
General Time Synchronisation Method for PLC Programs
Aiming at virtual verification and development with CAPE tools

Henrik Carlsson*, Fredrik Danielsson*, Bengt Lennartson**

*Department of Engineering Science at University West, SE-46186 Trollhättan, Sweden
 (Tel: +46-520-223266; e-mail: Henrik.carlsson@hv.se, Fredrik.danielsson@hv.se)

**Control and Automation Laboratory, Department of Signal and Systems,
 Chalmers University of Technology, SE-412 96 Göteborg, Sweden (e-mail: bengt.lennartson@chalmers.se)

Abstract: The latest state-of-the-art Computer Aided Production Engineering (CAPE) simulation
technology offers OPC integration for PLC verification. A critical drawback with this technology has
been identified and described within this paper. A new time synchronisation method and a simulation
architecture are therefore presented and proposed. The time synchronisation method together with the
architecture can be used when verifying and developing real-time dependent control logic for industrial
control systems, e.g. PLC with CAPE tools. The method described in this paper is general and should
work on any PLCs that are compatible with the IEC 61131-3 standard. A test case was also carried out,
showing that by disregarding time synchronisation it is impossible to verify real-time dependent PLC
functions together with CAPE tools in a reliable way. However, the test case also shows that by applying
the proposed time synchronisation method together with the described simulation architecture a
successful industrial verification method is achieved.

1. INTRODUCTION

The term industrial control system (ICS) is a broad definition
for programmable controllers used in industry to control
machines or processes. An example of an ICS commonly
used in industry today is the PLC (Programmable Logic
Controller). A characteristic feature of ICSs is the
reprogrammable control function that is described by the
control code. The most common control code development
and verification method is to program and verify the control
code without any connection to a real process, instead using
manual stimuli to simulate the real process. Other existing
methods are to connect the real ICS to the real process
(Furusawa, 2002) or to a specially built process hardware
model (mock-up) (Schludermann et al., 2000). Today,
however, it is possible to verify and develop the control code
against a virtual prototype using simulation software (Freund
et al., 2002). One recent trend in conducting verification by
means of a virtual prototype is to connect a real ICS to a
CAPE simulation tool. CAPE (Computer Aided Production
Engineering) is a classification for production-related
simulation tools. The most common CAPE tools used for ICS
development and verification are discrete event-based
simulation (DES) and Computer Aided Robotics (CAR) (Ng,
2003), (Cho, 2005), (Qingwei Ma, 2001). A common feature
of all of these tools is their ability to simulate several types of
production scenarios on different levels where a variety of
robots, machines, manufacturing resources, control logic
representation etc. are integrated into the simulation.

The latest state-of-the-art technology offers OPC integration.
OPC is a standard for information exchange between the ICS
and its surrounding environment. OPC has and is still
developed by the OPC Foundation (OPC Foundation, 2007-
04-05). The OPC server, which is vendor specific, is
connected to the ICS (Ling et al., 2004). The OPC clients e.g.

as implemented in CAPE tools, are general and can connect
to any server. This makes it possible to connect to an ICS in a
general way, even if the OPC server is vendor specific.

This OPC connection makes the inclusion of a real ICS in a
CAPE simulation possible. A simulated machine or process
can thereby be controlled in the same way as it would be in
reality. Examples of CAPE software with an OPC
functionality include; Delmia Automation (Delmia, 2007-04-
04), Visual Components (VisualComponents, 2007-04-04)
and Process Simulate (UGS, 2007-04-04). This control code
verification approach works well if the control function is
event-driven. However, its efficacy is limited if the control
function is time-dependent. Examples of time-dependent
control functions include timers, servo control loops etc. In
essence, the problem is that a regular PC and its operating
system is not a real-time system (Xiang, 2005), and a non
real-time system is not designed to respond to time-
dependent signals in a deterministic way. Since most of
today’s CAPE simulation tools are Windows or Unix-based
there is obviously a problem with the verification of time-
dependent control functions. Even if it was possible to use
CAPE tools in a real-time operating system, there would be
time uncertainties due to the microprocessors in regular
computers (Proctor and Shackleford, 2001).

