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Abstract: In this paper, we derive a reduced vertex result for robust solution of uncertain
semidefinite optimization problems subject to interval uncertainty. If the number of decision
variables is m and the size of the coefficient matrices in the linear matrix inequality constraints
is n×n, a direct vertex approach would require satisfaction of 2n(m+1)(n+1)/2 vertex constraints:
a huge number, even for small values of n and m. The conditions obtained here are instead based
on the introduction of m slack variables and a subset of vertex coefficient matrices of cardinality
2n−1, thus reducing the problem to a practically manageable size, at least for small n. A similar
size reduction is also obtained for a class of problems with affinely dependent interval uncertainty.

1. INTRODUCTION

Semidefinite convex optimization problems (SDPs) deal
with the minimization of a linear objective subject to a
set of linear matrix inequality (LMI) constraints on the
design variable x ∈ R

m, that is

min c⊤x subject to F (x) = F0 +
m

∑

k=1

xkFk ¹ 0,

where Fk ∈ S
n, see e.g. Boyd et al. (1994). Efficient

polynomial-time solution techniques exist for this class
of problems, such as those based on primal-dual interior-
point methods, see Nesterov and Nemirovski (1994); Van-
denberghe and Boyd (1996).

In the last years, the consideration that most real-world
problems unavoidably entail a certain degree of uncer-
tainty stimulated the research on robust solutions to un-
certain SDP problems, see e.g. Ben-Tal and Nemirovski
(1998); El Ghaoui et al. (1998). In this approach, the
problem data (F0, . . . , Fk) are assumed to be affected by
bounded uncertainty, and a solution is said to be robust if
it is guaranteed to satisfy the constraints for all admissible
uncertainty values.

Unfortunately, tractable necessary and sufficient condi-
tions for the solution of robust SDP problems are available
only for very special problem classes, while the general
situation is known to be NP-hard, see for instance Ben-
Tal and Nemirovski (1998); Blondel and Tsitsiklis (2000);
Nemirovski (1993). Various relaxation approaches have
been hence proposed to conservatively solve these prob-
lems. In particular, in El Ghaoui et al. (1998) the authors
provide upper bounds on the optimal solution (i.e. the
objective is minimized subject to sufficient conditions for
robust satisfaction of the uncertain LMIs) for the case
when the uncertainty enters the data in a linear fractional
form, while in Ben-Tal and Nemirovski (2002) the case
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of polytopic uncertainty is considered and a numerically
tractable relaxation of the problem is provided, together
with an a-priori bound on the degree of conservativeness
of the approximation.

In this paper, we consider the case when the LMI coeffi-
cient matrices Fk, k = 0, 1, . . . ,m, are symmetric interval
matrices, that is, symmetric matrices whose entries are
bounded independently in given intervals. It is a well-
known fact, easily proven by convexity arguments, that in
this case the uncertain LMI condition is robustly satisfied
whenever it is satisfied for all the 2n(m+1)(n+1)/2 vertex
matrices, that is the matrices obtained by setting each
matrix entry to its upper or lower limit, see Section 2.1.
However, recent results in the literature (see Alamo et al.
(2007, also in Systems & Control Letters, in press, 2008);
Rohn (1994a) and the references therein) suggest that
the number of vertices can actually be reduced in certain
special cases. Motivated by these ideas, we develop in Sec-
tion 2 an equivalent formulation of a robust interval SDP
which is based on the introduction of m slack variables and
requires satisfaction of only 2n−1 specially selected vertex
matrices. Although this result is still exponential in the
matrix dimension n, the number of required vertex con-
straints can be manageable by currently available solvers,
for reasonable values of n. Exponential growth of the
number of vertices is not surprising and cannot be avoided
in general (unless P=NP), since it was already proven
in Rohn (1994b) that even the simpler problem of checking
robust positive semidefiniteness of a symmetric interval
matrix is NP-hard. As a by-product of our reduced vertex
set result, we also obtain that for a very specific class of
uncertain SDPs, namely linear programs (LP) affected by
interval uncertainty, the robust optimization problem can
be recast exactly as a standard linear program with slack
variables and hence solved in polynomial time. Finally, in
Section 3 we present a result that holds when the uncer-
tainty affecting the data is not completely independent,
but it is instead represented by a linear transformation
of a p × q interval matrix. In this case, a weaker result
holds, which prescribes to impose satisfaction of the LMI
constraints at 2p+q−1 selected vertices.
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Related literature. The results of this paper are
related to a classical work of Rohn (1994a) on interval
symmetric matrices and to a recent paper of Alamo et al.
(2007, also in Systems & Control Letters, in press, 2008),
which provides a new and interesting vertex set result for
a class of problems arising in a robust control setting.
In particular, our interest towards the subject and the
developments in this paper have been directly inspired by
the results in Alamo et al. (2007, also in Systems & Control
Letters, in press, 2008).

