

Neurofuzzy Modelling and Pattern Matching for Online Fault Detection
and Isolation of Nonlinear DC Motors

H. T. Mok and C. W. Chan

Department of Mechanical Engineering, The University of Hong Kong, Hong Kong
(e-mail: htmok@graduate.hku.hk; mechan@hku.hk)

Abstract: An online fault detection and isolation scheme for nonlinear systems based on neurofuzzy
modelling and pattern matching is developed in this paper. The system is first modelled offline by a
neurofuzzy network using data obtained under normal operating conditions. Another neurofuzzy network
is then used to model the residual, which is the difference between the output of the system and that from
the neurofuzzy network. For online fault monitoring, it is necessary to construct first a fault database that
contains fuzzy rules for all possible faults in the system. Recursive least squares algorithm is used to train
the network online, from which the IF-THEN rules are extracted. Faults are isolated online by comparing
these fuzzy rules with those in the fault database using a nearest neighbour classifier. A simulation
example involving a nonlinear DC motor control system is used to demonstrate the implementation and
performance of the proposed FDI scheme.

1. INTRODUCTION

Fault diagnosis of electrical and mechanical systems is very
important in industrial applications, as it can improve the
system reliability. Model-based method is commonly used
for fault detection and isolation (FDI) of systems since no
additional hardware is needed to implement the algorithm
(Isermann, 2005). Faults of a system are determined by
comparing the available system measurements with the
information represented by the system model (Chen and
Patton, 1999). The model-based FDI method works well if
complete and accurate mathematical models of the systems
being monitored are available (Korbicz et al., 2004).
However, it is difficult, and some times impossible to obtain
accurate models in practice, as they are complex with perhaps
too highly nonlinear dynamics (Frank et al., 2000).

Fuzzy systems allow symbolic generalisation of numerical
data by fuzzy IF-THEN linguistic rules, which can be more
readily understood by operators (de Miguel and Blázquez,
2005). The time consuming tuning process can be tackled by
the neural networks as the neural networks can learn the
model parameters from input-output data obtained from
system operations (Nelles, 2001). Recently, FDI techniques
based on neurofuzzy networks (NFNs) are attracting
immense interest (Patton et al., 2000). However, the focus of
existing works is mainly on the learning ability of NFNs in
fault classification and very few of them utilise the linguistic
ability of NFNs to develop transparent fault diagnosis
techniques. On the other hand, many research works are
devoted to fault diagnosis of DC motors as motors are
fundamental components in engineering systems, (Chan et al.,
2006).

In this paper, neurofuzzy modelling and pattern matching are
used for online FDI of nonlinear DC motor control systems.

NFNs are being used as they have the generalisation and
learning abilities of neural networks, in addition to the ability
to incorporate fuzzy rules. The latter ability allows expert
knowledge in linguistic form to be included and extracted
from the NFN (Brown and Harris, 1994). From this ability, a
linguistic description of the faults in terms of fuzzy IF-THEN
rules can be extracted from the NFN for fault isolation (Mok
and Chan, 2005). The FDI technique proposed here consists
of four steps. The first step is to model the system using an
NFN. The second step is to model the residual behaviours
both under normal and faulty operating conditions using
another NFN. The third step is to extract the behaviours in
terms of IF-THEN rules from the residual NFN and store
them in a fault database. The final step is to isolate the fault
based on the current system behaviours and the patterns
previously stored in the fault database by classifiers
(Friedman and Kandel, 1999).

2. PRELIMINARIES

2.1 Structure of B-spline neural network

Fig. 1. Neurofuzzy network

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4625 10.3182/20080706-5-KR-1001.2301

A B-spline neural network, also known as an NFN, can be
considered as a three-layer feedforward neural network as
shown in Fig. 1. In the input layer, inputs are fuzzified using
B-spline basis functions (BSBFs) given by the following
recurrent formulae (de Boor, 1972):

⎩
⎨
⎧ ∈

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=

+

−
+

++

+−

−+

otherwise
xif

x

x
x

x
x

x

kk
k

k
kk

k
k

kk

k
k

,0
),[,1

)(

)()()(

11

1
1

1

1

1

λλ
μ

μ
λλ

λ
μ

λλ
λ

μ ρ

ρ

ρρ

ρ

ρ

 (3.1)

where)(xk
ρμ is the kth membership function with order ρ

(degree ρ – 1) and λ is the knot vector of the B-spline basis
defining on the universe of discourse.

