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Abstract: In this paper, we discuss the model reference robust control (MRRC) for plants with relative 
degree greater than one and without the knowledge of high frequency gain sign. Based on an appropriate 
monitoring function, a switching scheme is proposed so that after a finite number of switching, the 
tracking error converges to a residual set that can be made arbitrarily small by properly choosing some 
design parameters. Furthermore, if some initial states of the closed-loop system are zero, we show that at 
most one switching is needed. 
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1. INTRODUCTION 

Model reference robust control (MRRC) was introduced by 
(Qu et al. 1994) as a new means of I/O based controller 
design for linear time invariant plants with nonlinear input 
disturbance and has been found useful in some flight 
controller design. In (Lin and Jiang 2004a), based on a 
transformation of system tracking error, tracking performance 
of the MRRC has been improved for plants with relative 
degree greater than one by using a new Lyapunov function.  

Like most of the model following techniques, one of the 
fundamental requirements of the MRRC is that the high 
frequency gain (HFG) sign is known a priori. In (Lin and 
Jiang 2004b), a switching scheme was proposed to deal with 
plants with relative degree one and without the knowledge of 
HFG sign. The objective of this paper is to generalize the 
scheme to plants with relative degree greater than one for the 
MRRC.  

The relaxation of the assumption of HFG sign has long been 
an attractive topic in control community. Several approaches 
have been proposed so far and most of them, however, are 
based on Nussbaum gain (Nussbaum 1983, Mudgett and 
Morse 1985). Related work may also be found in (Zhang et al. 
2000) in backstepping design. The main disadvantage of the 
Nussbaum-type gain methods is that it lacks robustness. 
Besides, the transient behaviour may be unacceptable.  

An alternative way is switching. In adaptive control, 
switching was first introduced by (Martensson 1985) and 
then was extended to more general cases by (Fu and Barmish 
1986, Miller and Davison 1989, Miller and Davison 1991). 
The main idea of this kind of control is to design a switching 
law which may determine among a set of controller 
candidates when to switch from the current one to the next. It 
should be pointed out that robustness to disturbance is still a 
problem in (Martensson 1985, Fu and Barmish 1986, Miller 
and Davison 1989). In (Miller and Davison 1991), a 
switching method was proposed so that the tracking error 
may have an arbitrarily good transient and steady-state 

performance specifications given by designer in advance 
even when plant HFG sign is unknown. However, the price 
of this solution is that the control signal may be very large.  
In this paper, we generalize our switching scheme in (Lin and 
Jiang 2004b) to plants with relative degree greater than one 
and without HFG sign. The main idea of the scheme is to 
construct a monitoring function to supervise the behaviour of 
the tracking error and then a switching control law is 
proposed. We show that after finite number of switching, the 
tracking error converges to a residual set that can be made 
arbitrarily small by properly choosing some design 
parameters. Furthermore, the input disturbance can be 
completely rejected without affecting the tracking 
performance.  

2. PROBLEM FORMULATION AND PRELIMINARY 
RESULTS 

Consider the following SISO linear time invariant plant  
 ( )[ ] ( ( )/ ( ))[ ]p p p py G s u d k n s d s u d= + = + , (2.1) 
where y  and u  are the system output and input, respectively, 

( )pG s  is the plant transfer function with ( )pd s  and 
( )pn s being nomic polynomials of degree n  and m , 

respectively, and d  is an input disturbance. The reference 
model is given by 
 ( )[ ] ( / ( ))[ ]M M My M s r k d s r= = , 0Mk > ,  (2.2) 
where ( )Md s is a monic Hurwitz polynomial satisfying 

*deg( ( )) :Md s n m n= − =  and r  is  any  piecewise  continuous, 
uniformly bounded reference signal. 

We make the following assumptions: 

(A1) ( )pG s  is of minimum phase. The parameters of ( )pG s are 
unknown but belong to a known compact set; the degree n  
and the relative degree *n ( 1> ) of ( )pG s  are known 
constants; 

(A2) The sign of the high frequency gain ( 0)pk ≠  is unknown; 
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(A3) The unmeasured disturbance ( )d t  satisfies 
 ( ) ( )d t d t≤ , 0t∀ ≥ , (2.3) 

where ( )d t  is a known, piece-wise continuous and uniformly 
bounded function. 

