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Abstract: The latest state-of-the-art Computer Aided Production Engineering (CAPE) simulation 
technology offers OPC integration for PLC verification. A critical drawback with this technology has 
been identified and described within this paper. A new time synchronisation method and a simulation 
architecture are therefore presented and proposed. The time synchronisation method together with the 
architecture can be used when verifying and developing real-time dependent control logic for industrial 
control systems, e.g. PLC with CAPE tools. The method described in this paper is general and should 
work on any PLCs that are compatible with the IEC 61131-3 standard. A test case was also carried out, 
showing that by disregarding time synchronisation it is impossible to verify real-time dependent PLC 
functions together with CAPE tools in a reliable way. However, the test case also shows that by applying 
the proposed time synchronisation method together with the described simulation architecture a 
successful industrial verification method is achieved. 

 
1. INTRODUCTION 

 

The term industrial control system (ICS) is a broad definition 
for programmable controllers used in industry to control 
machines or processes. An example of an ICS commonly 
used in industry today is the PLC (Programmable Logic 
Controller). A characteristic feature of ICSs is the 
reprogrammable control function that is described by the 
control code. The most common control code development 
and verification method is to program and verify the control 
code without any connection to a real process, instead using 
manual stimuli to simulate the real process. Other existing 
methods are to connect the real ICS to the real process 
(Furusawa, 2002) or to a specially built process hardware 
model  (mock-up) (Schludermann et al., 2000). Today, 
however, it is possible to verify and develop the control code 
against a virtual prototype using simulation software (Freund 
et al., 2002). One recent trend in conducting verification by 
means of a virtual prototype is to connect a real ICS to a 
CAPE simulation tool. CAPE (Computer Aided Production 
Engineering) is a classification for production-related 
simulation tools. The most common CAPE tools used for ICS 
development and verification are discrete event-based 
simulation (DES) and Computer Aided Robotics (CAR) (Ng, 
2003), (Cho, 2005), (Qingwei Ma, 2001). A common feature 
of all of these tools is their ability to simulate several types of 
production scenarios on different levels where a variety of 
robots, machines, manufacturing resources, control logic 
representation etc. are integrated into the simulation.  
 

The latest state-of-the-art technology offers OPC integration. 
OPC is a standard for information exchange between the ICS 
and its surrounding environment. OPC has and is still 
developed by the OPC Foundation (OPC Foundation, 2007-
04-05). The OPC server, which is vendor specific, is 
connected to the ICS (Ling et al., 2004). The OPC clients e.g. 

as implemented in CAPE tools, are general and can connect 
to any server. This makes it possible to connect to an ICS in a 
general way, even if the OPC server is vendor specific.  
 

This OPC connection makes the inclusion of a real ICS in a 
CAPE simulation possible. A simulated machine or process 
can thereby be controlled in the same way as it would be in 
reality. Examples of CAPE software with an OPC 
functionality include; Delmia Automation (Delmia, 2007-04-
04), Visual Components (VisualComponents, 2007-04-04) 
and Process Simulate (UGS, 2007-04-04).  This control code 
verification approach works well if the control function is 
event-driven. However, its efficacy is limited if the control 
function is time-dependent. Examples of time-dependent 
control functions include timers, servo control loops etc.  In 
essence, the problem is that a regular PC and its operating 
system is not a real-time system (Xiang, 2005), and a non 
real-time system is not designed to respond to time-
dependent signals in a deterministic way. Since most of 
today’s CAPE simulation tools are Windows or Unix-based 
there is obviously a problem with the verification of time-
dependent control functions. Even if it was possible to use 
CAPE tools in a real-time operating system, there would be 
time uncertainties due to the microprocessors in regular 
computers (Proctor and Shackleford, 2001). 
 

Connecting a real-time system to a non real-time system, 
without any time synchronisation mechanism, can be referred 
to as ‘free-wheeling’, since no common time exists. Despite 
of the fact that the method itself introduces time related 
problems, free-wheeling  appears to be the most commonly 
used method today when verifying the control code in real 
ICSs against CAPE simulations,  The most common solution 
found in the literature to the freewheeling problem is time 
synchronisation methods based on the assumption that the 
CAPE tool always runs faster than the ICS (Freund et al., 
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2002, Schludermann et al., 2000, Zaeh et al., 2005). 
According to this assumption, it should be possible to halt, 
when necessary, the faster CAPE tool in order to maintain 
real-time behaviour. However, these time synchronisation 
methods do not work for control functions with a time 
resolution that is close to, or indeed smaller than the CAPE 
cycle time.  
 