Connecting a real-time system to a non real-time system,
without any time synchronisation mechanism, can be referred
to as ‘free-wheeling’, since no common time exists. Despite
of the fact that the method itself introduces time related
problems, free-wheeling appears to be the most commonly
used method today when verifying the control code in real
ICSs against CAPE simulations, The most common solution
found in the literature to the freewheeling problem is time
synchronisation methods based on the assumption that the
CAPE tool always runs faster than the ICS (Freund et al.,

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4440 10.3182/20080706-5-KR-1001.2312

2002, Schludermann et al., 2000, Zaeh et al., 2005).
According to this assumption, it should be possible to halt,
when necessary, the faster CAPE tool in order to maintain
real-time behaviour. However, these time synchronisation
methods do not work for control functions with a time
resolution that is close to, or indeed smaller than the CAPE
cycle time.

Another problem encountered, when verifying control
functions against a complex simulation model, relates to the
CAPE simulation performance. When one or more ICSs
interact with an extensive plant model, the CAPE execution
time can become an obstacle. A solution to this is to
distribute the simulation to parallel CPU’s or computers
(Ledin, 2001). However, in order to be able to properly
handle distributed time-dependent simulations, both an
architecture and a time synchronisation mechanism are
required.

A simulation architecture that includes a time
synchronisation mechanism and supports distribution is
presented in (Danielsson, 1999). The work reported in this
paper uses a simulation-architecture, SDSP (Synchronised
Distributed Simulation Protocol), which handles the time
synchronisation between an emulated ICS and the CAPE tool.
The time synchronisation mechanism guarantees real-time
behaviours in a deterministic way by introducing virtual real-
time. The emulation of ICS is a technique used to obtain an
exact representation of the real ICS (LeBaron and Thompson,
1998). The ICS emulator used in (Danielsson 1999) has been
extended to include a number of additional SDSP
functionalities, thus making it possible to use it in
conjunction with the time synchronisation mechanism. To
the author’s knowledge, no working general method currently
exists that address the described problem for a real ICS
connected to CAPE tools.

The latest state-of-the-art CAPE tools offers OPC integration;
however it is not possible to use this concept when verifying
time dependent control functions as is shown and discussed
in detail in this paper. To tackle this major drawback an
extension of the work reported in (Danielsson 1999) is
presented, in the form of a new method to handle time
synchronisation with a real ICS. This method is based on
general IEC 61131-3 languages and can thus be applied to a
wide range of commercial ICSs.

2. SDSP SIMULATION ARCHITECTURE

Due to the lack of suitable deterministic methods for the
verification of ICSs together with CAPE tools, an
architecture for distributed simulation and time
synchronisation - Synchronised Distributed Simulation
Protocol (SDSP) - was formulated in (Danielsson, 1999). The
concept is server-client based, with the server being
responsible for managing the simulation. Management tasks
include:

• Communication with all simulation clients
• A common synchronised time
• Common simulation data, e.g., I/Os
• Handling of distributed simulation

Whilst the SDSP communication is mainly based on TCP/IP,
other methods of communication are also possible, such as,
for instance, DDE, OPC and shared memory. One of the most
important tasks for the server is to manage each subset of
simulations to form a time-uniform simulation. The way in
which this can be accomplished is set out below.

In order to use a CAPE tool in this concept, the tool must
have an application programming interface that makes it
possible to write a SDSP-client application that can handle
the communication between the CAPE tool and the SDSP
server. This is a common feature for many CAPE tools e.g.
ROSE for Robcad and Tecnomatix .NET SDK for Process
Simulate (UGS, 2007-04-04).

In essence, the server contains common data (e.g., I/O values,
servo values, and simulation parameters) and common logic.
The server also contains a virtual time, tvirtual and a simulation
state s, s={simulation start, simulation initial-write,
simulation pre-write, simulation write, simulation pre-read,
simulation read}. Initially, the server sets up the necessary
structure in the database and sets the simulation state to start,
s=simulation start. As a minimum requirement to form a
simulation, the server needs information about the time step
tstep, the formal start condition, simulation start condition, and
the number of clients. The start condition tells the server
when the entire simulation can commence, and generally it is
set to be the total number of clients required to run the
simulation, see Figure 1. tstep is the smallest time step that the
simulation can handle. However, a mechanism allows a client
to run with a different time step that is a multiple of tstep, than
the rest of the simulation without sacrificing time
synchronisation. For example, this mechanism can be used in
discrete event simulations to delay the synchronisation for a
specific client until tnext update. Normally tnext update is equal to
tvirtual.

