system. For example, the existence of a periodic
orbit with any period can be easily proven, and it is even
possible to show there is a dense orbit in the state space.

Remark 2. The class of dynamics to which symbolic dy-
namics can be introduced is large. Actually, it is known
that, for dynamics satisfying ”the axiom A” 3 , the non-
wondering set can be divided into finite basic sets and each
of basic sets introduces Markov sub-shift 4 by ”Markov
partition”(See Robinson [1999]). Many dynamics, for ex-
ample, Morse-Smale system, Anosov system, DA map and
horseshoe, satisfy the axiom A.

2.2 Periodic orbits and the stability

Definition 3. If a trajectory {x0, x1, · · · } of the dynamics
(X, f) satisfies that xn+T = xn for some constant T ∈ N,
the trajectory is called a T -periodic orbit or simply a
periodic orbit. Then, each point of the T -periodic orbit
is called a T -periodic point or a periodic point.

For a sequence in Σ corresponding to a periodic point in
X , we have the following proposition.

Proposition 4. A state x ∈ X is a T -periodic point if and
only if the sequence ρ ∈ Σ corresponding to x consists of
infinitely repeated T -length blocks of symbols.

ρ = Ψ(x) = · · · s1s2 · · · sT
︸ ︷︷ ︸

T -length block

s1s2 · · · sT
︸ ︷︷ ︸

T -length block

· · · .

3 A diffeomorphism f : M → M (M is a manifold) which is such that
the non-wondering set Ω(f) is hyperbolic and a set of all periodic
points Per(f) is dense in Ω(f), is said to satisfy axiom A.
4 Markov sub-shift is a restriction of the shift σ to ΣA, where ΣA ⊂

Σ is a σ-invariant subset given by a transition matrix describing how
sequences evolve.

From this proposition, it turns out that all periodic orbits
in the invariant set can be specified by sequences.

In this report, we describe a periodic point in X and a
sequence in Σ corresponding to it by adding ” ¯ ”, as x̄ and
ρ̄ = · · · s̄0s̄1 · · · := Ψ(x̄), respectively. Furthermore, denote
a T -Periodic orbit by a finite set γT = {x̄0, x̄1, · · · , x̄T−1},
and let PT be a set of the sequences corresponding to γT

as follows.

PT = {ρ̄0, ρ̄1, · · · , ρ̄T−1}, ρ̄i = Ψ(x̄i), i = 1, 2, · · · , T.

We define the distance between a state x ∈ X and a
periodic orbit γT ⊂ X by d(x, γT ) := min

y∈γT

dist(x, y),

where dist is a metric in X . And also, we define the
stability of a periodic orbit as follows.

Definition 5. A periodic orbit γT is said to be stable if,
for all ε > 0, there exists a δ = δ(ε) > 0 such that, for
any solution {fn(x0)} satisfying d(x0, γT ) < δ, we have
d(fn(x0), γT ) < ε for all n ≥ 0. A periodic orbit is said
to be unstable if it is not stable.

Definition 6. A periodic orbit γT is said to be globally
asymptotically stable if it is stable and, for any initial state
x0, we have lim

n→∞
d(fn(x0), γT ) = 0

3. DESIGN OF A CONTROL SYSTEM BASED ON
SYMBOLIC DYNAMICS

Now, let us consider the following control system for
system (1).

xn+1 = f(xn) + un. (2)

We formulate the problem to be tackled in this report as
follows.

Problem Design a control law (i.e. un in (2)) that globally
stabilizes the unstable periodic orbit γT in system (1).
Furthermore, design a control law that accomplishes the
stabilization of γT with inputs whose magnitudes are less
than a value given arbitrarily.

3.1 Control law in the sequence space

In the sequence space Σ, the time evolution of sequences
by the shift mapping σ is described as

ρn+1 = σ(ρn). (3)

Here, ρn is the sequence corresponding to the state xn.