Fuzzy inference is performed in the rule layer using the T-
norm (AND) operations for the antecedent rules. The
algebraic products are used with the level of fulfilments of
the antecedent rules represented by the multivariate BSBFs:

pixxa
n

j
kxi j

,...,1,)()(
1

== ∏
=

ρμ (3.2)

where Π is used as the T-norm operator in the network and p
is the number of antecedent fuzzy rules or the number of
weights in the network given by:

∏
=

=
n

j

j
imp

1

 (3.3)

where j
im is the number of fuzzy membership functions used

in the jth input.

The transformed inputs (3.2) can be written as:
T

p xaxaxaxa)](...,),(),([)(21= (3.4)

and the consequent rules expressed in terms of fuzzy
singletons (constants) are stored in the network as the
weights as follows:

T
p xxxx)](...,),(),([)(21 θθθθ = (3.5)

In the output layer, fuzzy outputs are inferred from each
fuzzy rule and are aggregated to give a final numerical output
by a defuzzifier in the output layer of the network. The
defuzzification process is performed using the centre of
gravity (COG) method, giving the network output as follows
(Brown and Harris, 1994):

θθ
θ

)()(
)(

)(
)(

1
1

1 xaxa
xa

xa
xy T

p

i
iip

i i

p

i ii === ∑
∑

∑
=

=

= (3.6)

2.2 Online Training of NFN

For simplicity, the argument x in (3.6) will be omitted in the
following analysis. Let θ̂ be the estimate of the weights of
the NFN. From (3.6), the estimate of the output of the NFN,
ŷ , using the estimated weight, θ̂ , at the kth training data is:

)1(ˆ)()(ˆ −= kkaky T θ (3.7)

The training of NFN involves finding a set of weights θ̂ that
minimises the cost function:

()∑
=

−=
N

k
kykyJ

1

2)(ˆ)((3.8)

where N is the number of training data, y(k) is the kth output
in the training set. Since the network output is a linear
function of the transformed network input and the network
weights. The well known recursive least squares (RLS)
method can be used to online estimate the weights, as given
below (Wellstead and Zarrop, 1991):

)()1()(1
)]1(ˆ)()()[()1()1(ˆ)(ˆ

kakPka
kkakykakPkk T

T

−+
−−−

+−=
θθθ (3.9)

and the covariance matrix P(k) is updated by:

)()1()(1
)1()()()1()1()(

kakPka
kPkakakPkPkP T

T

−+
−−

−−= (3.10)

To start the RLS method, θ̂ is often initialised to 0, and P to
αI, where α is a positive constant, and I is the identity matrix.
The initial setting of the covariance matrix reflects the
uncertainty in the network weights being estimated. When
the initial weights are known to be close to the true values, a
small α is enough, typically 1 to 10. In contrast, a large α, 100
to 1000, is required when there is no prior knowledge of the
weights.

2.3 Knowledge Extraction from Trained NFN

As the weights of the NFN are obtained from the
consequences of the fuzzy rules, fuzzy rules can be extracted
from the weights of the NFN under certain conditions to
provide a linguistic description of the system that it
generalised. Consider the following fuzzy rule for a SISO
NFN:

Ri,j: IF x is Ai, THEN y is Bj (ci,j);

for i = 1,…, mx and j = 1,…, my

where Ai, Bj denote respectively the fuzzy membership
functions in the input space with mx partitions and the output
space with my partitions, ci,j is the rule confidence of Ri,j being
true. The fuzzy sets used in the output space are evenly
distributed with centres at { 1β , 2β , …,

ymβ }, and that the

membership functions over the output space forms a partition
of unity. If the COG method is used in the defuzzification
process, the network weight is given by:

∑
=

=
ym

j
jjii c

1
, βθ (3.11)

Reversing this process, the rule confidences of the fuzzy rules
for a given set of optimal weights θ of the network can be
computed as follows (Brown and Harris, 1994):

)(, iBji j
c θμ= (3.12)

The total number of rules extracted is given by:

or pmn = (3.13)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4626

where mo is the number of fuzzy membership functions used
in the output space.

3. FDI USING NFN AND CLASSIFIER

3.1 Design of Neurofuzzy Residual-model-based Method

Model-based method is commonly used for FDI of
engineering systems (Isermann, 2005). When the actual
system output is different from the estimated model output, a
fault is detected. Under different faulty conditions, the system
may behave differently. Therefore, faults can be isolated
based on their distinctive characteristics. However, complete
and accurate mathematical models are not always available.
In many occasions, empirical models are needed to construct
from the operational data. However, these models may not be
readily understood by operators due to their black-box nature.
On the other hand, a transparent model with learning ability
can be constructed for FDI purpose using the NFN.