A single client is considered as ready to start when it has
been connected to the server and has joined the simulation.
When simulation start condition = AND(client1, client2, …,
clientn), where n is the number of clients in the simulation, is
fulfilled, the initial write state s=simulation initial write is
entered. This mechanism provides a deterministic start
behaviour for the overall simulation. In the initial write state,
each client has reached their client setup state where they are
supposed to initialise their own data (e.g. all inputs and
outputs are set to 0), whilst the simulation time tvirtual is set to
-tstep. To enter the following states, the Synchronised
condition must be fulfilled;
synchronised = AND(client sync1, client sync2, …, client
syncn). The client syncx signal indicates when a single
simulation client has arrived the point when it is ready and
has executed the current time step or that the synchronisation
for the client has been delayed until tnext update_x;
client syncx=OR(client ready signalx, tvirtual<tnext update_x), see
Figure 2.

After the simulation initial-write state, the simulation enters
the simulation pre-read and then the simulation read state,
see Figure 1. In synchronisation each client has reached the
client read state, see Figure 2. At this state, each client is
supposed to read data from the server. When all of the clients

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4441

have executed their client read task and thereby synchronised
the simulation, then the simulation enters the pre-write state,
s=simulation pre-write
The simulation time, tvirtual, is updated to the next time step at
the end of each simulation read state, s=simulation read
tvirtual=tvirtual+tstep. This tight synchronisation procedure is
necessary to prevent clients from acting in the wrong time
space i.e. one time step before or after the desired time.

simulation initial-write Call init write logic

simulation pre-read

simulation read
Call Read logic

simulation pre-write Call Pre-write logic

simulation write Call Write logic

P1
P1

P1

P1

simulation start Call init logicP1

P0
P1

Call Pre-read logicP1

Figure 1 States and associated actions for the overall
simulation as represented in the SDSP server, described in
SFC.

At the same time all clients enter the client run state and are
supposed to execute their main tasks, e.g., a program cycle
for an ICS.

Figure 2 States and associated actions for each client (sub-
simulation) as represented in the SDSP server, described in
SFC. Note that in our SFC notation must the P1actions be
completed before the N actions start.

Logic can be assigned to each state in the simulation, e.g., a
logic function can be called when the time is updated and
another function can be called when the simulation is

commenced, see logic action in Figure 1. These user-defined
logics can be described in IEC 61131-3, C/C++ or SBASIC,
which is an internal programming language in the SDSP
server. User-defined logics can also be assigned to data
variables, e.g., an I/O signal. Each time an assigned data
variable is accessed, the desired user logic is called. With
user-defined logics at the server level, it is easy to create an
overall system logic that will operate at a specific time
interval, record data at each time step, and act whenever a
variable changes etc.

3. ICS TIME-SYNCHRONISATION

The SDSP simulation architecture presented above is
designed to handle verifications of time-dependent control
functions in ICSs connected to CAPE tools, i.e. to deal with
the free-wheeling problem described previously in the
introduction.

The internal clock in an ICS controls the execution to
guarantee the cycle time and to achieve deterministic
behaviour. Due to this fundamental behaviour in the real ICS
it has only been possible to incorporate emulated or
simulated ICS in the SDSP simulation architecture. Even
though an emulator is a good representation of the real ICS, a
real ICS is nevertheless preferable in many situations. This is
because of the lack of emulators coupled with the fact that
creating an emulator can be extremely time-consuming,

Even if it is possible to connect ICSs to the simulation
architecture over OPC, it is generally not possible to directly
time synchronise them with the mechanism within the
architecture. The reason is that most commercially available
ICSs are vendor specific and not open for new internal
functions – such as SDSP – in the scheduler. Thus, there is a
problem in adopting this synchronisation method to existing
ICSs. To overcome this hurdle, a general method for time
synchronisation of IEC61131-3 based ICSs is described in
this section.

In order to utilise the new time synchronisation method the
following requirements must be fulfilled:

• The ICS must support the IEC 61131-3
programming language standard.

• The ICS must be able to communicate with a regular
computer, e.g. by OPC.

• The entire simulation must utilise an architecture
that offers a time synchronisation mechanism.

