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1. INTRODUCTION

Multi-Agent Systems (MAS) have attracted more and
more interest in recent years. They represent a general
description for large-scale systems consisting of small sub-
units, called agents. The behavior of MAS is particularly
interesting because the agents may fulfill certain tasks as
a group, even in the individual agent does not know about
the overall task. Many examples come from nature, such
as schooling fishes or fireflies flashing in unison, see, e.g.,
Strogatz [2003]. Clearly, this collective behavior is also
interesting for engineers when solving problems such as
flocking [Olfati-Saber, 2006, Fax and Murray, 2004, Jad-
babaie et al., 2003], or synchronization [Jadbabaie et al.,
2004, Strogatz, 2000]. Recent reviews on consensus and
cooperation are given in Olfati-Saber et al. [2007] and Ren
et al. [2007].

Most publications on MAS consider only linear subsystems
and ideal communication channels without delay. How-
ever, many systems, such as for instance the well-known
Kuramoto oscillator [Kuramoto, 1984], exhibit nonlinear,
locally passive dynamics as discussed in Papachristodoulou
and Jadbabaie [2006]. Nonlinear consensus problems with-
out delay have been previously studied in Lin et al. [2007],
Bauso et al. [2006], Moreau [2005], Qu et al. [2007]. Fur-
thermore, many realistic communication networks exhibit
delays as studied for example in Lee and Spong [2006],
Bliman and Ferrari-Trecate [2005]. Another interesting
issue is switching network topologies that can be used to
model the loss and establishment of new communication
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links between agents as these move in space [Moreau,
2005]. However, there are very few publications that deal
with both switching topologies and delayed communica-
tion: Olfati-Saber and Murray [2004] presented a delay-
dependent result for MAS with switching topologies with
identical, fixed delays in all channels. In Ghabcheloo et al.
[2007], Papachristodoulou and Jadbabaie [2006, 2005], a
synchronization problem with switching topology has been
considered, but for constant delays.

In this paper, we present a continuous-time consensus
protocol for nonlinear, locally passive MAS with delayed
exchange of information. Locally passive means that the
nonlinear dynamics gji(xi − xj), which describe the in-
fluence of agent j on agent i, satisfy ygji(y) > 0 for

y ∈ [−γ−ji, γ
+
ji] \ {0} with γ−ji , γ

+
ji > 0. The delay may

result from a digital communication network between the
agents or from other propagation processes that are used
to exchange information between the agents, e.g., sonar
for autonomous submarines. The delay is not fixed, but
rather depends on the workload of the communication
network or the distance between the two agents. For this
reason, we assume a continuous, time-varying delay to
capture the unsteadiness in the communication delay. This
model differs from our previous work [Münz et al., 2008,
2007] where the communication channels were modeled as
distributed delays. We consider both fixed and switching
network topologies. The only requirement for the consen-
sus set to be asymptotically attracting in the case of a fixed
topology is that the underlying graph contains a spanning
tree. For the switching topology case, only the union graph
of all subgraphs that persist over time has to contain a
spanning tree. The methodology we use is based on an
invariance principle for Lyapunov-Razumikhin functions.
The main ideas of the proof are based on recent results
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in Münz et al. [2008]. This underlines that the applied
methods can also be used for other MAS problems with
delays.

The paper is structured as follows: Some background infor-
mation on time-delay systems and algebraic graph theory
is given in Section 2. The problem is posed in Section 3.
In Section 4, we present conditions for consensus over
fixed topologies. In Section 5, these results are extended to
switching topologies. The paper is concluded in Section 6.

2. PRELIMINARIES

In this section, we review briefly some stability re-
sults for functional differential equations using Lyapunov-
Razumikhin functions as well as some tools and notation
from Algebraic Graph Theory.

2.1 Stability of Functional Differential Equations

This subsection gives a brief summary of stability results
for functional differential equations. The interested reader
is referred to Hale and Lunel [1993] and Haddock and
Terjéki [1983] for more details.