More precisely, in Rohn (1994a) a reduced vertex set result
is provided for checking negative-definiteness of a sym-
metric interval matrix. Specifically, Theorem 2 of Rohn
(1994a) states that a symmetric interval matrix of dimen-
sion n × n is robustly negative semidefinite if and only
if 2n−1 special vertex matrices are negative semidefinite.
Notice that the result of Rohn (1994a) is an analysis result,
related to the problem of checking if a property (negative
semidefiniteness) holds robustly. Instead, the problem con-
sidered in this paper is a design one, that is, the goal is to
find a design vector x such that an interval linear matrix
inequality in x is robustly satisfied. It is thus interesting
to notice that the same vertex growth factor applies to
both robustness analysis and design problems. The result
of Rohn (1994a) is recovered in our framework as a special
case for m = 0 (no design variables).

The developments in Section 3 deal instead with a class of
uncertain SDP problems affected by affinely transformed
interval uncertainty. Section 3 is closely related to the work
in Alamo et al. (2007, also in Systems & Control Letters,
in press, 2008). In particular, in Remark 2 we show that,
under the proposed setting, the main vertex cardinality
result in Alamo et al. (2007, also in Systems & Control
Letters, in press, 2008) can be re-derived and improved by
an halving factor.

Notation. For a vector x, the i-th element is denoted by
xi. The element in i-th row and j-th column of a matrix X
is denoted either by [X]ij , or by Xij . For X ∈ R

n,m, the
notation X ≤ 0 (resp. X < 0) denotes element-wise non-
strict (resp. strict) inequality. The notation |X| denotes
a matrix whose (i, j)-th element is |Xij |. S

n denotes the
subspace of symmetric n×n real matrices. For X ∈ S

n, the
notation X ¹ 0 (resp. X ≺ 0) specifies that X is negative
semi-definite (resp. negative definite). If X1, . . . , Xk are
matrices, the notation diag(X1, . . . , Xk) denotes a block-
diagonal matrix having X1, . . . , Xk as diagonal blocks. If
x ∈ R

n, the notation diag(x) denotes a diagonal matrix
with the elements of x on the diagonal. The operator ⊙
denotes the Hadamard (entry-wise) matrix product. The
set of diagonal matrices of signs is defined as

Sn .
= {diag(s1, . . . , sn) : si = ±1, i = 1, . . . , n}.

The cardinality of this set is card (Sn) = 2n.

2. INTERVAL SDPS

Consider an uncertain linear matrix inequality restriction
on variables x1, . . . , xm

F (x) = F0 +
m

∑

k=1

xkFk ¹ 0 (1)

where Fk ∈ S
n, k = 0, 1, . . . ,m are symmetric interval

coefficient matrices. Namely, we assume that

Fk = Fk(∆k) = F̄k + ∆k, k = 0, 1, . . . ,m

where F̄k ∈ S
n are given, and ∆k are only known to belong

to the interval sets

Dk
.
= {∆ ∈ S

n : |∆| ≤ Bk} ,

where Bk ≥ 0 is a symmetric matrix containing the bounds
on the entries of ∆.

A robust interval LMI is then defined as the following semi-
infinite convex constraint

F0(∆0) +
m

∑

k=1

xkFk(∆k) ¹ 0, ∀∆k ∈ Dk. (2)

In this paper, we treat the two robustness problems defined
next.

Problem 1. (Robust feasibility of interval LMI).
Given x ∈ R

m, check if (2) holds.

Problem 2. (Robust solution of interval SDP).
Given c ∈ R

m, find x ∈ R
m such that c⊤x is minimized

subject to the constraints in (2).