IEC 61131 is an international standard for programmable
controllers, and is divided into several parts. IEC 61131-3
describes an ICS software structure, languages and program
execution (Lewis, 1998). The standard supports five
different languages, two that are text-based, the structured
text (ST) and instruction list (IL) and three that are graphical,
namely, the ladder diagram (LD), function block diagram
(FBD) and sequential function chart (SFC). IEC 61131-3
covers all languages at syntax level but lacks a detailed
definition on the execution level (Hellgren et al., 2005). An
IEC 61131-3 project consists of a number of Program
Organisation Units (POU). A POU can be a program, a
function block, or a function.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4442

POU 1
PROGRAM

POU
Scheduler (1)

Exec Cont(2)

POU n
PROGRAM

Exec Cont(2) ex
ec

ut
io

n
si

gn
al

s

Normal
Scheduler

OPC

S
yn

c
si

gn
al

 a
nd

vi
rtu

al
 re

al
-ti

m
e(3

)

In order to use the method presented in this paper, three
modifications of the original control code to be verified need
to be made. (1) A scheduler POU, which is used as a
complement to the original scheduler, must be added to the
control code. (2) All program POUs within the configuration
need a specific execution control function. (3) All time
dependent function blocks and functions must be converted
to deal with the virtual time. The marked sections in Figure 3
represent these modifications and will be described below.

3.1 The POU scheduler (1)

In order to implement a
complementary scheduler,
all POUs within the
configuration must be set to
the same priority, e.g. 1, and
organised in the same task.
The complementary sche-
duler POU is set to a higher
priority, e.g. 0. This shall
guarantee that the scheduler
is executed first every
program cycle. The sche-
duler communicates with the
SDSP architecture through
two synchronisation vari-
ables over e.g. OPC.

When it is time to execute
the control code in the ICS,
the scheduler receives a
signal from the server and
the scheduler decides which of the other POUs should be
executed by sending specific execution signals, see Figure 3.
There is no standard or general way to halt the real-time
clock on a real ICS, as demanded by the simulation
architecture. Consequently, the scheduler also handles the
virtual time, to, by reading the actual value from the
simulation server. This time is then stored as a global
resource. The resource is then used as a replacement for the
real-time clock.

3.2 Execution controller (2)

To be able to control the execution order and timing of all
POUs within a configuration, certain additional functionality
must be added to each scheduled POU. This is accomplished
by means of a specific “header and footer”. This execution
control can be implemented for all IEC 61131-3 languages.
The execution controller, described in pseudo code below,
determines whether or not the desired program should run.
IF NOT Simulated OR execution(task_i)
 (*Regular program begins here*)
 …
 (*Regular program ends here*)
END
However, the graphical language SFC has a more complex
execution order that requires another type of execution
controller (Hellgren et al., 2005). An SFC consists of a series
of steps and transitions, where each step can be associated

with either one or a series of actions (Lewis, 1998), the
behaviour of the action being determined by the action
qualifier. For example the qualifier ‘N’ means that the action
will execute while the step is active and the qualifier ‘L’ will
execute for a limited time, defined by ‘T’. According to the
61131-3 standard (IEC 61131-3, 2003) each action is
associated with an instance of an Action Control function
block. This function block controls the activation and
deactivation of the action, depending on the action qualifier
that is used. Although it is not a requirement, according to the
61131-3 standard that this function block actually exists (IEC
61131-3, 2003), (Lewis, 1998), the activation and
deactivation of the actions should nevertheless have the same
behaviour that is specified within the action control function
block. Due to the fact that some of the action qualifiers are
time dependent, the ICS programming environment must
offer access to modify the action control function block in
order to be able to use the proposed method within a SFC
POU. An example of an execution control function added to
an action control function block is shown in Figure 4. The
execution control function block is implemented in CoDeSys
(CoDeSys, 2007-05-02).

Figure 4 Example of a function block implementation of an
Action Control block.

In Figure 4, ‘SFC execution signal’ is the execution signal
that is sent from the scheduler when it is time to execute the
SFC POU.
In SFC the transitions between each step can also be time
dependent, i.e. a particular step can be active for a specific
amount of time. This can be solved if it is possible to control
these transitions. However should this not be possible, the
same behaviour can be obtained within the actions.

3.3 Time dependent functions (3)

IEC 61131-3 contains 4 standard timer function blocks,
Timer On Delay (TON), Timer Off Delay (TOF), Timer
Pulse (TP) and Real-Time Clock (RTC) (IEC 61131-3, 2003).
However these function blocks can not be used directly, since
they are usually based on the hardware clock. Therefore,
special replacement timers are used. The replacement timers
behave in the same manner as the regular ones, the only
difference being that they are based on the virtual time
received from the server.