Let R
n denote the n-dimensional Euclidean space with

the standard norm | · |. Let C([a, b],Rn) denote the Banach
space of continuous functions mapping the interval [a, b] ⊂
R into R

n with the topology of uniform convergence. Given
T > 0, we define C = C([−T , 0],Rn). The norm on C
is defined as ‖ϕ‖ = sup−T ≤s≤0 |ϕ(s)|. Let ρ ≥ 0 and
x ∈ C([−T , ρ],Rn), then for any t ∈ [0, ρ], define a segment
xt ∈ C by xt(s) = x(t+ s), s ∈ [−T , 0].

Let Ω be a subset of C, f : Ω → R
n a given function, and

‘˙’ represent the right-hand Dini derivative, then we call

ẋ(t) = f(xt) (1)

an autonomous Retarded Functional Differential Equation
(RFDE) on Ω. Given an initial condition ϕ ∈ Ω and ρ > 0,
a function x(ϕ) : [−T , ρ] → R

n is said to be a solution to
(1), if xt(ϕ) ∈ Ω, x(ϕ)(t) satisfies (1) for t ∈ [0, ρ), and
x0(ϕ) = ϕ. Such a solution exists and is unique if f is
continuous and f(ϕ) is Lipschitzian in each compact set
in Ω. Note that xt(ϕ)(s) = x(ϕ)(t + s) for s ∈ [−T , 0].

An element φ ∈ C is called a steady-state or equilibrium of
(1) if xt(φ) = φ for all t ≥ 0. Without loss of generality we
assume that φ = 0 is an equilibrium of (1). The stability of
(1) around such a steady-state is defined in a way similar to
the stability of nonlinear Ordinary Differential Equations
(ODE) using an ε-δ argument, see Hale and Lunel [1993].

There are two types of Lyapunov theorems for stabil-
ity of equilibria of RFDE, namely Lyapunov-Krasovskii
and Lyapunov-Razumikhin. Lyapunov-Krasovskii is the
natural extension of Lyapunov’s theorem from ODEs
to RFDEs. It is based on non-increasing Lyapunov-
Krasovskii-functionals. In this work, we will be applying
Lyapunov-Razumikhin-type theorems to prove consensus,
which uses functions instead of functionals.

Let D ⊆ R
n. By a Lyapunov-Razumikhin Function V =

V (x), we mean a continuous function V : D → R. The
upper right-hand Dini derivative of V with respect to (1)
is defined by

V̇ (ϕ) = lim sup
h→0+

1

h
(V (ϕ(0) + hf(ϕ)) − V (ϕ(0))).

With this definition, we have the following Lyapunov-
Razumikhin theorem:

Theorem 1. Suppose f : Ω → R
n maps bounded subsets

of Ω into bounded sets of R
n and consider (1). Suppose

v, w : R
+ → R

+ are continuous, non-decreasing functions,
v(s) positive for s > 0, v(0) = 0. If there is a Lyapunov-
Razumikhin Function V : D → R such that:

V (x) ≥ v(|x|) for x ∈ D, and

V̇ (ϕ(0)) ≤ −w(ϕ(0)) if V (ϕ(0)) = max
−T ≤s≤0

V (ϕ(s)),

then the equilibrium x = 0 of (1) is stable.

Note that the function V in Razumikhin’s theorem need
not be non-increasing along the system trajectories, but
may indeed increase within a delay interval. The proof of
Razumikhin’s theorem is based on the fact that

V (ϕ) = max
−T ≤s≤0

V (ϕ(s)) (2)

is a Lyapunov-Krasovskii functional that is non-increasing
along the system trajectories. This is an important fact
that we will be using in our proofs.

In this paper, we have to prove the attractivity of a
subspace of R

n. Therefore, we will make repeated use of
an invariance principle for RFDEs. For this, we need to
define ω-limit sets of solutions and provide LaSalle-type
theorems for RFDEs.