In this paper, the control signal is of the following form: 

 ˆ
Ru θ ω u= +T , (2.4) 

where Ru  is the nonlinear control to be designed to ensure 
that the tracking error 
 : Me y y= −  (2.5) 

tends to a small residual set for * 1n > , the constant vector 
2ˆ nθ ∈R  will be defined below and ω , the regressor vector, is 

defined as 1 2: [ , , , ]ω ν y ν r= T T T , where 1ν  and 2ν  are 
generated by input /output filters according to  

 1 1Λ λν ν b u= +� , 1(0) 0ν = ,  
 2 2Λ λν ν b y= +� , 2(0) 0ν = , (2.7) 

where ( 1) ( 1)Λ n n− × −∈R  is a matrix with det(s Λ)I −  a Hurwitz 
polynomial and 1n

λb −∈R  is chosen such that (Λ, )λb  is a 
controllable pair. It is well known (Narendra and Annaswamy 
1989) that under the above assumptions with ( ) 0d t ≡ , there 
exits a unique constant vector * * * * *

1 0 2[ , , , ]θ θ θ θ k= T T T  
2n∈R , such that, modulo exponentially decaying terms due 

to initial conditions, 

 *( )[ ] ( )[ ]p My G s θ ω M s r y= = =T , (2.8) 

where * /M pk k k= . Since the plant parameters are assumed to 

be uncertain, the constant vector θ̂  in (2.4) is defined as  

 θ̂ = 1̂[ ,θ T
0̂ ,θ 2

ˆ ,θ T Tˆ]k  
T T T

1 0 2
T T T

1 0 2

ˆ ˆ ˆ ˆ[( ) ( ) ] , 0,
: ˆ ˆ ˆ ˆ[( ) ( ) ] , 0,

p

p

θ θ θ θ k k

θ θ θ θ k k

+ + + + +

− − − − −

⎧ = >⎪= ⎨
= <⎪⎩

if

if
  (2.9) 

which is a rough estimate of *θ  and is obtained from nominal 
plant. From (2.1)-(2.9), the error model, including the I/O 
filters, can be expressed as 

 *( )[ ]/f R te M s θ ω d u k= + + +�T є , (2.10) 

where tє  decays exponentially due to non-zero initial 
conditions and  
 *ˆ:θ θ θ= −� ,  
 1: (1 ( ))[ ],fd d s d= −  

 1 1̂( ) : ( I Λ) λd s θ adj s b= −T . (2.11) 

When * 1n > , we can write (2.10) in the following form 

 1( ) ( )[ ]/ ∗= + + +�T
L te M s L s θ ω d z k ε , (2.12) 

where the Hurwitz polynomial 

 * 1 * 2
1 * 1( ) : n n

nL s s α s α− −
−= + + +" , (2.13) 

is chosen such that ( ) ( )M s L s  is a SPR function, ω  and Ld  
are defined as 

 1: ( )[ ]ω L s ω−= , 1: ( )[ ]L fd L s d−= , (2.14) 
and  

 1
1 : ( )[ ]−= Rz L s u , (2.15) 

whose controllable canonical form is  
 1 2z z=� , 
 *

1, 2, , 2i iz z i n+= = −� " , 
 * 1 1 * 1 2 * 2 * 1 1n n n n Rz α z α z α z u− − − −= − − − − +� " .  (2.16) 
For the sake of simplicity, let 
 ( ) ( ) /( )MM s L s k s λ= + , 0λ > , (2.17) 
then (2.12) can be rewritten as  
 1( )p Le λe k θ ω d z ε= − + + + +�� T , (2.18) 
where ε  decays exponentially. 
The following lemma summarizes the main results when the 
sign of pk  is known. 
Lemma 1: Suppose the MRRC system satisfy the assumptions 
(A1) and (A3), and the sign of pk  is known. Let the control 
signal Ru  be defined as 

1

1 1

1

1 1

1 1
1 11 1

1 1
1

1 1
1 11 1

1 1

,if 0,

:

, if 0,

τ

pτ τ

τ

pτ τ

μ μ
υ ζ e g k

μ σ
υ

μ μ
υ ζ e g k

μ σ

+ +
+ +

+ ++

− −
− −

+ +−

⎧
⎪ = − − >
⎪ +⎪= ⎨
⎪

= + <⎪
⎪ +⎩

 