Designing a control system that satisfies the requirements
of the problem is equivalent to altering σ so that an orbit
starting at an arbitrary initial sequence ρ0 converges to
PT ⊂ Σ corresponding to γT ⊂ X . We notice, due to the
metric 5 in Σ, that the more symbols from the decimal
point toward both sides agree in ρ and ρ′ , the closer ρ and
ρ′ are. Therefore, new σ, which we denote as π, requires
rewriting symbols in the sequence. Let k and l be integers
with k ≥ 0, l ≥ 1, respectively. Assume that each of the
T -periodic sequences in PT consists of infinitely repeated

5 The metric between two two-side infinite sequences ρ, ρ′ is given

by distΣ(ρ, ρ′) :=
∑∞

i=−∞
1

2|i|

|si−s′
i
|

1+|si−s′
i
|
.
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T -length block PT = r1r2 · · · rT . The mapping of the new
closed-loop system,

ρn+1 = π(ρn) (4)

should have the following time evolution.

ρ =· · ·•s0· · ·sk−1sk · · ·sk+l−2sk+l−1· · ·sk+2l−3· · ·

π(ρ) =· · ·•s1· · ·s̄k s̄k+1· · ·s̄k+l−1sk+l · · ·sk+2l−2· · ·

π2(ρ)=· · ·•s2· · ·s̄k+1s̄k+2· · ·s̄k+l s̄k+l+1· · ·s̄k+2l−1· · ·

(5)

...
...

The above underlined blocks consist of a part of PT or
several PT ’s and parts of it with l-length. The parameter
k is the place that the target symbols are inserted in. The
parameter l is the length of the inserted target symbols. As
a consequence, the orbit {πn(ρ)}∞n=0 converges to PT . 6

dΣ(πn(ρ), PT ) −→ 0 (n → ∞).

The following proposition gives us the specific description
of the mapping π.

Proposition 7. The mapping π in (4) and (5) can be
denoted as a composition of the shift mapping σ and a
mapping φ : Σ → Σ as follows.

π = φ ◦ σ.

Proof. We prove the existence of such a mapping φ
constructively. Consider a sequence ρ = · · · s−1•s0s1 · · · .
Let ρ̄ = · · · s̄−1•s̄0s̄1 · · · be the closest sequence to ρ in
PT . Furthermore, let m be larger than k and satisfy, for
k + 1 ≤ i ≤ m − 1, si = s̄i, and sm �= s̄m. We define a
rewriting mapping φ : Σ → Σ such that l-length block L,
that consists of l symbols from (m + 1)-th symbol in ρ̄, is
inserted between m-th and (m + 1)-th symbols in ρ. That
is, we define φ as follows. For two sequences

ρ̄ = · · · •s̄0s̄1 · · · s̄k s̄k+1 · · · s̄m−1
︸ ︷︷ ︸

=

l-length block L
︷ ︸︸ ︷

s̄m
︸︷︷︸

�=

s̄m+1 · · · s̄m+l−1· · ·,

ρ = · · · •s0s1 · · · sk

︷ ︸︸ ︷

s̄k+1 · · · s̄m−1
︷︸︸︷
sm sm+1· · ·,

↑ insert the l-length block L

the image of ρ by φ is

φ(ρ) = · · · •s0s1 · · · sks̄k+1 · · · s̄m−1s̄ms̄m+1 · · · s̄m+l−1 · · · .

Then, the composition of φ and σ gives the time evolution
as (5).

3.2 Control law in the state space

In the sequence space Σ, to rewrite a sequence means to
control the time evolution of the sequence. Now, we design
a control law in the state space X to realize the closed-
loop system (4) in Σ. We define a new mapping f̃ , instead
of f in (1), corresponding to the mapping π as Fig. 2.

X X

Σ Σ

�

�

� �

π

f̃
Ψ−1 Ψ−1

Fig. 2. A mapping f̃ in X corresponding to π in Σ

6 dΣ(ρ, PT ) := min
ξ∈PT

distΣ(ρ, ξ).

