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Abstract: An online fault detection and isolation scheme for nonlinear systems based on neurofuzzy 
modelling and pattern matching is developed in this paper. The system is first modelled offline by a 
neurofuzzy network using data obtained under normal operating conditions. Another neurofuzzy network 
is then used to model the residual, which is the difference between the output of the system and that from 
the neurofuzzy network. For online fault monitoring, it is necessary to construct first a fault database that 
contains fuzzy rules for all possible faults in the system. Recursive least squares algorithm is used to train 
the network online, from which the IF-THEN rules are extracted. Faults are isolated online by comparing 
these fuzzy rules with those in the fault database using a nearest neighbour classifier. A simulation 
example involving a nonlinear DC motor control system is used to demonstrate the implementation and 
performance of the proposed FDI scheme. 

 

1. INTRODUCTION 

Fault diagnosis of electrical and mechanical systems is very 
important in industrial applications, as it can improve the 
system reliability. Model-based method is commonly used 
for fault detection and isolation (FDI) of systems since no 
additional hardware is needed to implement the algorithm 
(Isermann, 2005). Faults of a system are determined by 
comparing the available system measurements with the 
information represented by the system model (Chen and 
Patton, 1999). The model-based FDI method works well if 
complete and accurate mathematical models of the systems 
being monitored are available (Korbicz et al., 2004). 
However, it is difficult, and some times impossible to obtain 
accurate models in practice, as they are complex with perhaps 
too highly nonlinear dynamics (Frank et al., 2000). 

Fuzzy systems allow symbolic generalisation of numerical 
data by fuzzy IF-THEN linguistic rules, which can be more 
readily understood by operators (de Miguel and Blázquez, 
2005). The time consuming tuning process can be tackled by 
the neural networks as the neural networks can learn the 
model parameters from input-output data obtained from 
system operations (Nelles, 2001). Recently, FDI techniques 
based on neurofuzzy networks (NFNs) are attracting 
immense interest (Patton et al., 2000). However, the focus of 
existing works is mainly on the learning ability of NFNs in 
fault classification and very few of them utilise the linguistic 
ability of NFNs to develop transparent fault diagnosis 
techniques. On the other hand, many research works are 
devoted to fault diagnosis of DC motors as motors are 
fundamental components in engineering systems, (Chan et al., 
2006). 

In this paper, neurofuzzy modelling and pattern matching are 
used for online FDI of nonlinear DC motor control systems. 

NFNs are being used as they have the generalisation and 
learning abilities of neural networks, in addition to the ability 
to incorporate fuzzy rules. The latter ability allows expert 
knowledge in linguistic form to be included and extracted 
from the NFN (Brown and Harris, 1994). From this ability, a 
linguistic description of the faults in terms of fuzzy IF-THEN 
rules can be extracted from the NFN for fault isolation (Mok 
and Chan, 2005). The FDI technique proposed here consists 
of four steps. The first step is to model the system using an 
NFN. The second step is to model the residual behaviours 
both under normal and faulty operating conditions using 
another NFN. The third step is to extract the behaviours in 
terms of IF-THEN rules from the residual NFN and store 
them in a fault database. The final step is to isolate the fault 
based on the current system behaviours and the patterns 
previously stored in the fault database by classifiers 
(Friedman and Kandel, 1999). 

2. PRELIMINARIES 

2.1  Structure of B-spline neural network 

 

Fig. 1. Neurofuzzy network 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4625 10.3182/20080706-5-KR-1001.2301



 
 

     

 

A B-spline neural network, also known as an NFN, can be 
considered as a three-layer feedforward neural network as 
shown in Fig. 1. In the input layer, inputs are fuzzified using 
B-spline basis functions (BSBFs) given by the following 
recurrent formulae (de Boor, 1972): 
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 (3.1) 

where )(xk
ρμ  is the kth membership function with order ρ 

(degree ρ – 1) and λ is the knot vector of the B-spline basis 
defining on the universe of discourse. 

Fuzzy inference is performed in the rule layer using the T-
norm (AND) operations for the antecedent rules. The 
algebraic products are used with the level of fulfilments of 
the antecedent rules represented by the multivariate BSBFs: 
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where Π is used as the T-norm operator in the network and p 
is the number of antecedent fuzzy rules or the number of 
weights in the network given by: 
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where j
im  is the number of fuzzy membership functions used 

in the jth input. 