These interval problems found many applications in dif-
ferent fields, ranging from numerical analysis and robust
linear algebra to engineering design. As a simple motivat-
ing example, we next illustrate a problem arising in the
context of topology optimization and vibration control of
discrete (or discretized) structures.

Example 1. (Truss topology optimization). A classical pr-
oblem in structural design is to determine the cross-
sectional areas xi of a truss structure so to minimize the
total weight while guaranteeing a lower bound on the
structure fundamental modal frequency. Formally, for a
desired frequency Ω ≥ 0, one has to solve an optimization
problem of the form (see, e.g., Ben-Tal and Nemirovski
(1997); Vandenberghe and Boyd (1999))

min
x

V (x) subject to: (3)

xlb ≤ x ≤ xup

M(x)Ω2 − K(x) ¹ 0, (4)

where the weight of the structure, V (x), is a linear function
of the design variable x, the matrices K(x) and M(x)
represent respectively the stiffness and the mass matrix
of the structure, and constraint (4) specifies that the
fundamental modal frequency should be higher than Ω.
Vectors xlb, xub contain lower and upper bounds on the
cross-sectional areas, respectively. The mass and stiffness
matrices are affine functions of x, that is

K(x) = K0 +
m

∑

k=1

xkKk, M(x) = M0 +
m

∑

k=1

xkMk

where Mk,Kk, k = 0, . . . ,m are symmetric matrices.
Since these matrices depend on geometric and material
characteristics of the structure, it is natural to assume an
interval uncertainty over them, in which case

Kk = K̄k + ∆K
k , k = 0, . . . ,m

Mk = M̄k + ∆M
k , k = 0, . . . ,m.

In this situation, the designer may be interested in deter-
mining a design that works best in the worst-case scenario,
that is in considering a robust version of problem (3). It
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can be easily seen that the robust version of constraint (4)
is readily rewritten as an interval LMI of the form (2) by
letting

F̄k = M̄kΩ2 − K̄k, ∆k = ∆M
k Ω2 − ∆K

k ; k = 0, . . . ,m.

2.1 Naive vertex solution approach

We remark that there exist a straightforward (but com-
putationally inefficient) way to solve Problems 1 and 2.
Indeed, it can be easily seen that every matrix in the set Dk

can be written as a convex combination of vertex matrices
belonging to the set

Dv
k

.
= {∆ ∈ S

n : |∆ij | = [Bk]ij , 1 ≤ i ≤ j ≤ n} ,

which has cardinality 2n(n+1)/2. Then, the following
lemma can be proved by elementary convexity arguments.

Lemma 1. The semi-infinite LMI constraint (2) is equiva-
lent to the following finite set of vertex LMI contraints

F0(∆0)+
m

∑

k=1

xkFk(∆k) ¹ 0, ∀∆k ∈ Dv
k, k = 0, 1, . . . ,m.

(5)
Problem 2 is thus equivalent to the SDP

min c⊤x subject to (5).

In the latter minimization problem, the infinite number
of constraints of Problem 2 has been replaced by a finite
number of vertex constraints. Notice however that this
number can be very large already for very small n and
m. For instance, for n = m = 3 the number of constraints
is 16, 777, 216, and it becomes 1.1259×1015 for n = m = 4.
Hence, Lemma 1 has a mainly theoretical interest, and it
can rarely be applied in practice. In the next section, in
the spirit of Alamo et al. (2007, also in Systems & Control
Letters, in press, 2008), we derive a results that shows
how the number of vertices can be drastically reduced
and made independent of m, thus leading to a more
manageable solution approach.

2.2 A result with reduced vertex set

We first establish the following preliminary lemma, which
is instrumental for proving the main result.

Lemma 2. Given x ∈ R
m, the robust condition (2) is

satisfied if and only if

v⊤F̄ (x)v + |v|⊤B(|x|)|v| ≤ 0, ∀v ∈ R
n,

where we defined

F̄ (x)
.
= F̄0 +

m
∑

k=1

xkF̄k (6)

B(ξ)
.
= B0 +

m
∑

k=1

ξkBk. (7)

Proof. The proof of this result follows the same lines of
reasoning of Alamo et al. (2007, also in Systems & Control
Letters, in press, 2008) and Rohn (1994a). We see that
robust interval LMI (2) is satisfied if and only if

v⊤F0(∆0)v +
m

∑

k=1

xkv⊤Fk(∆k)v ≤ 0

holds for all ∆k ∈ Dk and all v ∈ R
n, that is, if and only

if

max
∆0∈D0

v⊤F0(∆0)v+
m

∑

k=1

max
∆k∈Dk

xkv⊤Fk(∆k)v ≤ 0, ∀v ∈ R
n.