The proposed FDI technique consists of four main steps, as
illustrated in Fig. 2. The first step is to build a model for the
system, which is denoted by NFNsys. The second step is to
build a residual model, NFNres, that models the residual
generated between the system output and the model output.
The third step is to construct a fault database containing
information of symptoms under normal and faulty operations
from the NFNres. The final step is to detect and isolate the
happened fault online by comparing the current symptoms
with those in the fault database.

Fig. 2. Residual-model-based method

3.2 Construction of Fault Database with Fuzzy Rules

In order to isolate a fault from the system, some knowledge
of the system behaviours under different fault conditions
need to be available. When a fault is introduced into the
system, the input-output relationships of the system will
change and these changes are captured by the NFNres during
online training. The knowledge extracted from the NFNres in
terms of IF-THEN rules is stored in a fault database.

To construct a fault database for a system, some known fault
scenarios are first simulated in the system. Let nf be the

number of possible faults in the system. As the fault-free case
is also included in the fault database, the number of entries in
the fault database is: nf + 1. For ease of comparison, a
symptom vector, si rnℜ∈ , is formed from the fuzzy rule base
extracted from the NFNres for the ith fault. The component of
the symptom vector is in fact the rule confidence of each
fuzzy rule being true in the rule base, as given by:

 T
mppmm yyy

ccccccs]...,,...,,...,,,...,,[,1,,21,2,11,1= (3.14)

The full fault database in matrix form, rf nnD ×+ℜ∈)1(, is
formed by incorporating all the symptom vectors, as given by:

 T
n f

sssD]...,,,[10= (3.15)

where s0 is the fault-free symptom vector, and si (i = 1, …, nf),
for all possible fault cases. The symptom space in terms of
fuzzy IF-THEN rules is encoded into the symptom vectors
which are stored in the database to be used later for fault
classification.

3.3 Classification of Fault by Nearest Neighbour Classifier

Pattern classification by distance functions is one of the
earliest concepts in pattern recognition (Friedman and Kandel,
1999). The goal of pattern classification is to associate a class
with the given input pattern. For classification, patterns are
usually first reduced to features, where the features of
different classes should be different and separated from each
other.

After a fault database has been constructed, faults can then be
readily isolated online from input-output data of the operating
system. Fault or fault-free cases are diagnosed by comparing
the current symptom vector obtained online through the
NFNres with those stored in the fault database, as shown in
Fig. 2. The fault classification can be achieved by a simple,
yet robust nearest neighbour classifier (NNC), which is a
geometric classifier based on the minimal Euclidean distance
(Friedman and Kandel, 1999).

When the FDI scheme starts, the weights of NFNres are
updated recursively by the RLS method in each sampling
interval, and fuzzy rules are extracted from the updated
weights for describing the current residual dynamics in a
linguistic manner. These IF-THEN rules are then encoded
into a symptom vector based on the rule confidences, which
is then used for classification. For a given symptom vector, it
is matched with the symptom patterns stored in the fault
database according to the minimal distance.

Let f = {f0, f1,…,
fnf } 1+ℜ∈ fn be the fault classes. The NNC

isolates the fault, if any, by matching the faults in the fault
database, D. The Euclidean distances between the symptom
vector of the current state, s(k), and that of the ith fault stored
in the database are given by:

() fi
T

iii niskssksskskd ,...,0,))(())(()()(2
1

=−−=−= (3.16)

The NNC classifies s(k) as fj such that dj(k) is a minimum,
that is:

Residual
Generation

residuals

System

faults

input system output

Residual Model
(NFNres)

Fault
Database

System Model
(NFNsys)

Fault Detection
and Isolation

model output

symptoms fault diagnosis

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4627

fij niskskd ,...,0,)(min)(=−= (3.17)

The shorter is the distance, the higher is the match, and hence
the winner. If the minimum is achieved by several j’s, all the
fj are selected as the possible faults and further investigation
is needed to handle the case. If f0 is not selected as the winner,
then a fault has occurred and is isolated accordingly.

4. DC MOTOR EXAMPLE

4.1 System Equations

Consider a DC motor with a shunt field circuit described by
the following set of nonlinear ordinary differential equations
(Watanabe et al., 1985):

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−−=

+−−=

+−=

ωω

ω

J
Dii

J
M

v
L

i
L
Mi

L
R

i

v
L

i
L
R

i

af

a
f

a
a

a

a
a

f
f

f

f
f

&

&

&

1

1

 (3.18)

where if is the field current, ia is the armature current, ω is the
rotational speed, and v is the input voltage. The system
parameter for simulating the DC motor is given in Table 1.