The transformed inputs (3.2) can be written as: 
T

p xaxaxaxa )](...,),(),([)( 21=   (3.4) 

and the consequent rules expressed in terms of fuzzy 
singletons (constants) are stored in the network as the 
weights as follows: 

T
p xxxx )](...,),(),([)( 21 θθθθ =   (3.5) 

In the output layer, fuzzy outputs are inferred from each 
fuzzy rule and are aggregated to give a final numerical output 
by a defuzzifier in the output layer of the network. The 
defuzzification process is performed using the centre of 
gravity (COG) method, giving the network output as follows 
(Brown and Harris, 1994): 
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2.2  Online Training of NFN 

For simplicity, the argument x in (3.6) will be omitted in the 
following analysis. Let θ̂  be the estimate of the weights of 
the NFN. From (3.6), the estimate of the output of the NFN, 
ŷ , using the estimated weight, θ̂ , at the kth training data is: 

)1(ˆ)()(ˆ −= kkaky T θ   (3.7) 

The training of NFN involves finding a set of weights θ̂  that 
minimises the cost function: 
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where N is the number of training data, y(k) is the kth output 
in the training set. Since the network output is a linear 
function of the transformed network input and the network 
weights. The well known recursive least squares (RLS) 
method can be used to online estimate the weights, as given 
below (Wellstead and Zarrop, 1991): 
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and the covariance matrix P(k) is updated by: 
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To start the RLS method, θ̂  is often initialised to 0, and P to 
αI, where α is a positive constant, and I is the identity matrix. 
The initial setting of the covariance matrix reflects the 
uncertainty in the network weights being estimated. When 
the initial weights are known to be close to the true values, a 
small α is enough, typically 1 to 10. In contrast, a large α, 100 
to 1000, is required when there is no prior knowledge of the 
weights. 

2.3  Knowledge Extraction from Trained NFN 

As the weights of the NFN are obtained from the 
consequences of the fuzzy rules, fuzzy rules can be extracted 
from the weights of the NFN under certain conditions to 
provide a linguistic description of the system that it 
generalised. Consider the following fuzzy rule for a SISO 
NFN: 

Ri,j: IF x is Ai, THEN y is Bj (ci,j);  

for i = 1,…, mx and j = 1,…, my 

where Ai, Bj denote respectively the fuzzy membership 
functions in the input space with mx partitions and the output 
space with my partitions, ci,j is the rule confidence of Ri,j being 
true. The fuzzy sets used in the output space are evenly 
distributed with centres at { 1β  , 2β , …, 

ymβ }, and that the 

membership functions over the output space forms a partition 
of unity. If the COG method is used in the defuzzification 
process, the network weight is given by: 

∑
=

=
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j
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1
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Reversing this process, the rule confidences of the fuzzy rules 
for a given set of optimal weights θ of the network can be 
computed as follows (Brown and Harris, 1994): 

)(, iBji j
c θμ=   (3.12) 

The total number of rules extracted is given by: 

or pmn =   (3.13) 
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where mo is the number of fuzzy membership functions used 
in the output space.  

3. FDI USING NFN AND CLASSIFIER 

3.1  Design of Neurofuzzy Residual-model-based Method 

Model-based method is commonly used for FDI of 
engineering systems (Isermann, 2005). When the actual 
system output is different from the estimated model output, a 
fault is detected. Under different faulty conditions, the system 
may behave differently. Therefore, faults can be isolated 
based on their distinctive characteristics. However, complete 
and accurate mathematical models are not always available. 
In many occasions, empirical models are needed to construct 
from the operational data. However, these models may not be 
readily understood by operators due to their black-box nature. 
On the other hand, a transparent model with learning ability 
can be constructed for FDI purpose using the NFN. 

The proposed FDI technique consists of four main steps, as 
illustrated in Fig. 2. The first step is to build a model for the 
system, which is denoted by NFNsys. The second step is to 
build a residual model, NFNres, that models the residual 
generated between the system output and the model output. 
The third step is to construct a fault database containing 
information of symptoms under normal and faulty operations 
from the NFNres. The final step is to detect and isolate the 
happened fault online by comparing the current symptoms 
with those in the fault database. 