Notice that

max
∆0∈D0

v⊤F0(∆0)v +
m

∑

k=1

max
∆k∈Dk

xkv⊤Fk(∆k)v

= v⊤F̄0v +
m

∑

k=1

xkv⊤F̄kv + max
∆0∈D0

v⊤∆0v +
m

∑

k=1

max
∆k∈Dk

xkv⊤∆kv

= v⊤F̄ (x)v + max
∆0∈D0

v⊤∆0v +
m

∑

k=1

max
∆k∈Dk

xkv⊤∆kv. (8)

Considering the second term in the previous summation,
we have that

max
∆0∈D0

v⊤∆0v = max
∆0∈D0





n
∑

i=1

v2
i [∆0]ii + 2

∑

1≤i≤j≤n

vivj [∆0]ij



.

The maximum in this expression is attained by choosing
[∆0]ii = [B0]ii and [∆0]ij = sign(vivj)[B0]ij , which yields

max
∆0∈D0

v⊤∆0v =

n
∑

i=1

v2
i [B0]ii + 2

∑

1≤i≤j≤n

|vivj |[B0]ij = |v|⊤B0|v|.

Similarly, considering the third term in (8), we have

max
∆k∈Dk

xkv⊤∆kv =

max
∆k∈Dk





n
∑

i=1

xkv2
i [∆k]ii + 2

∑

1≤i≤j≤n

xkvivj [∆k]ij



 .

For given xk, the maximum in this expression is at-
tained by choosing [∆k]ii = sign(xk)[Bk]ii and [∆k]ij =
sign(xkvivj)[Bk]ij , which yields

max
∆k∈Dk

xk v⊤∆kv =

n
∑

i=1

|xk|v
2
i [Bk]ii + 2

∑

1≤i≤j≤n

|xk||vivj |[Bk]ij = |xk||v|
⊤Bk|v|,

thus concluding the proof. 2

We are now in position to state the following corollary,
which provides a reduced vertex set solution for Problem 1.

Corollary 1. (Robust feasibility with reduced vertex set).
Given x ∈ R

m, the semi-infinite condition(2) is satisfied if
and only if

F̄ (x)+SB(|x|)S ¹ 0, S = diag(1, S̃), ∀S̃ ∈ Sn−1, (9)

where F̄ (x) and B(|x|) are defined in (6), (7), and Sn−1

is the set of (n − 1) × (n − 1) diagonal matrices of signs.
Condition (9) consists of a finite number 2n−1 of vertex
conditions.

Proof. Suppose first that (2) holds, that is

F̄ (x) + ∆0 +
m

∑

k=1

xk∆k ¹ 0, ∀∆k ∈ Dk, k = 0, 1, . . . ,m.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11371



Then, in particular for any S̃ ∈ Sn−1, let S = diag(1, S̃),
and choose

∆̄0 = SB0S ∈ D0

∆̄k = sign(xk)SBkS ∈ Dk, k = 1, . . . ,m.

Then, it must hold that F̄ (x)+SB0S +
∑m

k=1 |xk|SBkS ¹
0, which proves the first implication.

Conversely, suppose that (9) holds, and notice that
SB(|x|)S = (−S)B(|x|)(−S). This implies that the condi-
tion in (9) actually holds for all S ∈ Sn. Therefore, for all
v ∈ R

n it holds that

v⊤F̄ (x)v + v⊤SB(|x|)Sv ≤ 0, ∀S ∈ Sn.

Hence, choosing S = diag(sign(v1), . . . , sign(vn)), it must
hold that

v⊤F̄ (x)v + |v|⊤B(|x|)|v| ≤ 0, ∀v ∈ R
n.

By Lemma 2, this latter condition implies satisfaction of
(2), thus concluding the proof. 2

The result given in Corollary 1 is useful for robustness
analysis (Problem 1). Notice that in the special case
of m = 0 (no design variables) the vertex matrices
in (9) coincide with those required in Theorem 2 of
Rohn (1994a) for checking negative-semidefiniteness of
symmetric interval matrices.