Definition 2. A set M ⊆ Ω is said to be positively in-
variant with respect to (1) if, for any ϕ ∈ M , there is a
solution x(ϕ) of (1) that is defined on [−T ,∞) such that
xt(ϕ) ∈M for all t ≥ 0 and x0 = ϕ.

Definition 3. Let ϕ ∈ Ω. An element ψ of Ω is in ω(ϕ), the
ω-limit set of ϕ, if x(ϕ) is defined on [−T ,∞) and there
is a sequence {tn} of non-negative real numbers satisfying
tn → ∞ and ‖xtn

(ϕ) − ψ‖ → 0 as n→ ∞.

If x(ϕ) is a solution of (1) that is defined and bounded on
[−T ,∞), then the orbit through ϕ, i.e., the set {xt(ϕ) : t ≥
0} is precompact, ω(ϕ) is non-empty, compact, connected,
and invariant, and xt(ϕ) → ω(ϕ) as t→ ∞.

For a given set Ω ⊂ C, define

EV = {ϕ ∈ Ω :

max
s∈[−T ,0]

V (xt(ϕ)(s)) = max
s∈[−T ,0]

V (ϕ(s)), ∀t ≥ 0

}

(3)

MV : Largest set in EV that is invariant wrt. (1). (4)

Here, EV is the set of functions ϕ ∈ Ω which can serve as
initial conditions for (1) such that xt(ϕ) satisfies

max
s∈[−T ,0]

V (xt(ϕ)(s)) = max
s∈[−T ,0]

V (ϕ(s))

for all t ≥ 0. Note that the above condition guarantees

that V defined in (2) satisfies V̇ (ϕ) = 0. In particular,
for a Lyapunov-Razumikhin function V and for any ϕ ∈
EV , we have V̇ (xt(ϕ)) = 0 for any t > 0 such that
maxs∈[−T ,0] V (xt(ϕ)(s)) = V (xt(ϕ)(0)).

We then have the following theorem:

Theorem 4. Suppose there exists a Lyapunov-Razumikhin
function V = V (x) and a closed set Ω that is positively
invariant with respect to (1) such that
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V̇ (ϕ) ≤ 0 ∀ϕ ∈ Ω s.t. V (ϕ(0)) = max
s∈[−T ,0]

V (ϕ(s)). (5)

Then, for any ϕ ∈ Ω such that x(ϕ) is defined and bounded
on [−T ,∞), ω(ϕ) ⊆MV ⊆ EV , and we have

xt(ϕ) →MV as t→ ∞.

Theorem 4 will be used extensively in our work. It proves
the attractivity of invariant subsets MV of Ω for the
solutions of RFDE (1).

2.2 Algebraic Graph Theory

The topology of the communication network between the
agents is represented by a graph. A graph G = (V , E)
consists of a set of vertices (nodes) V = {vi}, i ∈ I =
{1, . . . , N}, which represent the agents, and a set of edges
(links) E ⊆ V × V , which represent the communication
channels between the agents. If vi, vj ∈ V and eij =
(vi, vj) ∈ E , then there is an edge (a directed arrow)
from node vi to node vj , i.e., agent j can receive data
from agent i. In this paper, we assume that the graph G
is directed, i.e., eij ∈ E does not necessarily imply that
eji ∈ E . We also assume that the network topology does
not contain self-loops, i.e., eii /∈ E . The graph adjacency
matrix A = [aij ], A ∈ R

N×N , is such that aij = 1 if eij ∈ E
and aij = 0 if eij /∈ E . If eji ∈ E , then vj is a parent of vi.
The number of parents of agent i, also called the in-degree

of vertex vi, is denoted by di =
∑N

j=1 aji.