The closed-loop system in the state space is induced from
π as follows.

xn+1 = f(xn) + u(xn), (6)

where

u(x) = f̃(x) − f(x) (7)

f̃(x) = (Ψ−1 ◦ π ◦ Ψ)(x). (8)

The input un = u(xn) is the function of the state xn,
therefore, system (6) is a state feed-back system (Fig. 3).
The design parameter k, which specifies the position of the
modification of symbols, dominates the magnitude of the
inputs in the sense that the magnitude of the inputs can be
smaller by choosing larger k. Also, the design parameter
l, which is the length of the modified symbols, dominates
the convergence rate of πn(ρ) (see the next section).

xn+1 = f(xn) + un

f

xnun

−
+

Ψ
−1

φ σ Ψ

Fig. 3. The state feed-back system

Remark 8. The number of the inputs of the above con-
trol system does not necessarily have to be equal to the
dimension of the state space X . The state space of a
chaotic system with hyperbolic structure is stretched and
compressed at the same time, as shown in the Smale horse-
shoe map (11), (12) in section 5.2. For such a dynamical
system, since rewriting symbols in the right-hand side of
the decimal point corresponds to controlling the system
so as to transfer the state in the direction in which X is
stretched, one does not need the inputs in the compression
direction of X . Therefore, it may be accomplished to
stabilize periodic orbits by a small number of inputs if the
directions of the inputs transversely intersects with the
compression directions, as shown in the two-dimensional
system with one input (13).

4. AN ESTIMATION OF THE CONTROL INPUTS
AND THE STABILITY ANALYSIS

In this section, for the feedback system (6), we estimate
the magnitude of the inputs, and analyze the stability of
periodic orbits.

4.1 An estimation of the control inputs

To stabilize a periodic orbit of the original system (1),
the feedback system (6) must also have the same periodic
orbit. The following proposition guarantees it.

Proposition 9. The T -periodic orbit γT in dynamics (X, f)
is also a T -periodic orbit in the feedback systems (6).
Furthermore, u|γT

= 0.

Proof. We assume that a state xn is equal to x̄n ∈ γT .
Since π = σ on PT , we have (π ◦ Ψ)(xn) = (σ ◦ Ψ)(xn).

Therefore, we get f̃(xn) = f(xn) and un = u(xn) = 0.
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Furthermore, since xn+1 = f(xn) + un = f(x̄n), it turns
out that xn+1 = x̄n+1 ∈ γT .

Furthermore, we have the proposition concerning the mag-
nitude of the inputs of (6).

Proposition 10. For all ε > 0, there exists a K = K(ε) > 0
such that, if the design parameter k is larger or equal to
K, then we have ‖un‖ < ε for all n ≥ 0.

Proof. The sequences corresponding to f̃(xn) and f(xn)
are

ρ̃n+1 := Ψ(f̃(xn)) = · · ·sn
︸︷︷︸

=

• sn+1sn+2· · ·sn+k
︸ ︷︷ ︸

=
s̄n+k+1· · ·

ρn+1 := Ψ(f(xn)) =
︷︸︸︷
· · ·sn •

︷ ︸︸ ︷
sn+1sn+2· · ·sn+k sn+k+1· · ·,

respectively, that is, all left symbols and at least k right
symbols from the decimal point in two sequences agree.
From the metric in Σ, it turns out that dΣ(ρ̃n+1, ρn+1) <
1/2k−1. Since Ψ−1 is continuous, the smaller the dis-
tance between ρ̃n+1 and ρn+1 is, the smaller the distance

between f̃(xn) and f(xn) is. Therefore, given ε > 0,
there exists a δ such that, if dΣ(ρ̃n+1, ρn+1) < δ, then

dist(f̃(xn), f(xn)) < ε. If we choose k such that k >
log2(1/δ)+ 1, then dΣ(ρ̃n+1, ρn+1) < δ, and thus, we have
‖un‖ < ε.

4.2 The stability analysis of periodic orbits

In order to analyze the stability of periodic orbits of the
feedback system (6), we define the neighborhood Vj of a
sequence ρ in Σ by

Vj(ρ) := {ρ̃ ∈ Σ|s̃i = si, |i| < j}.