 

Fig. 2. Residual-model-based method 

3.2  Construction of Fault Database with Fuzzy Rules 

In order to isolate a fault from the system, some knowledge 
of the system behaviours under different fault conditions 
need to be available. When a fault is introduced into the 
system, the input-output relationships of the system will 
change and these changes are captured by the NFNres during 
online training. The knowledge extracted from the NFNres in 
terms of IF-THEN rules is stored in a fault database. 

To construct a fault database for a system, some known fault 
scenarios are first simulated in the system. Let nf be the 

number of possible faults in the system. As the fault-free case 
is also included in the fault database, the number of entries in 
the fault database is: nf + 1. For ease of comparison, a 
symptom vector, si rnℜ∈ , is formed from the fuzzy rule base 
extracted from the NFNres for the ith fault. The component of 
the symptom vector is in fact the rule confidence of each 
fuzzy rule being true in the rule base, as given by: 

 T
mppmm yyy

ccccccs ]...,,...,,...,,,...,,[ ,1,,21,2,11,1=  (3.14) 

The full fault database in matrix form, rf nnD ×+ℜ∈ )1( , is 
formed by incorporating all the symptom vectors, as given by: 

 T
n f

sssD ]...,,,[ 10=   (3.15) 

where s0 is the fault-free symptom vector, and si (i = 1, …, nf), 
for all possible fault cases. The symptom space in terms of 
fuzzy IF-THEN rules is encoded into the symptom vectors 
which are stored in the database to be used later for fault 
classification. 

3.3  Classification of Fault by Nearest Neighbour Classifier 

Pattern classification by distance functions is one of the 
earliest concepts in pattern recognition (Friedman and Kandel, 
1999). The goal of pattern classification is to associate a class 
with the given input pattern. For classification, patterns are 
usually first reduced to features, where the features of 
different classes should be different and separated from each 
other. 

After a fault database has been constructed, faults can then be 
readily isolated online from input-output data of the operating 
system. Fault or fault-free cases are diagnosed by comparing 
the current symptom vector obtained online through the 
NFNres with those stored in the fault database, as shown in 
Fig. 2. The fault classification can be achieved by a simple, 
yet robust nearest neighbour classifier (NNC), which is a 
geometric classifier based on the minimal Euclidean distance 
(Friedman and Kandel, 1999). 

When the FDI scheme starts, the weights of NFNres are 
updated recursively by the RLS method in each sampling 
interval, and fuzzy rules are extracted from the updated 
weights for describing the current residual dynamics in a 
linguistic manner. These IF-THEN rules are then encoded 
into a symptom vector based on the rule confidences, which 
is then used for classification. For a given symptom vector, it 
is matched with the symptom patterns stored in the fault 
database according to the minimal distance. 

Let f = {f0, f1,…, 
fnf } 1+ℜ∈ fn  be the fault classes. The NNC 

isolates the fault, if any, by matching the faults in the fault 
database, D. The Euclidean distances between the symptom 
vector of the current state, s(k), and that of the ith fault stored 
in the database are given by: 

( ) fi
T
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1

=−−=−=  (3.16) 

The NNC classifies s(k) as fj such that dj(k) is a minimum, 
that is: 

Residual 
Generation 

residuals 

System 

faults 

input system output 

Residual Model 
(NFNres) 

Fault 
Database 

System Model 
(NFNsys) 

Fault Detection 
and Isolation 

model output 

symptoms fault diagnosis
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fij niskskd ,...,0,)(min)( =−=  (3.17) 

The shorter is the distance, the higher is the match, and hence 
the winner. If the minimum is achieved by several j’s, all the 
fj are selected as the possible faults and further investigation 
is needed to handle the case. If f0 is not selected as the winner, 
then a fault has occurred and is isolated accordingly. 

4. DC MOTOR EXAMPLE 

4.1  System Equations 

Consider a DC motor with a shunt field circuit described by 
the following set of nonlinear ordinary differential equations 
(Watanabe et al., 1985): 
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where if is the field current, ia is the armature current, ω is the 
rotational speed, and v is the input voltage. The system 
parameter for simulating the DC motor is given in Table 1. 