Table 1. Parameters of DC motor

Symbol Parameter Value

Rf Field resistance 50 Ω

Lf Field inductance 20 H

Ra Armature resistance 3.8 Ω

La Armature inductance 0.5 H

D Viscous resistance 0.042 Nm•s/rad

J Moment of inertia 0.4 kgm2

M Mutual inductance 0.221 H

The system is simulated using Runge-Kutta method with a
time step of 0.1s. The angular speed of the motor is
controlled by a digital PI controller with a sampling interval
of 1s:

[])()(
)1(

)(1 kk
z

K
Kkv sp

I
P ωω −⎥

⎦

⎤
⎢
⎣

⎡
−

+= −
 (3.19)

where z-1 is the backward shift operator, KP and KI are
respectively the proportional and integral gains of the
controller, and ωsp is the set-point of ω. The parameters of the
PI controller are selected by trials and errors as: KP = 1 and
KI = 0.2. Gaussian noises with zero mean and standard
deviations of 0.1A and 1rad/s are added to i and ω
respectively. An example of the controllable input v and the
measurable outputs i = if + ia and ω are shown in Fig. 3. The

angular speed of the motor is controlled by the PI controller,
which takes about 60s to settle after a step change in the set-
point. A cycle of step changes in the set-point is applied to
the closed-loop system and the closed-loop output is shown
in Fig. 3. As the purpose of the example is to illustrate the
performance of the proposed FDI technique, there is no
attempt to further improve the performance of the PI
controller.

Fig. 3. Input and output of the DC motor

4.2 System Faults

There are four types of fault scenarios considered in the
system (Watanabe et al., 1985): (1) a fault in the brush in the
rectifier that leads to an increase in the resistance Ra; (2)
disconnection of the magnetic circuit of the motor that leads
to a decrease in the values of La and M; (3) degradation of the
insulation of the armature circuit that leads to a decrease in
the values of M, Ra, and La; and (4) impairment of the shaft
supports that leads to an increase in the value of D. Nine
scenarios including eight fault cases and the fault-free case
are considered here, as summarised in Table 2. It is assumed
that the change in these parameters occurred abruptly at 30s
in the simulations.

Table 2. Faulty conditions of DC motor

Fault Parameter Change

0 ––– –––

1 Ra + 5%

2 Ra + 10%

3 La, M + 5%

4 La, M + 10%

5 M, La, Ra + 5%

6 M, La, Ra + 10%

7 D + 5%

8 D + 10%

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4628

4.3 System and Residual Modellings

In this example, the input of the system model, NFNsys, is: x(k)
= [v(k-1), i(k-1), ω(k-1)]T, while the output of the model is the
predicted angular speed of the motor: y(k) =)(ˆ kω . The
ranges of v, i, and ω are respectively 60 to 130V, 7 to 22A,
and 90 to 150rad/s. The linguistic variables for the input of
NFNsys are: Small (S), Medium (M), and Large (L), as shown
in Fig. 4. The number of membership functions, mi, for each
input is 3, and the order of basis functions, ρ, is 3.

Fig. 4. Input spaces of neurofuzzy model

From (3.3), the total number of weights in the NFNsys, p, is
27. The network weights, θ, are initialised to 0 and the initial
covariance matrix is set to 1000I. The NFNsys is trained using
data obtained from 1 to 540s. It is shown in Fig. 5 that

)(ˆ kω follows closely the actual motor speed after training for
250s. The recursively updated network weights are also
shown in Fig. 5. The learning process of NFNsys is terminated
after the network weights are seen to have approached some
constant values after several step changes in the set-point, as
the modelling error becomes very small.

Fig. 5. Training of system model

Similarly, the neurofuzzy residual model, NFNres, is set up
with the same inputs of the NFNsys, but the output is now

)(ˆ kr instead of)(ˆ kω in the NFNsys. The range of r is -5 to
5rad/s. The network weights are initialised to 0 and the initial
covariance matrix is set to I, as the residual is close to 0. The
training of the residual model NFNres for the period from 1 to
540s is shown in Fig. 6.