For an integer j and a periodic orbit γT = {x̄0, x̄1, · · · , x̄T },
we define a maximum radius εj of a neighborhood of γT

by

εj := max
0≤n≤T−1

sup
ρ∈Vj(ρ̄n)

dist(Ψ−1(ρ), x̄n),

where ρ̄n = Ψ(x̄n). We have the following Lemma.

Lemma 11. For all integer j, εj exists. If j′ ≥ j, then
εj′ ≤ εj . Furthermore, we have lim

j→∞
εj = 0.

For the feedback system (6), we can prove the following
proposition.

Proposition 12. Let l ≥ 2. Then, γT is globally asymptot-
ically stable.

Proof. From Proposition 9, it is proven that γT is a
periodic orbit in the feedback system (6).

For given ε > 0 and k ≥ 0, let δ = min{ε, 1/2k+1}.
For ρ̄ = · · · s̄0s̄1 · · · ∈ PT , if ρ = · · · s0s1 · · · satisfies
dΣ(ρ, ρ̄) < δ, then we have

si = s̄i, |i| ≤ η,

where η is the largest integer less than or equal to
max{log2(1/ε) − 1, k}. Since some symbols in π(ρ) and
π(ρ̄) agree as follows,

π(ρ) = · · · s̄−η · · · s̄0
︸ ︷︷ ︸

=

• s̄1s̄2 · · · s̄η
︸ ︷︷ ︸

=

s̄η+1 · · · s̄∗
︸ ︷︷ ︸

=

s∗+1 · · ·

π(ρ̄) = · · ·
︷ ︸︸ ︷

s̄−η · · · s̄0

→

•

︷ ︸︸ ︷

s̄1s̄2 · · · s̄η

→

︷ ︸︸ ︷

s̄η+1 · · · s̄∗

→

s̄∗+1 · · · .

(η+1)-length η-length more than l-length

it turns out

dΣ(π(ρ), π(ρ̄)) < dΣ(ρ, ρ̄) < δ.

Therefore, we have

dΣ(πn(ρ), πn(ρ̄)) < δ ≤ ε, n ≥ 0.

Note that, for a sequence ρ, if a periodic sequence ρ̄i is
the closest to ρ in PT , then π(ρ̄i) is the closest to π(ρ)
in π(PT ). Therefore, it turns out that, if dΣ(ρ, PT ) < δ,
then dΣ(πn(ρ), PT ) < ε for all n ≥ 0.

By the continuity of Ψ−1, we prove that, for all λ > 0, there
exists a ε = ε(λ) > 0 such that, if dΣ(πn(Ψ(x)), PT ) < ε,

then d(Ψ−1(πn(Ψ(x))), γT ) = d(f̃n(x), γT ) < λ. Similarly,
by the continuity of Ψ, it turns out that, for all δ > 0,
there exists a ν = ν(δ) > 0 such that, if d(x, γT ) < ν, then
dΣ(Ψ(x), PT ) < δ. Therefore, one concludes that, for all
λ > 0, there exists a ν > 0 such that, if d(x, γT ) < ν, then

we have d(f̃n(x), γT ) < λ. The stability of γT is proven.

The global asymptotic stability is proven as follows. For
an arbitrary initial state x0, the sequence at time n(≥ k),
πn(Ψ(x0)), has k + n(l − 1) (=: jn) symbols from the
left being equal to those of a periodic sequence in PT .
Therefore, a state xn satisfies that d(xn, γT ) ≤ εjn

. Since
lim

n→∞
jn = ∞, we have lim

n→∞
εjn

= 0. Therefore, it turns

out that, for an arbitrary initial state x0 ∈ X , we have
lim

n→∞
d(xn, γT ) = 0.

Remark 13. The distance between xn and γT converges to
0 more rapidly by choosing larger l. l ≥ 2 means, however,
the calculation amount is getting larger actually. If one
wants to avoid it, one has to let l = 1. We note that,
although the asymptotic stability cannot be guaranteed
for l = 1, the states can keep in a narrow tube around the
periodic orbit by choosing reasonably large k.