A directed path from vi to vj is a sequence of edges out of E
that takes the following form (vi, vi1 ), (vi1 , vi2), . . . , (vip

, vj).
A directed cycle is a directed path that starts and ends at
the same vertex. A directed tree is a directed graph where
every vertex has exactly one parent except for one node,
the so-called root vR. Clearly, there is a directed path from
vR to all other nodes of the directed tree.

A subgraph (Ṽ , Ẽ) of G is a graph with Ṽ ⊆ V and Ẽ ⊆ E .

If there exists a subgraph (V , Ẽ) of G that is a directed
tree, then we say that G contains a directed spanning tree.
Hence, a graph G contains a directed spanning tree if
and only if it contains at least one root, i.e., one node
with a directed path to all other vertices. We denote the
set of all roots of G as IR and I

R
= I \ IR. In the

following, we also say spanning tree when referring to a
directed spanning tree. The union graph of a set of P

graphs {(V , Ep)}, p ∈ P = {1, . . . , P}, is
(

V ,
⋃

p∈P Ep

)

.

More details on algebraic graph theory can be found for
example in Godsil and Royle [2000].

3. PROBLEM SETUP

Consider N agents with nonlinear, locally passive dy-
namics and delayed exchange information. The delay τji

when agent j transmits its state to agent i is continuous,
bounded, and time-varying: τji : R+ → [0, T ], T ∈ R.
The scalar state xi of agent i is updated continuously by
comparing its own state with the states of its parent agents
xj , eji ∈ E . This is summarized in the following RFDE:

ẋi(t) = −ki

N
∑

j=1

ajigji (xi(t) − xj(t− τji(t))) , i ∈ I, (6)

where ki > 0 is the coupling gain and aji are the elements
of the adjacency matrix A of the underlying graph. We
assume that the delays τji are sufficiently heterogeneous
so that (6) does not have a limit cycle. The nonlinear
dynamics gji satisfy the following assumption:

Assumption 5. The continuous functions gji : R → R are
locally passive, i.e.,

gji(0) = 0 and ygji(y) > 0 for all y ∈ [−γ−ji, γ
+
ji] \ {0},

with γ−ji , γ
+
ji > 0.

This model extends the standard linear MAS, studied
for example in Jadbabaie et al. [2003], with nonlinear
dynamics gji and time-varying delays τji. We considered a
similar model with distributed delays in Münz et al. [2008].

The main result of our work is to provide conditions for
MAS (6) to reach consensus asymptotically, i.e., all agents
eventually converge to the same state xi = xj for all i, j ∈
I. For some x∗ ∈ R, a consensus point φx∗ ∈ C is such
that all components of φx∗ satisfy φx∗,i(η) = x∗, i ∈ I, for
all η ∈ [−T , 0]. The consensus set Θ of the MAS (6) is

Θ =
⋃

x∗∈R

{φx∗}, (7)

It can be easily checked that any element of the consensus
set is a steady-state of (6). We investigate both fixed and
switching topologies in Section 4 and 5, respectively.

4. CONSENSUS OVER FIXED TOPOLOGIES

We have to prove that the consensus set Θ (7) is asymp-
totically attracting for appropriate initial conditions ϕ ∈
CD = C([−T , 0],D). The region of attraction D is

D =
{

x ∈ R
N : |xi| ≤

γ

2

}

(8)

with γ = mini,j∈I{γ
−
ij , γ

+
ij}, where γ−ij , γ

+
ij are the bounds

of the locally passive functions gij , cf. Assumption 5. Note
that D = R

n if gji are globally passive, e.g., linear. For CD,
we have the following result:

Lemma 6. If Assumption 5 holds, then CD = C([−T , 0],D)
is a positively invariant set of (6).

Proof. Consider the Lyapunov-Razumikhin function can-
didate

V (x(t)) =
1

2
max
i∈I

x2
i (t).

We denote I the index that satisfies x2
I(t) = maxi∈I x

2
i (t).