2

2 2

2

2 2

2

2 2
1 1 1 1 21 1

2 2

2 2
1 1 1 1 21 1

2 2

( ) ,if 0,

:

( ) , if 0,

R
τ

R pτ τ

τ

R pτ τ

υ u

μ μ
u ρ z υ e α z g k

μ σ

μ μ
u ρ z υ e α z g k

μ σ

+ +
+ + +

+ ++

− −
− − −

+ +−

=

⎧
⎪ = − − − + − >
⎪ +⎪= ⎨
⎪

= − − + + + <⎪
⎪ +⎩

 

  if 2,n∗ =  

2

2 2

2

2 2

2 2
2 1 1 21 1

2 2
2

2 2
2 1 1 21 1

2 2

( ) ,if 0,

: if 2,

( ) , if 0,

τ

pτ τ

τ

pτ τ

μ μ
υ ρ z υ e g k

μ σ
υ n

μ μ
υ ρ z υ e g k

μ σ

+ +
+ + +

+ ++
∗

− −
− − −

+ +−

⎧
⎪ = − − − − >
⎪ +⎪= >⎨
⎪

= − − + − <⎪
⎪ +⎩

1 1 2 2 1 1

1 1 2 2 1 1

( ) ( ) ,if 0,

:

( ) ( ) , if 0,

i

i i

i

i i

τ
i i

i i i i i i pτ τ
i i

i τ
i i

i i i i i i pτ τ
i i

μ μ
υ ρ z υ z υ g k

μ σ
υ

μ μ
υ ρ z υ z υ g k

μ σ

+ +
+ + + +

− − − − + ++

− −
− − − −

− − − − + +−

⎧
⎪ = − − − − − >
⎪ +⎪= ⎨
⎪

= − − − − − <⎪
⎪ +⎩

  *3, , 1i n= −" , 

* 1 * 1 * 2 * 2
*

* 1 * 1 * 2 * 2

( ) ( )
:

( ) ( )
R n n n n

R n
R n n n n

u ρ z υ z υ
u υ

u ρ z υ z υ

+ + +
− − − −

− − −
− − − −

⎧ = − − − − +⎪= = ⎨
= − − − − +⎪⎩

* *

* *
1 * 1 * 1 1 *1 1

* *

( ) ,if 0,
∗+ +

+
− − + ++

+ + + − >
+

"
n

n n

τ
n n

n n n pτ τ
n n

μ μ
α z α z g k

μ σ
  

* *

* *
1 * 1 * 1 1 *1 1

* *

( ) ,if 0,
− −

−
− − + +−

+ + + − <
+

"
n

n n

τ
n n

n n n pτ τ
n n

μ μ
α z α z g k

μ σ
 (2.19) 

where 0ζ ≥ , 0jτ ≥ , 0jσ > *( 1, , )j n= "  and 0ρ >  are 
design parameters, and 

1 BND( )T
Lg θ ω d± = +� , 1 1μ eg± ±= , 
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1( )j jg ς± ±
−= BND , 1 1( )j j j jμ z υ g± ± ±

− −= − , *2, ,j n= " , (2.20) 

where 1BND( )jς±−  is obtained by applying triangle 

inequality to 1jυ±−�  so that ε  can be separated from 1jυ±−�  , 
i.e. 
 2 2

1 1 1 1BND( ) +j j j j jυ g c ε ς c ε± ± ±
− − − −≤ + =� , (2.21) 

with 1jc −  any positive constant. If the robust control is 
chosen as (2.4), then all the closed loop signals are uniformly 
bounded and  e  converges exponentially to a residual set 
whose radius can be made arbitrarily small. 

Proof. See (Lin and Jiang 2004a).  ■ 

Remark 2.1: The bounding function of a signal f , say, 
BND( )f  is a known, continuous, nonnegative function that 
bounds the magnitude (or Euclidean norm) of f . Readers 
may refer to (Qu et al. 1994) for detail about the definition. 