Figure 3 Description of the
supervisor POU and the
connection to the normal
POU’s.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4443

There may also be other (no IEC 61131-3) vendor-specific
functions that are hardware clock dependent, e.g., motion
control blocks. Thus, in order to be able to use the proposed
time synchronisation method these functions must also be
upgraded to handle the virtual clock.

For motion control, PLCOpen (PLCOpen, 2007-09-18) offers
a motion control library specification based on IEC 61131-3.
It is thus possible to implement this specification together
with the proposed time synchronisation method and virtual
time.

4. APPLICATION TEST CASE

To demonstrate the proposed time synchronisation method, a
test case was set up. A real ICS from Binar (Binar AB, 2007-
09-03) was programmed to control a two dimensional servo
controlled robot, see Figure 5. The control function is real-
time dependent due to servo control loops in the robot. A
simulation model was created in a CAPE tool, RobCad (UGS,
2007-04-04). The model represents the 3D geometry and
kinematics of the robot. Two scenarios where carried out:
In Scenario 1, the CAPE tool was connected to the ICS in an
unsynchronised way (free-wheeling) currently provided by
CAPE tools. Further, in scenario 2, the model was connected
according to the synchronisation method proposed in this
paper.

To be able to utilise the new time synchronisation method,
scenario 2, the following preparations were carried out in the
ICS control logic:

• All tasks in the ICS configuration were set to the
same priority and the same cycle time.

• A scheduler was implemented and added to the
configuration.

• All timers in the configuration were replaced with
modified timers including virtual time.

• An execution controller was added to each program
• The servo control function blocks were replaced

with new ones implying time synchronisation.

The robot positions were measured in the CAPE tool and
plotted, (1) scenario 1 with no time synchronisation , Figure 6,
and (2) scenario 2 with the proposed time synchronisation
method, in Figure 7.

5. TEST CASE RESULT

Figure 6 shows the result from the run when no time
synchronisation is used, scenario 1. The enlarged part
showing the non-deterministic behaviour when no time
synchronisation is employed (compared to the pre-
programmed desired behaviour in Figure 5). This non-
deterministic behaviour is due to the free-wheeling problem
described earlier.

Figure 5 The pre-programmed Robot path used in scenario 1
and 2. The figures represent the run order of the path and
represent a 2D location (x, z).

-300 -200 -100 0 100 200 300
-300

-250

-200

-150

-100

-50

0

Figure 6 Measured robot path with standard free-wheeling
method used in CAPE tools.

Figure 7 shows the result when the proposed time
synchronisation method is used. The plot shows clearly that
the non-deterministic behaviour from the free-wheeling
method (Figure 6) is solved. The results show that this type
of exact time synchronisation is necessary when verifying
real-time dependent control functions with CAPE tools.

-300 -200 -100 0 100 200 300
-300

-250

-200

-150

-100

-50

0

Figure 7 Measured robot path with the new proposed time
synchronisation method.

6. CONCLUSION

In this paper a new time synchronisation method together
with a simulation architecture has been presented. Such a
method and architecture must be used when verifying and
developing real-time dependent control logics for ICS with
CAPE tools. It has been shown that without this
synchronisation method the result will be a non deterministic
verification. This non deterministic behaviour will indeed
introduce virtual verification problems such as; false collision
detection, wrong sensor signals etc. The proposed

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4444

synchronisation method together with the architecture has
been demonstrated to work on ICSs that are compatible with
the IEC 61131-3 standard. To implement this time
synchronisation method in an ICS a new scheduler, execution
controllers and replacement timers are necessary. For
industrial usefulness, these method-specific requirements can
be automatically generated for general IEC 61131-3
languages before the downloading of the control logic to the
ICS. Notwithstanding the problem that there might be few
ICS vendors that are 100% compatible with this standard, it
is nevertheless possible to use this method with certain
modifications.

One drawback with this method is that it produces some
overhead code for the time synchronisation that is not
necessary in the real application. However, if desirable, this
overhead can be removed before commissioning the real
application.