If there are several possible indices, we choose that one
which the maximal modulo of the derivative |ẋI(t)|. If
there are still several possible indices, we choose any one of
them but fix the index I as long as it satisfies the maximum
conditions. With this notation, the upper right-hand Dini
derivative of V along solutions of (6) is

V̇ (xt) = −kI

N
∑

j=1

ajI xI(t)gjI (xI(t) − xj(t− τjI(t))) . (9)

The condition on |ẋI(t)| is necessary in order to guarantee
that (9) is indeed the upper right-hand derivative.

Following Theorem 1, we consider the behavior of V̇
if V (x(t)) = maxη∈[0,T ] V (x(t − η)), i.e., |xI(t)| =
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maxη∈[0,T ] maxj∈I |xj(t− η)|. We conclude with Assump-
tion 5 that

xI(t)gjI (xI(t) − xj(t− τjI (t))) ≥ 0

for all j with ejI ∈ E and all xt ∈ CD. Hence, V̇ ≤ 0
if V (x(t)) = maxη∈[0,T ] V (x(t − η)) and consequently
xt(ϕ) ∈ CD for all t ≥ 0 if ϕ ∈ CD. �

With this result, we prove that the consensus set Θ is
asymptotically attracting for any initial condition ϕ ∈
CD, as long as the directed interaction graph contains a
spanning tree.

Theorem 7. Given a MAS consisting of N agents with
dynamics (6), where gji satisfy Assumption 5, and with
initial condition ϕ ∈ CD, as well as an underlying network
topology of a directed graph with a spanning tree, then the
consensus set Θ of this MAS is asymptotically attracting.

Proof. Consider the Lyapunov-Razumikhin function can-
didates

V1 = max
i∈I

xi(t),

V2 = −min
i∈I

xi(t).

As in the former proof, we denote I and J the indices that
satisfy xI(t) = maxi∈I xi(t) and xJ (t) = mini∈I xi(t), re-
spectively. If there are several such indices, we choose those
with the maximal derivative ẋI(t) and minimal derivative
ẋJ (t), respectively. If there are still several possible indices,
we choose any one of them but fix the indices I and J
as long as they satisfy the extremum conditions. Using
this notation, the right-hand Dini derivatives of V1 and V2

along solutions of (6) is

V̇1(xt) = −kI

N
∑

j=1

ajI gjI (xI(t) − xj(t− τjI(t))) ,

V̇2(xt) = kJ

N
∑

j=1

ajJ gjJ (xJ (t) − xj(t− τjJ (t))) .

Following Theorem 4, we are interested in the behavior of
V̇k, k = 1, 2, whenever Vk(x(t)) = maxη∈[0,T ] Vk(x(t − η)),
i.e., xI(t) = maxη∈[0,T ] maxj∈I xj(t − η) and xJ(t) =
minη∈[0,T ] minj∈I xj(t − η), respectively. A similar argu-

ment as in the proof of Lemma 6 shows that V̇k ≤ 0, k =
1, 2. Hence, condition (5) in Theorem 4 is fulfilled.

Next, we have to find the sets EVk
and MVk

, k = 1, 2,
according to (3) and (4). For every ϕ ∈ EVk

, there is an
x∗k ∈ R such that maxη∈[0,T ] Vk(x(ϕ)(t − η)) = x∗k for all

t ≥ 0. Moreover, any ϕ ∈ EVk
satisfies V̇k(xt(ϕ)) = 0 for

any t ≥ 0 whenever Vk(x(ϕ)(t)) = maxη∈[0,T ] Vk(x(ϕ)(t −
η)), see Haddock and Terjéki [1983]. For V1, this trans-

forms into V̇1 = 0 if xI(t) = maxη∈[0,T ] maxj∈I xj(t −

η) = x∗1. Furthermore, V̇1 = 0 if xI(t) = xj(t − τjI(t))
for all j with ejI ∈ E . Hence, all parents vj of vI must
fulfill xj(t− τjI (t)) = x∗1. Since gji and τji are continuous,
all xi, i ∈ I, are differentiable. As x∗1 is the maximum
of all states and of all times t, this requires that ẋj(t −
τjI(t)) = 0. Thus, all the parents of the parents of vI also
satisfy xκ(t−τjI(t)−τκj(t)) = x∗1 for all ejI , eκj ∈ E . This
can be continued up to any root of the underlying graph
of the MAS. There exists at least one root because the

graph contains a spanning tree. Since the delays τji are
sufficiently heterogeneous to avoid persisting oscillatory
behavior, we have