We next state the main result of the paper, which provides
a reduced vertex set condition for the solution of the robust
design problem (Problem 2).

Theorem 1. (Robust optimization w. reduced vertex set).
The robust interval SDP problem (Problem 2) is equivalent
to the following SDP in the variables x, ξ ∈ R

m

min c⊤x subject to

F̄ (x) + SB(ξ)S ¹ 0, S = diag(1, S̃), ∀S̃ ∈ Sn−1, (10)

xk ≤ ξk, k = 1, . . . ,m (11)

−xk ≤ ξk, k = 1, . . . ,m. (12)

Proof. We show that the robust LMI conditions (2) and
(10)–(12) are equivalent. Suppose first that (2) holds for
some x ∈ R

m. Then, (9) holds by Corollary 1, hence (10)–
(12) hold by taking ξk = |xk|.

Conversely, suppose that (10)–(12) hold, and notice
that (11), (12) imply |xk| ≤ ξk. Since SB(ξ)S =
(−S)B(ξ)(−S), condition (10) implies F̄ (x)+SB(ξ)S ¹ 0
for all S ∈ Sn. Hence, for all S ∈ Sn

v⊤F̄ (x)v + v⊤SB0Sv +
m

∑

k=1

ξkv⊤SBkSv ≤ 0, ∀v ∈ R
n.

In particular, for S = diag(sign(v1), . . . , sign(vn)) we have

v⊤F̄ (x)v + |v|⊤B0|v| +
m

∑

k=1

ξk|v|
⊤Bk|v| ≤ 0, ∀v ∈ R

n.

Now, since Bk ≥ 0, then |v|⊤Bk|v| ≥ 0. Therefore |xk| ≤
ξk implies that ξk|v|

⊤Bk|v| ≥ |xk||v|
⊤Bk|v|, thus for all

v ∈ R
n

v⊤F̄ (x)v + |v|⊤B0|v| +
m

∑

k=1

|xk||v|
⊤Bk|v| ≤

v⊤F̄ (x)v + |v|⊤B0|v| +
m

∑

k=1

ξk|v|
⊤Bk|v| ≤ 0.

This implies satisfaction of (2), by Lemma 2, which con-
cludes the proof. 2

Remark 1. (Vertex complexity). Theorem 1 shows that
the infinite set of constraints in Problem 2 can be sub-
stituted by an equivalent finite set of of 2n−1 vertex LMIs.
The number of vertices is thus independent of m and it is
drastically reduced with respect to the case considered in
Section 2.1. ♦

Looking more closely to condition (10) in Theorem 1, we
see that when B(ξ) and S commute (i.e. when B(ξ) is
diagonal) then, since SS = I, equation (10) reduces to
the single LMI constraint F̄ (x) + B(ξ) ¹ 0. This situation
happens for instance in the special case of interval linear
programs, as briefly illustrated in the next example.

Example 2. (A special case: interval linear programs).
Consider a standard linear programming problem (LP)

min c⊤x subject to Ax − b ≤ 0

with A ∈ R
n,m and b ∈ R

n. It is straightforward to verify
that the linear constraints in this problem can be cast in
an equivalent LMI format (1) by taking

F0 = diag(−b); Fk = diag(ak), k = 1, . . . ,m,

where ak denotes the k-th column of A. Now, if the entries
of A and b are assumed to lie in independent intervals, we
may write

A = A(∆) = Ā + ∆ ⊙ R, b = b(δ) = b̄ + δ ⊙ d,

where Ā ∈ R
n,m, b̄ ∈ R

n are the nominal matrices,
R ∈ R

n,m, d ∈ R
n are given positive matrices containing

the interval limits, and ∆ ∈ R
n,m, δ ∈ R

n are the
uncertainties, which are subject to |∆| ≤ 1, |δ| ≤ 1. The
robust interval LP problem

min c⊤x subject to

A(∆)x − b(δ) ≤ 0, ∀∆, δ : |∆| ≤ 1, |δ| ≤ 1

can therefore be equivalently rewritten in the format of
a robust interval SDP, with diagonal nominal coefficient
matrices F̄0 = diag(−b̄), F̄k = diag(āk) and diagonal
bound matrices B0 = diag(d), Bk = diag(rk), k =
1, . . . ,m, where āk, rk are the k-th column of Ā and of
R, respectively.