Another problem encountered, when verifying control 
functions against a complex simulation model, relates to the 
CAPE simulation performance. When one or more ICSs 
interact with an extensive plant model, the CAPE execution 
time can become an obstacle. A solution to this is to 
distribute the simulation to parallel CPU’s or computers 
(Ledin, 2001). However, in order to be able to properly 
handle distributed time-dependent simulations, both an 
architecture and a time synchronisation mechanism are 
required. 
 

A simulation architecture that includes a time 
synchronisation mechanism and supports distribution is 
presented in (Danielsson, 1999). The work reported in this 
paper uses a simulation-architecture, SDSP (Synchronised 
Distributed Simulation Protocol), which handles the time 
synchronisation between an emulated ICS and the CAPE tool. 
The time synchronisation mechanism guarantees real-time 
behaviours in a deterministic way by introducing virtual real-
time. The emulation of ICS is a technique used to obtain an 
exact representation of the real ICS (LeBaron and Thompson, 
1998). The ICS emulator used in (Danielsson 1999) has been 
extended to include a number of additional SDSP 
functionalities, thus making it possible to use it in 
conjunction with the time synchronisation mechanism.  To 
the author’s knowledge, no working general method currently 
exists that address the described problem for a real ICS 
connected to CAPE tools. 
 

The latest state-of-the-art CAPE tools offers OPC integration; 
however it is not possible to use this concept when verifying 
time dependent control functions as is shown and discussed 
in detail in this paper. To tackle this major drawback an 
extension of the work reported in (Danielsson 1999) is 
presented, in the form of a new method to handle time 
synchronisation with a real ICS. This method is based on 
general IEC 61131-3 languages and can thus be applied to a 
wide range of commercial ICSs.  
 

2. SDSP SIMULATION ARCHITECTURE 
 

Due to the lack of suitable deterministic methods for the 
verification of ICSs together with CAPE tools, an 
architecture for distributed simulation and time 
synchronisation - Synchronised Distributed Simulation 
Protocol (SDSP) - was formulated in (Danielsson, 1999). The 
concept is server-client based, with the server being 
responsible for managing the simulation. Management tasks 
include: 
 

• Communication with all simulation clients  
• A common synchronised time 
• Common simulation data, e.g., I/Os 
• Handling of distributed simulation 

 

Whilst the SDSP communication is mainly based on TCP/IP, 
other methods of communication are also possible, such as, 
for instance, DDE, OPC and shared memory. One of the most 
important tasks for the server is to manage each subset of 
simulations to form a time-uniform simulation. The way in 
which this can be accomplished is set out below.  
 

In order to use a CAPE tool in this concept, the tool must 
have an application programming interface that makes it 
possible to write a SDSP-client application that can handle 
the communication between the CAPE tool and the SDSP 
server. This is a common feature for many CAPE tools e.g. 
ROSE for Robcad and Tecnomatix .NET SDK for Process 
Simulate (UGS, 2007-04-04). 
 

In essence, the server contains common data (e.g., I/O values, 
servo values, and simulation parameters) and common logic. 
The server also contains a virtual time, tvirtual and a simulation 
state s, s={simulation start, simulation initial-write, 
simulation pre-write, simulation write, simulation pre-read, 
simulation read}. Initially, the server sets up the necessary 
structure in the database and sets the simulation state to start, 
s=simulation start. As a minimum requirement to form a 
simulation, the server needs information about the time step 
tstep, the formal start condition, simulation start condition, and 
the number of clients. The start condition tells the server 
when the entire simulation can commence, and generally it is 
set to be the total number of clients required to run the 
simulation, see Figure 1. tstep is the smallest time step that the 
simulation can handle. However, a mechanism allows a client 
to run with a different time step that is a multiple of tstep, than 
the rest of the simulation without sacrificing time 
synchronisation. For example, this mechanism can be used in 
discrete event simulations to delay the synchronisation for a 
specific client until tnext update. Normally tnext update is equal to 
tvirtual.  
 