EV1
=

⋃

x∗

1
∈R

{

ϕ ∈ CD :

{

ϕi(η) = x∗1, ∀ i ∈ IR

ϕi(η) ≤ x∗1, ∀ i ∈ I
R

}

∀ η ∈ [−T +, 0]
}

. (10)

With similar arguments for EV2
, we get

EV2
=

⋃

x∗

2
∈R

{

ϕ ∈ CD :

{

ϕi(η) = x∗2, ∀ i ∈ IR

ϕi(η) ≤ x∗2, ∀ i ∈ I
R

}

∀ η ∈ [−T +, 0]
}

. (11)

where x∗2 = minη∈[0,T ] minj∈I xj(t− η) for all t ≥ 0.

Since both Lyapunov functions V1 and V2 satisfy the
conditions of Theorem (4), we conclude that the consensus
set Θ = EV1

∩ EV2
is asymptotically attracting to all

solutions xt(ϕ) of (6) with ϕ ∈ CD. �

5. CONSENSUS WITH SWITCHING TOPOLOGY

We now turn to MAS with dynamic topologies. Therefore,
we assume a finite set of directed graphs {Gp} with p ∈
P = {1, . . . , P}. At any time t, one of the graphs Gp

represents the topology of the communication network
between the agents. The switching signal σ : [0,∞) → P
determines the index of the active graph at time t. σ is
piecewise constant from the right and non-chattering, i.e.,
there is a dwell-time h > 0 between any two switching
instants tl+1 − tl ≥ h for all l = 1, 2, . . .. We assume that
the topology switches infinitely often because otherwise
this problem could be solved as in Section 4 considering
only the last active graph. We denote all switching times
when graph p becomes active tpν

, tpν+1
> tpν

, i.e., σ(t) = p
for t ∈ [tpν

, tpν+1) with ν = 1, 2, . . .. The set P∞ ⊆ P is
such that every graph Gp, p ∈ P∞, is infinitely often active,
i.e., there are infinitely many switching times tpν

. Finally,
we define the set of graphs that persist over time as the

union graph G∞ =
(

V ,
⋃

p∈P∞

Ep

)

.

The dynamics of the MAS with N agents and switching
topology are

ẋi(t) = −k
(σ)
i

N
∑

j=1

a
(σ)
ji gji (xi(t) − xj(t− τji(t))) , (12)

for all i ∈ I and with k
(p)
i > 0 for all i ∈ I and all

p ∈ P . A(p) = [a
(p)
ij ] is the adjacency matrix of graph Gp.

The initial condition is x0 = ϕ. The consensus set of the
MAS (12) is Θ as defined in (7).

Theorem 8. Given a MAS consisting of N agents with
dynamics (12), where gji satisfy Assumption 5, and with
initial condition ϕ ∈ CD, as well as an underlying switched
network topology of directed graphs, such that the union
graph G∞ has a spanning tree, then the consensus set Θ of
this MAS is asymptotically attracting.