Let us now apply Theorem 1 to this interval SDP. Since
S ∈ Sn and Bi are diagonal and SS = I, the S terms
disappear in equation (10). It follows that problem (13) is
equivalent to

min c⊤x subject to

F̄0 +
m

∑

k=1

xkF̄k + B(ξ) ¹ 0

xk ≤ ξk, k = 1, . . . ,m

−xk ≤ ξk, k = 1, . . . ,m,
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where ξ⊤ = [ξ1 · · · ξm] is a vector of slack variables. Con-
verting this diagonally structured SDP back to standard
LP format, we finally obtain that (13) is equivalent to the
following standard linear program in variables x and ξ:

min c⊤x subject to

Āx − b + Rξ + d ≤ 0

xk ≤ ξk, k = 1, . . . ,m

−xk ≤ ξk, k = 1, . . . ,m.

This simple result can be of independent interest and
improves upon a previous solution approach proposed
in Chinneck and Ramadan (2000), which required expo-
nential enumeration. Robust linear programs with more
general uncertainty structures are studied in Ben-Tal and
Nemirovski (1999). ⋆

3. SPDS WITH LINEARLY TRANSFORMED
INTERVAL UNCERTAINTY

The main result treated in Section 2.2 refers to the sit-
uation when all entries of the LMI coefficient matrices
are affected by independent interval uncertainty. In some
specific applications, such as robust control, interval LMIs
arise where the uncertainties are not independent. How-
ever, reduced vertex set results can be obtained also in
these cases, as recently shown in Alamo et al. (2007, also
in Systems & Control Letters, in press, 2008).

Here, we examine one of such non-independent uncer-
tainty situations, where the LMI constraints are additively
perturbed by a linear function of an interval matrix ∆.
Namely, we consider the uncertain LMI constraint

F (x) = F̄ (x) + L∆R(x) + R⊤(x)∆⊤L⊤ ¹ 0, (13)

where F̄ (x) is an n × n symmetric affine matrix function
of x ∈ R

m, R(x) is a q × n affine matrix function of x,
L ∈ R

n,p is a given matrix, and ∆ is a p × q interval
matrix, i.e. ∆ ∈ Dp,q, where

Dp,q .
= {∆ ∈ R

p,q : |∆| ≤ B}

being B ∈ R
p,q a given nonnegative matrix representing

the entry-wise bounds on the absolute values of the ele-
ments of ∆.

The uncertain LMI representation (13) is a special case
of the classical linear fractional transformation (LFT;
see, e.g., Section 2.2 of El Ghaoui et al. (1998)), which
frequently arises in robust control applications, see for
instance Zhou et al. (1996). The following theorem holds,
see Calafiore and Dabbene (2008, in press) for a proof.

Theorem 2. A vector x ∈ R
m satisfies the robust LMI

condition

F̄ (x) + L∆R(x) + R⊤(x)∆⊤L⊤ ¹ 0, ∀∆ ∈ Dp,q (14)

if and only if it satisfies

F̄ (x) + LSLBSRR(x) + R⊤(x)SRB⊤SLL⊤ ¹ 0, (15)

SL = diag(1, S̃L), ∀S̃L ∈ Sp−1, ∀SR ∈ Sq.

Condition (15) consists of a finite number 2p+q−1 of vertex
LMI constraints.

Remark 2. Theorem 2 and its proof are closely related to
the main result in Alamo et al. (2007, also in Systems &

Control Letters, in press, 2008). In particular, in Alamo
et al. (2007, also in Systems & Control Letters, in press,
2008) the authors consider a problem arising in a robust
control setting which, restated in the notation of this
paper, takes the following form:

F̄ (x) + ∆a + ∆⊤
a + ∆bQ(x) + Q⊤(x)∆b ¹ 0,

∀∆a ∈ Dn,n, ∆b ∈ Dn,m. (16)

It is proved in Alamo et al. (2007, also in Systems &
Control Letters, in press, 2008) that this condition is
equivalent to 2m+n conditions on specific vertex matrices.
We next show that (16) is a special case of LMI (14),
and that Theorem 2 can be modified and specialized
to this case, thus providing a vertex cardinality result
that improves by an halving factor the 2m+n vertex set
cardinality result of Alamo et al. (2007, also in Systems &
Control Letters, in press, 2008). To this end, notice that
(16) can be written in the form of (14), by taking

∆ = [∆a ∆b] ∈ R
n,n+m, L = In, R(x) =

[

In

Q(x)

]

.