A single client is considered as ready to start when it has 
been connected to the server and has joined the simulation. 
When simulation start condition = AND(client1, client2, …, 
clientn), where n is the number of clients in the simulation, is 
fulfilled, the initial write state s=simulation initial write is 
entered. This mechanism provides a deterministic start 
behaviour for the overall simulation. In the initial write state, 
each client has reached their client setup state where they are 
supposed to initialise their own data (e.g. all inputs and 
outputs are set to 0), whilst the simulation time tvirtual is set to 
-tstep. To enter the following states, the Synchronised 
condition must be fulfilled;  
synchronised = AND(client sync1, client sync2, …, client 
syncn). The client syncx signal indicates when a single 
simulation client has arrived the point when it is ready and 
has executed the current time step or that the synchronisation 
for the client has been delayed until tnext update_x;  
client syncx=OR(client ready signalx, tvirtual<tnext update_x), see 
Figure 2.  
 

After the simulation initial-write state, the simulation enters 
the simulation pre-read and then the simulation read state, 
see Figure 1. In synchronisation each client has reached the 
client read state, see Figure 2. At this state, each client is 
supposed to read data from the server. When all of the clients 
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have executed their client read task and thereby synchronised 
the simulation, then the simulation enters the pre-write state, 
s=simulation pre-write 
The simulation time, tvirtual, is updated to the next time step at 
the end of each simulation read state, s=simulation read   
tvirtual=tvirtual+tstep. This tight synchronisation procedure is 
necessary to prevent clients from acting in the wrong time 
space i.e. one time step before or after the desired time.  
 
 

simulation initial-write Call init write logic

simulation pre-read

simulation read
Call Read logic

simulation pre-write Call Pre-write logic

simulation write Call Write logic

P1
P1

P1

P1

simulation start Call init logicP1

P0
P1

Call Pre-read logicP1

 
Figure 1 States and associated actions for the overall 
simulation as represented in the SDSP server, described in 
SFC. 

At the same time all clients enter the client run state and are 
supposed to execute their main tasks, e.g., a program cycle 
for an ICS.  

 
Figure 2 States and associated actions for each client (sub-
simulation) as represented in the SDSP server, described in 
SFC. Note that in our SFC notation must the P1actions be 
completed before the N actions start. 

Logic can be assigned to each state in the simulation, e.g., a 
logic function can be called when the time is updated and 
another function can be called when the simulation is 

commenced, see logic action in Figure 1. These user-defined 
logics can be described in IEC 61131-3, C/C++ or SBASIC, 
which is an internal programming language in the SDSP 
server. User-defined logics can also be assigned to data 
variables, e.g., an I/O signal. Each time an assigned data 
variable is accessed, the desired user logic is called. With 
user-defined logics at the server level, it is easy to create an 
overall system logic that will operate at a specific time 
interval, record data at each time step, and act whenever a 
variable changes etc. 
 

3. ICS TIME-SYNCHRONISATION 
 

The SDSP simulation architecture presented above is 
designed to handle verifications of time-dependent control 
functions in ICSs connected to CAPE tools, i.e. to deal with 
the free-wheeling problem described previously in the 
introduction.  
 

The internal clock in an ICS controls the execution to 
guarantee the cycle time and to achieve deterministic 
behaviour. Due to this fundamental behaviour in the real ICS 
it has only been possible to incorporate emulated or 
simulated ICS in the SDSP simulation architecture. Even 
though an emulator is a good representation of the real ICS, a 
real ICS is nevertheless preferable in many situations. This is 
because of the lack of emulators coupled with the fact that 
creating an emulator can be extremely time-consuming,  
 

Even if it is possible to connect ICSs to the simulation 
architecture over OPC, it is generally not possible to directly 
time synchronise them with the mechanism within the 
architecture. The reason is that most commercially available 
ICSs are vendor specific and not open for new internal 
functions – such as SDSP – in the scheduler. Thus, there is a 
problem in adopting this synchronisation method to existing 
ICSs. To overcome this hurdle, a general method for time 
synchronisation of IEC61131-3 based ICSs is described in 
this section.  
 

In order to utilise the new time synchronisation method the 
following requirements must be fulfilled: 
 

• The ICS must support the IEC 61131-3 
programming language standard. 

• The ICS must be able to communicate with a regular 
computer, e.g. by OPC. 

• The entire simulation must utilise an architecture 
that offers a time synchronisation mechanism. 