Remark 2.2: As will be shown in (A-1) of the Appendix A, 
the MRRC has to deal with 1jυ −� . Let 

  1 1: ( )i i ie z υ− −= − , *2, ,i n= "  

 1 1:
j

j j

τ
j j

j jτ τ
j j

μ μ
u g

μ σ+ +
= −

+
, *1, ,j n= " . (2.22) 

Here, for simplicity, we have dropped the superscript “ ± ”. 
Then, taking (2.19) and (2.22) into consideration, one has  

 1 1
1 1 1

1 1

u uυ ζe e g
e g
∂ ∂

= ± ±
∂ ∂

� � � �∓ , 

 2 2
2 2 2 2

2 2

u uυ ρe e e g
e g
∂ ∂

= − + +
∂ ∂

� � � � �∓ , 

 1
i i

i i i i i
i i

u uυ ρe e e g
e g−
∂ ∂

= − − + +
∂ ∂

� � � � � , 3, ,i n∗= " . (2.23) 

From (2.18), e�  includes the term ε . Hence, we can see, step 
by step, that 1υ� , 2υ�  and iυ�  include ε  also. Since ε  is not 
available for measurement, as shown in (2.21), we must 
separate it by using triangle inequality. 

3. MAIN RESULTS 

3.1  Signals to be switched 

Since the sign of pk  is unknown, we have to redefine the 

control Ru  and the vector θ̂  as 

  
, if ,

:
, if ,

R
R

R

u t
u

u t

+ +

− −

⎧ ∈⎪= ⎨
∈⎪⎩

T
T

 (3.1) 

and  

 
ˆ , if ,ˆ
ˆ , if ,

θ t
θ

θ t

+ +

− −

⎧ ∈⎪= ⎨
∈⎪⎩

T

T
 (3.2) 

respectively, and design a monitoring function to decide 
when ˆ( , )Ru θ  will be switched from ˆ( , )Ru θ+ +  to ˆ( , )Ru θ− −  and 
vice versa, where the sets +T  and −T  satisfy 
  [0 )+ − = ∞∪ ,T T , + − =∩T T φ ,  (3.3) 

and both  +T and −T  have the form  

  1 1[ , ) [ , )k k j jt t t t+ +∪"∪ .  (3.4) 

Here, kt  or jt  denotes the switching time for ˆ( , )Ru θ+ +  or 
ˆ( , )Ru θ− − , and will be defined later. Note that the difference 

between (2.19) and (3.1) is that if the sign of pk  is known, 

we need only one Ru  and one θ̂  while if the sign of pk  is 

unknown, both ˆ( , )Ru θ+ +  and ˆ( , )Ru θ− −  are needed. Since Ru  is 
obtained recursively from iυ+  and iυ− , for *1, , 1i n= −" , in 
(2.19), both 0pk >  and 0pk <  in (2.19) should also be 

replaced by t +∈T  and t −∈T , respectively when HFG sign 
is unknown.  

3.2  Monitoring function and switching law 

For simplicity, in what follows we assume that  
 [ , ] [ , ]p p pp pk k k k k∈ − − ∪ , , 0ppk k > . (3.5) 
To proceed, we introduce the following lemma. 
Lemma 2: Suppose the sign of pk  has been correctly 
estimated for all 0t t≥ . Let Lyapunov function 

 

* 1
2 2

1
* 1

2 2

1

1 1 ( ) , if 0
2 2

:
1 1 ( ) , if 0
2 2

n

p i i p
i

n

p i i p
i

e k z υ k
V

e k z υ k

−
+

=
−

−

=

⎧
+ − >⎪

⎪= ⎨
⎪ − − <⎪⎩

∑

∑
, 0t t≥ . (3.6) 

Let the design parameters ζ and ρ  in (2.19) be chosen such 
that 
 : 0εpγ λ k ζ c= + − > , iρ a γ− ≥ , (3.7) 
where εc  is any positive constant satisfying the following 
triangle inequality 
 2 2 /ε εεe c e ε c≤ + , (3.8) 
λ  is defined by (2.17), and  ia  is any positive constant. 
Then, the following inequality holds: 
 02 ,pV γV k σ t t≤ − + + ∀ ≥� є , (3.9) 

where є  is a bounded, differentiable and exponentially 
decaying real function whose definition will be found in the 
following  proof, and 

 
1

:
n

i
i

σ σ
∗

=
= ∑ , (3.10) 

where iσ  are defined by (2.19). 