The test case scenario presented identifies problems that
might arise when working with a non-time-synchronised
verification method. From an industrial point of view, a time
synchronisation method is necessary when verifying complex
real-time dependent control functions. However, industrial
state of the art verification methods based on CAPE lack this
type of feature. Industries working with motion control
related problems lack the possibility to verify ICS for motion
control. It should be possible to extend this work and apply it
on PLCOpen general motion control blocks.

ACKNOWLEDGEMENT

This work is being funded by the Swedish Foundation for
Knowledge and Competence Development. The authors
gratefully thank Tetra Pak in Lund, Sweden, and Binar AB in
Trollhättan, Sweden, for all contributions and support.

REFERENCES

BINAR AB (2007-09-03) http://www.binar.se.
CHO, S. (2005) A distributed time-driven simulation method

for enabling real-time manufacturing shop floor
control. Computers and Industrial Engineering, 49,
572-590.

DANIELSSON, F. (1999) A distributed system architecture
for optimizing control logic in complex
manufacturing systems. IN YANG, Q. (Ed.) ISCA
12th international conference. Atlanta, USA.

DELMIA (2007-04-04) http://www.delmia.com.
FREUND, E., HYPKI, A., BAUER, R. & PENSKY, D. H.

(2002) Real-time Coupling of the 3D Workcell
Simulation System COSIMIR [registered trademark].
Bathurst, Australia, Charles Sturt University, Albury,
NSW 2640, Australia.

FURUSAWA, K., YOSHIKAWA, T (2002) Synchronization
mechanism in integrated simulation for
manufacturing systems. the 10th Mediterranean
Conference on Control and Automation - MED2002.
Lisbon, Portugal.

HELLGREN, A., FABIAN, M. & LENNARTSON, B.
(2005) On the execution of sequential function
charts. Control Engineering Practice, 13, 1283-1293.

IEC 61131-3 (2003) Programmable controller - Part 3:
Programming Languages, second edition.

LEBARON, T. & THOMPSON, K. (1998) Emulation of a
material delivery system. Proceedings of the 1998
Winter Simulation Conference, WSC. Part 2 (of 2),
Dec 13-16 1998. Washington, DC, USA, IEEE,
Piscataway, NJ, USA.

LEDIN, J. (2001) Simulation Engineering, Build better
embedded systems faster, Lawrence, USA, CMP
Books.

LEWIS, R. W. (1998) Programming industrial control
systems using IEC 1131-3, Revised editition,
London, Institution of Electrical Engineers.

LING, Z., CHEN, W. & YU, J. (2004) Research and
implementation of OPC server based on data access
specification. WCICA 2004 - Fifth World Congress
on Intelligent Control and Automation, Conference
Proceedings, Jun 15-19 2004. Hangzhou, China,
Institute of Electrical and Electronics Engineers Inc.,
Piscataway, United States.

NG, H. C. (2003) An integrated design, simulation and
programming environment for modular
manufacturing machine systems. Mechatronics
Research Group Faculty of Computing Sciences and
Engineering De Montfort University, United
Kingdom (Sponsored by the University of Skövde,
Sweden). De Montfort University.

OPC FOUNDATION (2007-04-05)
http://www.opcfoundation.org.

PLCOPEN (2007-09-18) http://www.plcopen.org.
PROCTOR, F. M. & SHACKLEFORD, W. P. (2001) Real-

time operating system timing jitter and its impact on
motor control. Boston, MA, United States, The
International Society for Optical Engineering.

QINGWEI MA, R. P. J., ROBERT LIPSET (2001)
Distributed Manufacturing Simulation Environment.
2001 Summer Computer Simulation Conference.

SCHLUDERMANN, H., KIRCHMAIR, T. &
VORDERWINKLER, M. (2000) Soft-
commissioning: hardware-in-the-loop-based
verification of controller software. Proceedings of
WSC 2000, Winter Simulation Conference, 10-13
Dec. 2000. Orlando, FL, USA, IEEE.

UGS (2007-04-04) http://www.ugs.com.
VISUALCOMPONENTS (2007-04-04)

http://www.visualcomponents.com.
XIANG, F. (2005) Towards real-time enabled Microsoft

Windows. Proceedings of the 5th ACM
international conference on Embedded software.
Jersey City, NJ, USA, ACM Press.

ZAEH, M. F., POERNBACHER, C. & MILBERG, J. (2005)
A model-based method to develop PLC software for
machine tools. CIRP Annals - Manufacturing
Technology, 54, 371-374.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4445