 

IEC 61131 is an international standard for programmable 
controllers, and is divided into several parts. IEC 61131-3 
describes an ICS software structure, languages and program 
execution (Lewis, 1998).  The standard supports five 
different languages, two that are text-based, the structured 
text (ST) and instruction list (IL) and three that are graphical, 
namely, the ladder diagram (LD), function block diagram 
(FBD) and sequential function chart (SFC). IEC 61131-3 
covers all languages at syntax level but lacks a detailed 
definition on the execution level (Hellgren et al., 2005). An 
IEC 61131-3 project consists of a number of Program 
Organisation Units (POU). A POU can be a program, a 
function block, or a function.  
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In order to use the method presented in this paper, three 
modifications of the original control code to be verified need 
to be made. (1) A scheduler POU, which is used as a 
complement to the original scheduler, must be added to the 
control code. (2) All program POUs within the configuration 
need a specific execution control function. (3) All time 
dependent function blocks and functions  must be converted 
to deal with the virtual time. The marked sections in Figure 3 
represent these modifications and will be described below. 
 
3.1 The POU  scheduler (1) 
 

In order to implement a 
complementary scheduler, 
all POUs within the 
configuration must be set to 
the same priority, e.g. 1, and 
organised in the same task. 
The complementary sche-
duler POU is set to a higher 
priority, e.g.  0. This shall 
guarantee that the scheduler 
is executed first every 
program cycle. The sche-
duler communicates with the 
SDSP architecture through 
two synchronisation vari-
ables over e.g. OPC.  
 

When it is time to execute 
the control code in the ICS, 
the scheduler receives a 
signal from the server and 
the scheduler decides which of the other POUs should be 
executed by sending specific execution signals, see Figure 3.  
There is no standard or general way to halt the real-time 
clock on a real ICS, as demanded by the simulation 
architecture. Consequently, the scheduler also handles the 
virtual time, to, by reading the actual value from the 
simulation server. This time is then stored as a global 
resource. The resource is then used as a replacement for the 
real-time clock. 
 
3.2 Execution controller (2) 
 

To be able to control the execution order and timing of all 
POUs within a configuration, certain additional functionality 
must be added to each scheduled POU. This is accomplished 
by means of a specific “header and footer”. This execution 
control can be implemented for all IEC 61131-3 languages. 
The execution controller, described in pseudo code below, 
determines whether or not the desired program should run. 
IF NOT Simulated OR execution(task_i) 
   (*Regular program begins here*) 
    … 
   (*Regular program ends here*) 
END 
However, the graphical language SFC has a more complex 
execution order that requires another type of execution 
controller (Hellgren et al., 2005). An SFC consists of a series 
of steps and transitions, where each step can be associated 

with either one or a series of actions (Lewis, 1998), the 
behaviour of the action being determined by the action 
qualifier. For example the qualifier ‘N’ means that the action 
will execute while the step is active and the qualifier ‘L’ will 
execute for a limited time, defined by ‘T’.  According to the 
61131-3 standard (IEC 61131-3, 2003) each action is 
associated with an instance of an Action Control function 
block. This function block controls the activation and 
deactivation of the action, depending on the action qualifier 
that is used. Although it is not a requirement, according to the 
61131-3 standard that this function block actually exists (IEC 
61131-3, 2003), (Lewis, 1998), the activation and 
deactivation of the actions should nevertheless have the same 
behaviour that is specified within the action control function 
block. Due to the fact that some of the action qualifiers are 
time dependent, the ICS programming environment must 
offer access to modify the action control function block in 
order to be able to use the proposed method within a SFC 
POU. An example of an execution control function added to 
an action control function block is shown in Figure 4.  The 
execution control function block is implemented in CoDeSys 
(CoDeSys, 2007-05-02).  

 
Figure 4 Example of a function block implementation of an 
Action Control block. 

In Figure 4, ‘SFC execution signal’ is the execution signal 
that is sent from the scheduler when it is time to execute the 
SFC POU. 
In SFC the transitions between each step can also be time 
dependent, i.e. a particular step can be active for a specific 
amount of time.  This can be solved if it is possible to control 
these transitions. However should this not be possible, the 
same behaviour can be obtained within the actions. 
 
3.3 Time dependent functions (3) 
 

IEC  61131-3 contains 4 standard timer  function blocks, 
Timer On Delay (TON), Timer Off Delay (TOF), Timer 
Pulse (TP) and Real-Time Clock (RTC) (IEC 61131-3, 2003). 
However these function blocks can not be used directly, since 
they are usually based on the hardware clock. Therefore, 
special replacement timers are used. The replacement timers 
behave in the same manner as the regular ones, the only 
difference being that they are based on the virtual time 
received from the server. 
 