Proof. See Appendix A.   ■ 

The inequality (3.9) motivates us to consider the following 
differential equation: 
 2 pξ γξ k σ= − + +� є , 0 0( ) ( )ξ t V t= , 0t t≥ . (3.11) 

Comparing (3.9) with (3.11) we have V ξ≤ �� , 0t t∀ ≥ , which 
by using the Comparison Lemma (Filippov 1964, Th.7, p.214) 
and by noting that 0 0( ) ( )ξ t V t=  leads to 
 V ξ≤ , 0t t∀ ≥ . (3.12) 
With no loss of generality, let  
 exp( 2 )c δt≤ −є , 0t ≥ , (3.13) 
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where c  and δ  are unknown positive constants since є  is 
unknown. The solution of (3.9) thus satisfies 

0 0

0 0 0

( ) ( ) exp[ 2 ( )] ( )

exp[ 2 ( )] ( ) /2 exp( 2 ), ,p δ

V t ξ t γ t t V t

γ t t V t σ k γ c δt t t

≤ ≤ − −

≤ − − + + − ≥
 (3.14) 

where pk  is defined by (3.5), and the constant δc  in this 
section is defined as  

 δ
cc

γ δ
=

−
, (3.15) 

where it is assumed that δ γ<  since a less δ  can only make 
(3.13) more conservative. However, since V  is not available 
for measurement due to the uncertainty of pk , let  

 
* 1

2 2

1

1 1: ( )
2 2

n

i ip
i

V e k z υ
−

=
= + −∑ , 

 
* 1

2 2

1

1 1: ( )
2 2

n

p i i
i

V e k z υ
−

=
= + −∑ , (3.16) 

then from (3.14) and (3.16), the following relation holds: 

 0 0

0 0 0

exp[ 2 ( )] ( ) /2 exp( 2 )

exp[ 2 ( )] ( ) /2 exp( 2 ), .
p δ

p δ

V V γ t t V t σk γ c δt

γ t t V t σ k γ c δt t t

≤ ≤ − − + + −

≤ − − + + − ≥
(3.17) 

Thus, we can define the monitoring function as 

( ) exp[ 2 ( )] ( ) / 2 exp( 2 )k k k p k kψ t γ t t V t σ k γ c δ t= − − + + − ,                                    

1[ , )k kt t t +∀ ∈ , 0,1,k = " ; 0 : 0t = , (3.18) 
where kt  is the switching time to be defined, kδ  is any 
monotonically decreasing positive sequence satisfying 

 0kδ →  as k →∞ , (3.19) 
and kc  is any monotonically increasing positive sequence 
satisfying 

 kc →∞  as k →∞ . (3.20) 
It is clear that we obtain ( )kψ t  from (3.17) mainly by 
replacing both δc  and δ  by kc  and kδ , respectively. From 
(3.16) and (3.18), for each kt  we always have 
 ( ) ( )k k kV t ψ t< . (3.21) 

Hence, we define the switching time of ˆ( , )Ru θ  as follows: 

1
min{ : , ( ) ( )},if the minimum exists

, otherwise.
k k

k
t t t V t ψ t

t +
> ≥⎧= ⎨+∞⎩

 (3.22) 

3.3  Main theorem 

We now introduce the main result of this paper. 
Theorem 1: Suppose the MRRC system given by (2.12) 
satisfies the assumptions (A1)-(A3). Let ˆ( , )Ru θ  be given by 
(3.1), (3.2), where  Ru  is obtained recursively by  (2.19) with 

0pk >  and 0pk <  being replaced by t +∈T  and t −∈T , 

respectively. Let the switching time of ˆ( , )Ru θ  (from ˆ( , )Ru θ+ +  
to ˆ( , )Ru θ− −  and vice versa) be defined by (3.22) where the 
monitoring function is given by (3.18). Then,  

1) ˆ( , )Ru θ  will stop switching after a finite number of 
switching and all the closed loop system signals are 

uniformly bounded; 
2) The tracking error e  converges to a residual set that is 

proportional to /pσk γ , where σ , pk  and γ  are 
defined by (3.10), (3.5) and (3.7), respectively. 