5. APPLICATIONS

5.1 Control of an ecosystem

One of the simplest systems an ecologist can study is
seasonally breeding populations in which generations do
not overlap (May [1976]). For example, many natural
populations such as temperate zone insects are of this
kind. Such a relationship is expressed by a discrete-time
system xn+1 = f(xn) (variable xn is the magnitude of the
population). There are other examples expressed in this
form, as, for example, in biology the theory of genetics and
epidemiology. In economics the models for the relationship
between commodity quantity and price and for the theory
of business cycles. In sociology, the theory of learning and
the propagation of rumors in variously structured societies
are described by this kind of equation. In many of these
contexts, and for biological populations in particular, there
is a tendency for the variable xn to increase from one
generation to the next when it is small, and for it to
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decrease when it is large. The discrete-time system below
is a model representing such a tendency.

xn+1 = rxn(1 − xn), xn ∈ [0, 1] (9)

This system is called Logistic map, and known to show
chaotic behavior by choosing parameter r suitably. In
particular, when r = 4, the system generates chaos
(Robinson [1999]), and the closed interval [0, 1] is an
invariant set. Furthermore, divide the interval [0, 1] into
two regions with the boundary value 1/2 and give symbols
”0” and ”1” to the regions, respectively. That is, denote
these regions as X0 = [0, 1/2), X1 = [1/2, 1]. Then,
symbolic dynamics (Σ, σ) can be introduced into the
system (9) with r = 4. Here, sequences are one-side infinite
sequences because (9) is not invertible. However, since the
control law rewrites symbols being located on right side
from the decimal point, our control method can be applied
to this system (9).

Now, by adding or removing individuals in (9), we try
to fluctuate the population of the individuals periodically.
In particular, it is intended that the magnitude of the
population always returns to the initial magnitude every
3 generations. For such a purpose, we give a 3-periodic
sequence repeating ”011” as a target orbit and design
a control system by using the proposed method. The
simulation results are shown below. Fig. 4 illustrates the
time evolution of the state starting at the initial condition
x0 = 0.3 with no control. That is, a chaotic behavior can be
observed. Fig. 5 and Fig. 6 show the time evolutions of the
states starting at the same initial condition x0 = 0.3 with
the design parameters (k, l) = (1, 2), (10, 2), respectively.
Also the state values (the magnitude of the population)
are plotted in the top figures and the input values are
plotted in the bottom figures, respectively. From Fig. 5
and 6, it is confirmed that the states converge to the 3-
periodic orbit. Furthermore, by comparing Fig. 5 and 6, it
can be verified that the system with the input magnitude
parameter k = 10 has smaller input values than those of
the system with k = 1.

0 10 20 30 40 50

0

0.5

1

st
a
te

x
n

time step n

Fig. 4. Time evolution of the state without control input; initial
condition x0 = 0.3
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Fig. 5. Stabilization of a 3-periodic orbit embedded in a Logistic
map; initial condition x0 = 0.3; design parameter k = 1, l = 2
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Fig. 6. Stabilization of a 3-periodic orbit embedded in a Logistic
map; initial condition x0 = 0.3; design parameter k = 10, l = 2
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Fig. 7. Stabilization of a 3-periodic orbit embedded in Logistic map
with the OGY-method; initial condition x0 = 0.3

Comparison with the OGY-method In the OGY-method
(Ott et al. [1990]), the control inputs are added so that
trajectories transit onto a local stable manifold, only when
the state enters in a control region given in advance. The
waiting time is derived statistically, and, in general, the
smaller the control region is, the longer the time is. In our
method, however, one can clealy know when the state will
enter the neighberhood of the target even if it is small.

Fig. 7 illustrates a simulation result of stabilization of
the 3-periodic orbit by applying the OGY-method. The
control region is a neighborhood of the 3-periodic orbit
with a radius 0.001. It can be verified that it takes longer
time to stabilize the 3-periodic orbit than the proposed
control method.