Then, it can be easily verified that all steps in the proof
of Theorem 2 would go through with SL = diag(1, S̃L),

S̃L ∈ Sn−1, and with SR taking the specific block struc-
ture SR = diag(SL, SQ), with SQ ∈ Sm. The resulting
condition of type (15) would thus involve only 2m+n−1

vertex constraints:

F̄ (x)+ SLBaSL + SLBbSQQ(x) ¹ 0,

SL = diag(1, S̃L), ∀S̃L ∈ Sn−1, SQ ∈ Sm,

where [Ba Bb] is the matrix of bounds for the interval
matrix ∆ = [∆a ∆b]. ♦

Finally, we provide a result which is the analog of Theo-
rem 3 in Alamo et al. (2007, also in Systems & Control
Letters, in press, 2008). This result gives an efficiently
computable sufficient condition for satisfaction of (14) and
it is reported in Corollary 2, see Calafiore and Dabbene
(2008, in press) for a proof.

Corollary 2. If x ∈ R
m, Θ = diag(θ1, . . . , θq) ≻ 0, T =

diag(t1, . . . , tp) satisfy the LMIs

[

F̄ (x) + LTL⊤ R⊤(x)
R(x) −Θ

]

≺ 0 (17)

BΘB⊤ ≺ T (18)

then x satisfies (14).

4. NUMERICAL EXAMPLE

We revisit a problem originally considered in Fan and
Nekooie (1992), dealing with the minimization of the
largest eigenvalue of an affine combination of symmetric
matrices. Namely, in Fan and Nekooie (1992) the following
problem is considered:

min
x∈R5

λmax

(

Ā0 +
5

∑

i=1

xiĀi

)

(19)

where λmax denotes the largest eigenvalue of a symmetric
matrix, and Ā0, . . . , Ā5 are symmetric matrices, whose
numerical value is given in Fan and Nekooie (1992).
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Problem (19) can be recast in SDP form as

min
x∈R5,λ∈R

λ subject to: Ā0 +
5

∑

i=1

xiĀi − λI ¹ 0,

which has the optimal solution λmin = 0.70888.

Assume now that the matrices Ā1, . . . , Ā5 represent nomi-
nal values, while the actual entries are only known to lie in
independent intervals centered around the nominal values,
with width equal to ρ percent of the nominal, that is

Ak = Āk + ∆k, |∆k| ≤ ρ|Āk|; k = 1, . . . , 5.

In this situation, the problem becomes that of minimizing
the worst-case largest eigenvalue of the interval matrix
family, that is:

min
x∈R5,λ∈R

λ subject to:

Ā0 +
5

∑

i=1

xiĀi +
5

∑

i=1

xi∆i − λI ¹ 0,

∀ |∆k| ≤ ρ|Āk|, k = 1, . . . , 5.

This problem is an interval SDP of the form (2).

Determining a robust solution for this interval SDP using
a naive vertex approach would require considering 250 ≈
1015 vertices. Application of Theorem 1 require instead
only 16 vertices. Hence, solving this problem for increasing
values of ρ ranging in the interval [0, 1] (which corresponds
to uncertainty level from 0% to 100%), we obtained the
plot shown in Figure 1. This numerical example was coded
in Matlab using the YALMIP Lofberg (2004) interface
and the SeDuMi SDP solver. The numerical solution of
the problem for each fixed value of ρ required about 0.13
seconds on an AMD Dual Opteron workstation.
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Fig. 1. Worst-case largest eigenvalue as a function of ρ.

5. CONCLUSIONS

Robust solutions to uncertain SDP problems with interval
coefficient matrices require considering an exponential
number of vertex constraints. We have shown in this paper
that when all entries of the LMI coefficient matrices lie
in independent intervals, the number of vertices to be
considered in the optimization is 2n−1, being n the size
of the LMI. Interval linear programs are a special case

of the considered class of problems, and can be solved
efficiently without resorting to vertexization. When the
LMI constraint is expressed as a linear transformation of a
p×q matrix of uncertain coefficients, the required number
of vertices becomes 2p+q−1.
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