Proof. 1) By contradiction, suppose ˆ( , )Ru θ  switches 
according to (3.22) without stopping. Then, after a finite 
number k of switching, ˆ( , )Ru θ  must have a correct sign, i.e., 

R Ru u+= , θ̂ θ̂+=  if 0pk >  or R Ru u−= , θ̂ θ̂−=  if 0pk <  and, 
at the same time, from (3.18), (3.19) and (3.20), 

 δ kc c< , exp( ) exp( )kδt δ t− < − , kt t≥ . (3.23) 

Note that we can make Ru+  and Ru−  to be continuous (or 
piece-wise continuous) by properly choosing the signals 

1υ± , *, nυ±"  as shown in (Lin and Jiang 2004a). Thus, for any 
finite number of switching, the control signal Ru  is piece-
wise continuous and therefore, the solution of (2.12) exists 
and is continuous, which by noting (3.17) and (3.18), and by 
taking (3.23) into consideration, implies that 

 ( ) ( ) ( )kV t V t ψ t≤ < , kt t≥ , (3.24) 
where we have replaced  0t  by kt  in (3.17). Combining 
(3.22), the above inequality shows that no switching is 
needed for all kt t≥ , a contradiction. That is, after a finite 
number of switching, Ru  will stop switching. Then according 
to Lemma 1, we have that the overall control Ru  and all the 
signals of the close-loop system are uniformly bounded. 

Furthermore, whatever which one of Ru+  and Ru−  can finally 
be chosen, the other one is still uniformly bounded because 
of the finite number k  of switching of ˆ( , )Ru θ .  

From (3.24) and (3.6), we have 2 / 2 ( )ke ψ t< ; hence, 

2exp[ 2 ( )] ( ) / 2( 1)exp( 2 )k k p ke γ t t V t σk γ k δ t< − − + + + − , 

kt t≥ . (3.25) 

Since ( ) /k pψ t σk γ→  as t →∞ , (3.25) shows that the 
tracking error e  converges to a residual set that is 
proportional to /pσk γ . This completes the proof. ■ 

The following corollary shows a more interesting fact of our 
switching scheme.  
Corollary 1: if 0ε = , then at most one switching of ˆ( , )Ru θ  is 
needed. 

Proof.  From (A-9) in the Appendix A, 0ε =  implies that 
0=є . Hence from (3.13) and (3.17) with 0t  being replaced 

by kt , we have 

 ( ) ( )V t V t≤ ≤ kexp[ 2 ( )] ( ) /2k pγ t t V t σ k γ− − + , kt t≥ . (3.26) 

Taking into account (3.18) it follows that for any finite 0k ≥ ,  

 ( ) ( )kV t ψ t< , kt t∀ ≥ . (3.27) 

From (3.22), if we correctly estimate the sign of pk  at 0 0t = , 
no switching occurs; whereas, one switching is enough. ■ 
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4. SIMULATION RESULTS 

An example is given in this section by using Matlab/ 
Simulink toolbox. The relative degree two plant is 
 2( ) /( )p pG s k s as b= + + , [ ]T(0) 0.5 , 0.5x = , (4.1)  
where the plant parameters belong to the following compact 
set: 

 
{ , , : 2 0.5 0.5 2,

0.5 1.5, 0.5 1.5}.
p p pS k a b k or k

a b
= − ≤ ≤ − ≤ ≤

≤ ≤ ≤ ≤
  (4.2) 

Therefore, in view of (3.5), both pk  and pk  can be obtained. 
The reference model is 
 2( ) 2 /( 6 5)M s s s= + + . (4.3) 
We choose ( ) s 5L s = + ; hence, ( ) ( ) 2/(s 1)M s L s = +  is a SPR 
function. From (2.17), we have 1λ = . The parameters of the 
I/O filters are Λ 10= −  and 1λb = , the reference signal 

sinr t= , the disturbance 2cos 0.5cos sind t y y t= + + , and 
2( ) 1.5d t y= + . To obtain 2Ru υ= , let 1 1τ = , 2 0τ = , 

1 2 2σ σ= = , 8ζ = , 9ρ = , then from (2.19), 

 1 1
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and 
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where 
1 1

2 2 2 2 1
1 1

BND( )