Table 1. Parameters of DC motor 

Symbol Parameter Value 

Rf Field resistance 50 Ω 

Lf Field inductance 20 H 

Ra Armature resistance 3.8 Ω 

La Armature inductance 0.5 H 

D Viscous resistance 0.042 Nm•s/rad 

J Moment of inertia 0.4 kgm2 

M Mutual inductance 0.221 H 

 

The system is simulated using Runge-Kutta method with a 
time step of 0.1s. The angular speed of the motor is 
controlled by a digital PI controller with a sampling interval 
of 1s: 
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where z-1 is the backward shift operator, KP and KI are 
respectively the proportional and integral gains of the 
controller, and ωsp is the set-point of ω. The parameters of the 
PI controller are selected by trials and errors as: KP = 1 and 
KI = 0.2. Gaussian noises with zero mean and standard 
deviations of 0.1A and 1rad/s are added to i and ω 
respectively. An example of the controllable input v and the 
measurable outputs i = if + ia and ω are shown in Fig. 3. The 

angular speed of the motor is controlled by the PI controller, 
which takes about 60s to settle after a step change in the set-
point. A cycle of step changes in the set-point is applied to 
the closed-loop system and the closed-loop output is shown 
in Fig. 3. As the purpose of the example is to illustrate the 
performance of the proposed FDI technique, there is no 
attempt to further improve the performance of the PI 
controller. 

 

Fig. 3. Input and output of the DC motor 

4.2  System Faults 

There are four types of fault scenarios considered in the 
system (Watanabe et al., 1985): (1) a fault in the brush in the 
rectifier that leads to an increase in the resistance Ra; (2) 
disconnection of the magnetic circuit of the motor that leads 
to a decrease in the values of La and M; (3) degradation of the 
insulation of the armature circuit that leads to a decrease in 
the values of M, Ra, and La; and (4) impairment of the shaft 
supports that leads to an increase in the value of D. Nine 
scenarios including eight fault cases and the fault-free case 
are considered here, as summarised in Table 2. It is assumed 
that the change in these parameters occurred abruptly at 30s 
in the simulations. 

Table 2. Faulty conditions of DC motor 

Fault Parameter Change 

0 ––– ––– 

1 Ra + 5% 

2 Ra + 10% 

3 La, M + 5% 

4 La, M + 10% 

5 M, La, Ra + 5% 

6 M, La, Ra + 10% 

7 D + 5% 

8 D + 10% 
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4.3  System and Residual Modellings 

In this example, the input of the system model, NFNsys, is: x(k) 
= [v(k-1), i(k-1), ω(k-1)]T, while the output of the model is the 
predicted angular speed of the motor: y(k) = )(ˆ kω . The 
ranges of v, i, and ω are respectively 60 to 130V, 7 to 22A,  
and 90 to 150rad/s. The linguistic variables for the input of 
NFNsys are: Small (S), Medium (M), and Large (L), as shown 
in Fig. 4. The number of membership functions, mi, for each 
input is 3, and the order of basis functions, ρ, is 3.  

 

Fig. 4. Input spaces of neurofuzzy model 

From (3.3), the total number of weights in the NFNsys, p, is 
27. The network weights, θ, are initialised to 0 and the initial 
covariance matrix is set to 1000I. The NFNsys is trained using 
data obtained from 1 to 540s. It is shown in Fig. 5 that 

)(ˆ kω follows closely the actual motor speed after training for 
250s. The recursively updated network weights are also 
shown in Fig. 5. The learning process of NFNsys is terminated 
after the network weights are seen to have approached some 
constant values after several step changes in the set-point, as 
the modelling error becomes very small. 

 

Fig. 5. Training of system model 

Similarly, the neurofuzzy residual model, NFNres, is set up 
with the same inputs of the NFNsys, but the output is now 

)(ˆ kr  instead of )(ˆ kω  in the NFNsys. The range of r is -5 to 
5rad/s. The network weights are initialised to 0 and the initial 
covariance matrix is set to I, as the residual is close to 0. The 
training of the residual model NFNres for the period from 1 to 
540s is shown in Fig. 6. 

 

Fig. 6. Training of residual model 

4.4  Construction of Fault Database 

From (3.13), there are 81 fuzzy rules that can be extracted 
from NFNres. These IF-THEN rules describe the behaviours 
of the nonlinear residual and can be helpful to the operator to 
better understand the operation of the system. Each of the 9 
fault conditions given in Table 2 is simulated separately with 
the change in the parameters occurring abruptly at 30s. In 
each scenario, a symptom vector is obtained from NFNres 
after its weights have converged, as described in Section 3.2. 
The behaviours of the residual can now be described in 
numerical terms by the symptom vector or linguistically by 
the corresponding fuzzy rules extracted in the form of input-
output relationships of the DC motor. These symptom vectors 
are stored in a fault database that has a dimension of 9×81, as 
illustrated in Fig. 7. The rule confidences are represented in 
greyscale ranging from full confidence (black) to no 
confidence (white). 