Fig. 6. Training of residual model

4.4 Construction of Fault Database

From (3.13), there are 81 fuzzy rules that can be extracted
from NFNres. These IF-THEN rules describe the behaviours
of the nonlinear residual and can be helpful to the operator to
better understand the operation of the system. Each of the 9
fault conditions given in Table 2 is simulated separately with
the change in the parameters occurring abruptly at 30s. In
each scenario, a symptom vector is obtained from NFNres
after its weights have converged, as described in Section 3.2.
The behaviours of the residual can now be described in
numerical terms by the symptom vector or linguistically by
the corresponding fuzzy rules extracted in the form of input-
output relationships of the DC motor. These symptom vectors
are stored in a fault database that has a dimension of 9×81, as
illustrated in Fig. 7. The rule confidences are represented in
greyscale ranging from full confidence (black) to no
confidence (white).

Fig. 7. Fault database

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4629

4.5 FDI Results

After the fault database is constructed, the proposed FDI
technique is applied to detect the 9 faults given in Table 2.
The fault isolated by the proposed FDI scheme is shown in
Fig. 8. In all cases, the proposed FDI technique has selected
the fault-free case before faults are being introduced into the
system. After a fault has occurred, faults other than the fault-
free case are selected by the proposed FDI technique,
indicating faults have occurred in the system. The proposed
FDI technique has successfully isolated the correct fault in all
cases after the weights of NFNres have settled on some
constant values.

Fig. 8. FDI results (row 1: fault 0-1; row 2: fault 2-3; row 3:
fault 4-5; row 4: fault 6-7; row 5: fault 8)

5. CONCLUSIONS

In this paper, an online FDI scheme based on neurofuzzy
networks is proposed for monitoring nonlinear systems.
Fuzzy rules describing the residual behaviours under different
faulty operations are extracted from the neurofuzzy model
and are stored into a fault database. The fault can then be

isolated online based on the current behaviours and the
patterns stored in the fault database by a nearest neighbour
classifier. A simulation example involving a nonlinear DC
motor control system is used to illustrate the implementation
and performance of the proposed FDI scheme. It is shown
that the proposed FDI scheme has successfully isolated the
faults introduced in the DC motor.

REFERENCES

Brown, M. and C. Harris (1994). Neurofuzzy Adaptive
Modelling and Control, Prentice Hall, New York.

Chan, C.W., H. Song, and H.Y. Zhang (2006). Application of
fully decoupled parity equation in fault detection and
identification of DC motors. IEEE Transactions on
Industrial Electronics, 53(4), 1277–1284.

Chen, J. and R.J. Patton (1999). Robust model-based fault
diagnosis for dynamic systems, Kluwer Academic
Publishers, Boston; Mass.

de Boor, C. (1972). On calculating with B-splines. Journal of
Approximation Theory, 6(1), 50-62.

de Miguel, L.J. and L. F. Blázquez (2005). Fuzzy logic-based
decision-making for fault diagnosis in a DC motor.
Engineering Applications of Artificial Intelligence,
18(4) ,423–450.

Frank, P.M., S.X. Ding, and B. Köppen-Seliger (2000).
Current developments in the theory of FDI. Proceeding
of IFAC Symposium on Fault Detection, Supervision and
Safety of Technical Processes, Budapest, Hungary, 1,
16–27.

Friedman, M. and A. Kandel (1999). Introduction to pattern
recognition: statistical, structural, neural, and fuzzy
logic approaches, World Scientific, Singapore.

Isermann, R. (2005) Model-based fault-detection and
diagnosis - status and applications. Annual Reviews in
Control, 29(1), 71–85.

Korbicz, J., J.M. Kościelny, Z. Kowalczuk, and W. Cholewa
(Eds.) (2004). Fault Diagnosis. Models, Artificial
Intelligence, Applications, Springer-Verlag: Berlin.

Mok, H.T. and C.W. Chan (2005). Online fault diagnosis of
nonlinear systems based on neurofuzzy networks,
Proceeding of 16th IFAC World Congress, Prague,
Czech Republic.

Nelles, O. (2001). Nonlinear System Identification. Springer-
Verlag, Berlin.

Patton, R.J. , F.J. Uppal, and C.J. Lopez-Toribio (2000). Soft
computing approaches to fault diagnosis for dynamic
systems: A survey. Proceeding of IFAC Symposium on
Fault Detection, Supervision and Safety for Technical
Processes, Budapest, Hungary, 1, 303–315.

Watanabe, K., M. Sasaki, and D.M. Himmelblau (1985).
Determination of optimal measuring sites for fault-
detection of nonlinear-systems. International Journal of
Systems Science, 16(11), 1345–1363.

Wellstead, P.E. and M.B. Zarrop (1991). Self-tuning Systems:
Control and Signal Processing, Wiley, Chichester.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4630