Proof. The proof is based on a common Lyapunov func-
tion argument to allow for the arbitrary switching and on
Theorem 4 to prove attractivity of the consensus set Θ.
Note first, that CD is positively invariant with respect to
an arbitrarily switching system (12) because it is invariant

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1525



with respect to every subsystem. Next, we briefly outline
the remainder of the proof. In Part (i), we define two
common Lyapunov Razumikhin function candidates V1

and V2 and prove that they satisfy condition (5). In order
to determine the sets EVk

and MVk
, k = 1, 2, we adopt an

invariance principle from Hespanha et al. [2005]. This re-
quires the definition of two functionals V k, k = 1, 2, which
are based on V1 and V2. Since the derivatives of V k cannot
be determined easily, we just distinguish between the two

important cases V̇ k = 0 and V̇ k < 0 through simple rules
in Part (ii) of the proof. Using these conditions, we apply
the result from Hespanha et al. [2005] and determine the
sets EVk

and MVk
in Part (iii).

Part (i): We consider the functions V1 and V2 from the
proof of Theorem 7 as common Lyapunov-Razumikhin
function candidates. The indices I and J are defined as
in Theorem 7 to be the maximal and minimal states over
all agents. The right-hand Dini derivatives of V1 and V2

along solutions of (12) are

V̇
(σ)
1 (xt) = −k

(σ)
I

N
∑

j=1

a
(σ)
jI gjI (xI(t) − xj(t− τjI(t))) ,

V̇
(σ)
2 (xt) = k

(σ)
J

N
∑

j=1

a
(σ)
jJ gjJ (xJ (t) − xj(t− τjJ (t))) .

Following the proof of Theorem 7, we know that V̇
(p)
k ≤

0, k = 1, 2, for all p ∈ P , whenever Vk(x(t)) =
maxη∈[0,T ] Vk(x(t − η)). We conclude that condition (5)
is satisfied and that the functionals

V k(xt) = max
η∈[0,T ]

Vk(x(t − η)),

k = 1, 2, are nonincreasing.

Part (ii): It would be quite difficult to calculate the
right-hand Dini derivatives of V k along solutions of (12).
Instead, we determine simple rules to distinguish the

two main cases V̇ k = 0 and V̇ k < 0. Therefore, we
use the following notation: Let the values Iη and Jη

indicate the indices at each time t that satisfy xIη
(t −

η) = maxi∈I xi(t − η) and xJη
(t − η) = mini∈I xi(t − η),

respectively. If there are several possible indices, we chose
any one of them. Let ηI , ηJ ∈ [0, T ] be such that

xIηI
(t− ηI) = max

η∈[0,T ]
max
i∈I

xi(t− η), (13)

xJηJ
(t− ηJ ) = min

η∈[0,T ]
min
i∈I

xi(t− η), (14)

i.e., V 1(xt) = xIηI
(t − ηI) and V 2(xt) = −xJηJ

(t − ηJ).
Clearly, ηI and ηJ are changing with time and there might
be several values ηI , ηJ ∈ [0, T ] that satisfy (13) and (14),
respectively. Now, we can state the following about the
derivatives of V k, k = 1, 2, along solutions of (12):

• V̇
(p)

k (xt) ≤ 0 for all p ∈ P .

• V̇
(p)

1 (xt) = 0 if and only if there exists an ηI ∈ [0, T )
that satisfies (13), see Figure 1(a).

• V̇
(p)

1 (xt) < 0 if and only if ηI = T satisfies (13) and
there does not exist an η∗I ∈ [0, T ) that satisfies (13),
see Figure 1(b).

V1

V 1(t)

t − ηI

t − T + t

(a)

V1

V 1(t)

t − T + = t − ηI t

(b)

Fig. 1. Exemplary Lyapunov function V1 and exemplary
Lyapunov functional V 1, see text for details

• V̇
(p)

2 (xt) = 0 if and only if there exists an ηJ ∈ [0, T )
that satisfies (14).

• V̇
(p)

2 (xt) < 0 if and only if ηJ = T satisfies (14) and
there does not exist an η∗J ∈ [0, T ) that satisfies (14).