 

Fig. 7. Fault database 
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4.5  FDI Results 

After the fault database is constructed, the proposed FDI 
technique is applied to detect the 9 faults given in Table 2. 
The fault isolated by the proposed FDI scheme is shown in 
Fig. 8. In all cases, the proposed FDI technique has selected 
the fault-free case before faults are being introduced into the 
system. After a fault has occurred, faults other than the fault-
free case are selected by the proposed FDI technique, 
indicating faults have occurred in the system. The proposed 
FDI technique has successfully isolated the correct fault in all 
cases after the weights of NFNres have settled on some 
constant values. 

 

Fig. 8. FDI results (row 1: fault 0-1; row 2: fault 2-3; row 3: 
fault 4-5; row 4: fault 6-7; row 5: fault 8) 

5. CONCLUSIONS 

In this paper, an online FDI scheme based on neurofuzzy 
networks is proposed for monitoring nonlinear systems. 
Fuzzy rules describing the residual behaviours under different 
faulty operations are extracted from the neurofuzzy model 
and are stored into a fault database. The fault can then be 

isolated online based on the current behaviours and the 
patterns stored in the fault database by a nearest neighbour 
classifier. A simulation example involving a nonlinear DC 
motor control system is used to illustrate the implementation 
and performance of the proposed FDI scheme. It is shown 
that the proposed FDI scheme has successfully isolated the 
faults introduced in the DC motor. 

REFERENCES 

Brown, M. and C. Harris (1994). Neurofuzzy Adaptive 
Modelling and Control, Prentice Hall, New York. 

Chan, C.W., H. Song, and H.Y. Zhang (2006). Application of 
fully decoupled parity equation in fault detection and 
identification of DC motors. IEEE Transactions on 
Industrial Electronics, 53(4), 1277–1284. 

Chen, J. and R.J. Patton (1999). Robust model-based fault 
diagnosis for dynamic systems, Kluwer Academic 
Publishers, Boston; Mass. 

de Boor, C. (1972). On calculating with B-splines. Journal of 
Approximation Theory, 6(1), 50-62. 

de Miguel, L.J. and L. F. Blázquez (2005). Fuzzy logic-based 
decision-making for fault diagnosis in a DC motor. 
Engineering Applications of Artificial Intelligence, 
18(4) ,423–450. 

Frank, P.M., S.X. Ding, and B. Köppen-Seliger (2000). 
Current developments in the theory of FDI. Proceeding 
of IFAC Symposium on Fault Detection, Supervision and 
Safety of Technical Processes, Budapest, Hungary, 1, 
16–27. 

Friedman, M. and A. Kandel (1999). Introduction to pattern 
recognition: statistical, structural, neural, and fuzzy 
logic approaches, World Scientific, Singapore. 

Isermann, R. (2005) Model-based fault-detection and 
diagnosis - status and applications. Annual Reviews in 
Control, 29(1), 71–85. 

Korbicz, J., J.M. Kościelny, Z. Kowalczuk, and W. Cholewa 
(Eds.) (2004). Fault Diagnosis. Models, Artificial 
Intelligence, Applications, Springer-Verlag: Berlin. 

Mok, H.T. and C.W. Chan (2005). Online fault diagnosis of 
nonlinear systems based on neurofuzzy networks, 
Proceeding of 16th IFAC World Congress, Prague, 
Czech Republic. 

Nelles, O. (2001). Nonlinear System Identification. Springer-
Verlag, Berlin. 

Patton, R.J. , F.J. Uppal, and C.J. Lopez-Toribio (2000). Soft 
computing approaches to fault diagnosis for dynamic 
systems: A survey. Proceeding of IFAC Symposium on 
Fault Detection, Supervision and Safety for Technical 
Processes, Budapest, Hungary, 1, 303–315. 

Watanabe, K., M. Sasaki, and D.M. Himmelblau (1985). 
Determination of optimal measuring sites for fault-
detection of nonlinear-systems. International Journal of 
Systems Science, 16(11), 1345–1363. 

Wellstead, P.E. and M.B. Zarrop (1991). Self-tuning Systems: 
Control and Signal Processing, Wiley, Chichester. 

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4630