( )[ ( , )],

T
Lg g θ ω d

θ r ν ν y L s d y t

+ −

−

= = +

= + + + +

�

�

1 1
1 1

1

1 1
1 1

1

1
1

2
1 1 2

1
1

2 2
1 2

[ ( ) ]

BND( )BND[ ( )]

/2 BND( )BND( ) /2

: BND( ) /2 /2,

T
p f

p f

υ υυ e g
e g

υ υλe k θ ω d z ε g
e g

υ λe k θ ω d z
e

υ υ g ε
e g

ς ε g ε

± ±
±

± ±

±

± ±

± ±

∂ ∂
= +

∂ ∂

∂ ∂
≤ − + + + + +

∂ ∂

∂
≤ − + + +

∂

⎛ ⎞∂ ∂
+ + +⎜ ⎟∂ ∂⎝ ⎠
= + = +

� � �

� �

�

�

T   
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where  

 
3 2

1 1 1
2 2 2

1 1
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υ e g σζ
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±∂
= +
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,  

 
4 4 2 2 2

1 1 1 1
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1 1 1

3BND( )
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υ e g e g σ
g eg σ

±∂ +
=
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. (4.7) 

Let the nominal plant parameters pk , a  and b  be -1, 1 and 1, 

respectively, and choosing ˆ 0θ = , hence, together with (4.2), 
we obtain that  BND( ) 2k =� , 0BND( ) 113.5θ =� , 1BND( ) 5.5θ =�  
and 2BND( ) 1061.5θ =� . The monitoring function is given by 
(3.18) with 1.8γ = , kc k=  and 1/( 1)kδ k= + . The simulation 
results are shown in Fig.1 where we can see that after one 
switching of Ru  from Ru+  to Ru− , the tracking error converges 
to a small residual set. 
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5. CONCLUSION 

In this paper, we have introduced a switching scheme for the 
controller design of MRRC systems with relative degree 
greater than one and without the knowledge of HFG sign. We 
have shown that for plants with relative degree greater than 
one our scheme can guarantee the tracking error converge to 
a residual set that can be made small by properly choosing 
design parameters iσ , ζ  and ρ . In particular, if some of the 
initial states of the closed-loop system are zero, we have 
shown that at most one switching is needed. 

Appendix A. PROOF OF LEMMA 2 

If pk  is greater than zero and has been correctly estimated for 

0t t≥ , from (3.6), for all 0t t≥ , V� satisfies  
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where (2.18) and the following relationship have been used 

1 1 1( )( ) ( )( ) ( )( )i i i i i i i i i i i iz υ z υ z υ υ υ z υ z υ+ + +− − = − − + − −� �� , (A-2) 
in which we note that from (2.16), 1i iz z +=� . Replacing (2.19) 
with 1 1υ υ+= , 2 2υ υ+= , i iυ υ+= , i iμ μ+=  and R Ru u+=  in (A-1) it 
follows that 
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From (2.20) and (2.21), 
2 2

1 1( ) ( )i i i i i i i i i i iz υ υ z υ g c ε μ c ε z υ+ + + + + +
+ +− − ≤ − + ≤ + −� . (A-4) 

By applying triangle inequality to the term 2
i i ic ε z υ+− , it 

follows that 

 2 2 41( )i i i i i i i
i

c ε z υ a z υ c ε
a

+ +− ≤ − + ,  (A-5) 

where ia  is any positive constant. Therefore,  
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 2 4 *( ) , 1, , 1i i iγ z υ d ε i n+≤ − − + = −" , (A-6) 

where the term 2( )i iρ z υ+− −  is given by (A-3), and the design 
parameters ρ , ζ  and the constant ia , are chosen such that 
(3.7) holds. 

Now, using (A-6) and (3.7), and noting that the term eε  
satisfies (3.8), (A-3) can further be written as 
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where the following inequalities have been used (Qu et al. 
1994, p.2226): 
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and є  is defined as 
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which apparently is still an exponentially decaying function.  
If pk  is less than zero and has been correctly estimated for all 

0t t≥ , from (3.6), and similar to the above analysis for 0pk > , 
we can get 
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Combining (A-7) and (A-10), for both 0pk >  and 0pk < , 
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02 ,pγV k σ t t= − + + ∀ ≥є , (A-11) 

where σ  and є  are given by (3.10) and (A-9), respectively. 
This completes the proof.     ■ 
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