Part (iii): With these conditions, we can now turn to
an invariance principle for switched RFDEs. Recall the
definition of the switching times tpν

given above, such that
σ(t) = p for t ∈ [tpν

, tpν+1) with ν = 1, 2, . . .. Since two
switching times tl are separated by a dwell time h, we have

V k(x(tl)) − V k(x(0)) =

P
∑

p=1

ν∗

p
∑

ν=1

∫ tpν+1

tpν

V̇
(p)

k (xt)dt, (15)

with ν∗p such that tpν∗

p
+1 ≤ tl and tpν∗

p+1
> tl. From our

former arguments, we know that V̇
(p)

k (xt) ≤ 0. Moreover,
we know that the left hand side of (15) converges to a
finite value for tl → ∞ because V k is nonincreasing and
bounded from below. Following the proof of Theorem 7 in

Hespanha et al. [2005], we conclude that V̇
(p)

k (xt) → 0 as

t→ ∞ for all p ∈ P∞ and k = 1, 2. Clearly. V̇
(p∗)

k (xt) → 0
is not necessary for those p∗ ∈ P\P∞ because these graphs
are only active a finite number of times, i.e., ν∗p∗ does not
go to infinity for tl → ∞.

Now, we have to determine the sets

EVk
=

{

ϕ ∈ CD : V̇
(p)

k (xt(ϕ)) = 0 ∀ p ∈ P∞, t ≥ 0

}

,

k = 1, 2, in order to conclude that xt → EVk
as t →

∞. We first consider EV1
. For every ϕ ∈ EV1

, there
exists an x∗1 ∈ R such that V 1(xt(ϕ)) = x∗1, i.e., x∗1 =
maxη∈[0,T ] maxi∈I xi(ϕ)(t − η), for all t ≥ 0. Following

our former arguments, we know that V̇
(p)

1 (xt) = 0 if and
only if there exists an ηI ∈ [0, T ) that satisfies (13).
Hence, we know that the right-hand Dini derivatives of

the Razumikhin candidate V1 satisfy V̇
(p)
1 (x(t − ηI)) = 0

(see Figure 1(a)) and this requires that

xIηI
(t− ηI) − xj(t− ηI − τjIηI

(t− ηI)) = 0, (16)

for all j with ejIηI
∈ Ep. Since xIηI

(t− ηI) = x∗1 and since
x∗1 is the maximum of all states at all times, we conclude
that ẋj(t − ηI − τjIηI

(t − ηI)) = 0 for all eIjηI
∈ Ep. The

same arguments hold for all p ∈ P∞. Note that x∗1 depends
on ϕ but not on p. Following the proof of Theorem 7, we
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conclude that, if the union graph G∞ has at least one root
vi, i ∈ IR, then EV1

is given by (10). We know that G
has at least one root because it contains a spanning tree.
We use similar arguments for EV2

and obtain (11). As in
Theorem 7, we conclude that xt → Θ ⊆ EV1

∩ EV2
for

t→ ∞. �

This result shows that consensus is reached among nonlin-
ear, locally passive MAS even if they exchange information
over communication networks with an arbitrarily switch-
ing network topology. The assumption that G∞ has a span-
ning tree resembles the connected-over-time assumption
in previous works, e.g., Jadbabaie et al. [2003], Moreau
[2005]. We have shown in Münz et al. [2008] that the
new condition is not more restrictive than the former
conditions. Note that both Theorem 7 and 8 apply also
for MAS with a leader following the same arguments as in
Münz et al. [2008].

6. CONCLUSIONS

Theorem 7 and 8 provide conditions for a class of nonlin-
ear, locally passive multi-agent systems with time-varying
communication delays to reach consensus. These condi-
tions hold for for arbitrary delay sizes and variations as
well as both for fixed and switching network topologies. We
only require that the underlying graph contains a spanning
tree for the fixed topology case; and in the case of switching
graphs, we require that the union graph of the set of
graphs that persist over time contains a spanning tree.
These results are obtained using an invariance principle
for Lyapunov-Razumikhin functions.
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