Figure 3 Description of the
supervisor POU and the
connection to the normal
POU’s. 
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There may also be other (no IEC 61131-3) vendor-specific 
functions that are hardware clock dependent, e.g., motion 
control blocks. Thus, in order to be able to use the proposed 
time synchronisation method these functions must also be 
upgraded to handle the virtual clock. 
 

For motion control, PLCOpen (PLCOpen, 2007-09-18) offers 
a motion control library specification based on IEC 61131-3. 
It is thus possible to implement this specification together 
with the proposed time synchronisation method and virtual 
time. 
 

4. APPLICATION TEST CASE  
 

To demonstrate the proposed time synchronisation method, a 
test case was set up. A real ICS from Binar (Binar AB, 2007-
09-03) was programmed to control a two dimensional servo 
controlled robot, see Figure 5. The control function is real-
time dependent due to servo control loops in the robot. A 
simulation model was created in a CAPE tool, RobCad (UGS, 
2007-04-04). The model represents the 3D geometry and 
kinematics of the robot. Two scenarios where carried out: 
In Scenario 1, the CAPE tool was connected to the ICS in an 
unsynchronised way (free-wheeling) currently provided by 
CAPE tools. Further, in scenario 2, the model was connected 
according to the synchronisation method proposed in this 
paper.  
 

To be able to utilise the new time synchronisation method, 
scenario 2, the following preparations were carried out in the 
ICS control logic: 
 

• All tasks in the ICS configuration were set to the 
same priority and the same cycle time. 

• A scheduler was implemented and added to the 
configuration.  

• All timers in the configuration were replaced with 
modified timers including virtual time. 

• An execution controller was added to each program 
• The servo control function blocks were replaced 

with new ones implying time synchronisation. 
 

The robot positions were measured in the CAPE tool and 
plotted, (1) scenario 1 with no time synchronisation , Figure 6, 
and (2) scenario 2 with the proposed time synchronisation 
method, in Figure 7. 
 

5. TEST CASE RESULT 
 

Figure 6 shows the result from the run when no time 
synchronisation is used, scenario 1. The enlarged part 
showing the non-deterministic behaviour when no time 
synchronisation is employed (compared to the pre-
programmed desired behaviour in Figure 5). This non-
deterministic behaviour is due to the free-wheeling problem 
described earlier. 

 
Figure 5 The pre-programmed Robot path used in scenario 1 
and 2. The figures represent the run order of the path and 
represent a 2D location (x, z). 
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Figure 6 Measured robot path with standard free-wheeling 
method used in CAPE tools. 

Figure 7 shows the result when the proposed time 
synchronisation method is used. The plot shows clearly that 
the non-deterministic behaviour from the free-wheeling 
method (Figure 6) is solved. The results show that this type 
of exact time synchronisation is necessary when verifying 
real-time dependent control functions with CAPE tools. 
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Figure 7 Measured robot path with the new proposed time 
synchronisation method. 

 
6. CONCLUSION 

 

In this paper a new time synchronisation method together 
with a simulation architecture has been presented. Such a 
method and architecture must be used when verifying and 
developing real-time dependent control logics for ICS with 
CAPE tools. It has been shown that without this 
synchronisation method the result will be a non deterministic 
verification. This non deterministic behaviour will indeed 
introduce virtual verification problems such as; false collision 
detection, wrong sensor signals etc. The proposed 
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synchronisation method together with the architecture has 
been demonstrated to work on ICSs that are compatible with 
the IEC 61131-3 standard. To implement this time 
synchronisation method in an ICS a new scheduler, execution 
controllers and replacement timers are necessary. For 
industrial usefulness, these method-specific requirements can 
be automatically generated for general IEC 61131-3 
languages before the downloading of the control logic to the 
ICS. Notwithstanding the problem that there might be few 
ICS vendors that are 100% compatible with this standard, it 
is nevertheless possible to use this method with certain 
modifications.  
 
One drawback with this method is that it produces some 
overhead code for the time synchronisation that is not 
necessary in the real application. However, if desirable, this 
overhead can be removed before commissioning the real 
application.   
 
The test case scenario presented identifies problems that 
might arise when working with a non-time-synchronised 
verification method. From an industrial point of view, a time 
synchronisation method is necessary when verifying complex 
real-time dependent control functions. However, industrial 
state of the art verification methods based on CAPE lack this 
type of feature. Industries working with motion control 
related problems lack the possibility to verify ICS for motion 
control. It should be possible to extend this work and apply it 
on PLCOpen general motion control blocks. 
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