A simulation of the feedback system with noise For the
logistic map (9), we consider a feedback system with white
Gaussian noise {vn} as follows.

xn+1 = f(xn) + u(xn) + vn. (10)

We set the mean and the standard deviation of noise {vn}
to 0 and 10−4, respectively, and simulate (10) in the case
when (i) k = 5, l = 2 and (ii) k = 10, l = 2. Fig. 8 shows
the time evolutions of the states in these cases. From Fig. 8,
it turns out that, the 3-periodic orbit is stabilized in the
case (i), but it is not done in the case (ii). One concludes
that, if the design parameter k is not sufficiently small,
that is, the upper limit of the inputs is not sufficiently
large, to remove the effect of the noise, then periodic orbits
in (6) cannot be stabilized.

5.2 Control of the Smale horseshoe map—two-dimensional
system with one input

Smale horseshoe map was introduced as the first example
of diffeomorphisms that had an infinite number of peri-
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Fig. 8. Responses of the feedback system with white Gaussian noise:
(a) Top figure; design parameter k = 5, l = 2: (b) Bottom
figure; design parameter k = 10, l = 2

odic points and were structurally stable (Smale [1963]).
Furthermore, understanding of the Smale horseshoe is
absolutely essential for understanding what is meant by
term ”chaos”.

Consider a square D = [0, 1]× [0, 1] on the plane, and the
subsets H0 = [0, 1]× [0, 1/µ] and H1 = [0, 1]× [1− 1/µ, 1],
where µ > 2. The simplified Smale horseshoe map is given
as follows (Wiggins [1991]).

(
xn+1

yn+1

)

= f(xn, yn), (11)

f(x, y) =







(
λ 0
0 µ

) (
x
y

)

,

(
x
y

)

∈H0
(
−λ 0
0 −µ

) (
x
y

)

+

(
1
µ

)

,

(
x
y

)

∈H1,
(12)

where λ < 1/2 and H1, H2 are compressed in the direction
of x-axis and stretched in the direction of y-direction. This
system (11) has an invariant set Λλ,µ = {(x, y) | fk(x, y) ∈
D, ∀k ∈ Z}, which is known to be a Cantor set. Let
X0 = H0 ∩ Λλ,µ and X1 = H1 ∩ Λλ,µ. Then, symbolic
dynamics can be introduced.

For the system (11) with µ = 3 and λ = 1/3, we try to
stabilize a 4-periodic orbit in Λ1/3,3 by the following two-
dimensional control system with one input.

(
xn+1

yn+1

)

= f(xn, yn) +

(
0
1

)

un, (13)

where un is a scalar function. We give a 4-periodic se-
quence repeating ”0011” as a target orbit. Fig. 9 shows
the time evolutions of the states and the inputs with the
initial value (x0, y0) = (1/9, 1/9) ∈ Λ1/3,3 and the design
parameter (k, l) = (5, 2). From Fig. 9, it is confirmed that
states converge to 4-periodic orbit.

6. CONCLUSION

In this report, for a class of discrete-time systems that
are topologically conjugate to symbolic dynamics, we pro-
posed a control method to stabilize periodic orbits. We
also showed application examples of the proposed control
method, which were a one-dimensional control system for
a population dynamics represented by a Logistic map and
a two-dimensional control system with one input for the
Smale horseshoe map. This is the first attempt to design
control systems by using symbolic dynamics systematically
in the sense that one estimates the magnitude of control
inputs and analyzes the Lyapunov stability. The proposed
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Fig. 9. Stabilization of a 4-periodic orbit embedded in a Smale
horseshoe map; initial condition (x0, y0) = (1/9, 1/9); design
parameter k = 5, l = 2

control method can stabilize any periodic orbits with ar-
bitrarily small inputs without switching the control law
from targeting to local stabilization, and can ensure the
robustness against noise by choosing the design parameter
suitably. It is difficult, with the conventional state space
approaches, to accomplish the stabilization like this, show-
ing the effectiveness of the use of symbolic dynamics.
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