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Abstract: This paper describes a strategy for fuel economy improvement of light duty truck with parallel 

hybrid system. The main objective of this paper is to develop a new hybrid controller which optimizes the 

torque distribution among various running situations and driver’s characteristics with on-line simulation, 

computing fuel and electric current consumption by using neural network models of the hybrid ECU. Then, 

fuel and battery current consumption computational models with respect to battery state of charge (SOC), 

engine and motor torque and engine speed are synthesized by using neural network, and the models are 

based on experimental data. Finally, the new hybrid controller including the above mentioned models is 

developed, and its effectiveness on fuel economy improvement is verified by using computer simulation. 

 

1. INTRODUCTION 

Nowadays, hybrid vehicles with diesel engine and electric 

motor as the target of this study will be one of the most 

efficient commercialized low emission vehicles to become 

wide spread in few years. The light duty hybrid truck which 

is target of this study can also reduce emissions and fuel 

consumption compared with conventional truck without 

hybrid system. The hybrid controller in the system 

determines torque distribution of the engine and the electric 

motor corresponding to the driver’s required torque, under 

representative driving patterns in actual driving situation such 

as the expressway mode, suburban mode and traffic 

congestion mode etc. However, if the vehicle is used under 

completely different situation from the representative driving 

patterns for hybrid system design, satisfactory fuel economy 

performance as well as driveability cannot be achieved.  

In recent researches, to optimize torque distribution between 

electric or hydraulic motor and internal combustion engine 

for fuel economy improvement, analysis by using dynamic 

programming (DP) method (Jin, et al., 2006; Wu, et al., 2004; 

Langari, et al., 2005) and hybrid system based on driving 

pattern recognition (Jeon, et al., 2002; Lin, et al., 2004; Won, 

et al., 2005) with computer simulation were proposed 

(Shimizu, et al., 2004; Morita, et al., 2004). 

In this study, hybrid controller is developed to improve fuel 

economy under various driving situations. Its controller in the 

hybrid ECU includes fuel and electric current consumption 

models by using neural network, and it calculates optimal 

torque distribution to minimize fuel consumption and to 

control battery State of Charge (SOC) within the optimal 

range by on-line simulation.  

First, the experiment with target vehicle is conducted to 

measure the teacher data set for training the neural network 

model, and fuel and electric current consumption models are 

identified by training the models with the set of experimental 

data. Second, the hybrid controller which embeds the neural 

network model is designed. Finally, the improvement of fuel 

consumption and the balance of electric current consumption 

are evaluated by using computer simulation. 

2. TARGET VEHICLE 

Target vehicle of this research is light duty truck with hybrid 

system, and its parameters are shown in Table 1. This hybrid 

system is composed of electric motor/generator, Ni-MH 

battery, inverter and diesel engine as indicated in Fig. 1.  

 

Table 1. Target vehicle specification 

 

Parameter Value Unit

Maximum load 2000 kgf

Maximum gross vehicle weight 4605 kgf

Tire model 205/70R 17.5 -

Engine displacement 4009 cm
3

Maximum output power 100kW/3000rpm kW

Maximum output torque 353Nm/1600rpm Nm

Motor max power 36 kW

Motor max torque 350 Nm

Transmission 5speed manual T/M -  
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Fig. 1. Components of target vehicle with parallel hybrid 

system 

 

Hybrid computer in this system requires assist torque to 

motor/generator during vehicle accelerating to reduce engine 

load. During vehicle decelerating, also, hybrid computer 

requires regenerative torque to motor/generator to accumulate 

vehicle kinetic energy and convert into electric energy for 

charging the battery. Hybrid computer calculates the effective 

assist and regenerative torques by using measured values 

such as vehicle speed, accelerator pedal stroke, engine speed 

and etc. 

3. EXPERIMENT 

Experiment with target vehicle was conducted to measure the 

teacher data set for training the neural network models. The 

measured variables are the fuel injection rate with respect to 

engine speed and engine required torque, the battery current 

with respect to engine speed, the motor required torque and 

the SOC. In this experiment, drivers were instructed to 

accelerate vehicle to the required speed from representative 

start to goal points. Transmission shift operations, 

longitudinal acceleration and deceleration were arbitrary of 

the drivers. The number of driver was 17. These variables 

were measured from vehicle Controller-Area-Network 

(CAN) information, and the data sampling was 10Hz as 

shown Fig. 2. 
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Fig. 2. Measured variables with experiment (Data sampling 

time ; 10 Hz) 
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Fig. 3. New hybrid controller architecture 
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4. DESIGN OF HYBRID CONTROLLER 

4.1 Hybrid Controller outline 

Fig.3 shows the schematic diagram of the proposed hybrid 

controller architecture and Fig. 4. shows the flowchart of the 

hybrid controller algorithm. Controller sampling time, about 

several minutes, is defined as a parameter. During the 

sampling time, the CAN information of driver required 

torque, engine speed, regenerate current and SOC are 

buffered in temporary memory of the hybrid ECU. In the 

period of data by using on-line simulation of the hybrid ECU. 

Then, the assist torque map is updated to the optimal for the 

buffered data sampling time, hybrid controller starts iterative 

calculation to determine the optimal assist torque 

distribution for the buffered at the previous sampling time in 

the hybrid ECU. In this routine, as on-line simulation, the 

fuel and the electric current consumption models by using 

neural network are used. Details of them are described in the 

section 4.2.  
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Fig. 4. Control flow chart to determine assist parameters 
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Fig. 5. Flow of controller parameter update algorithm 

Assist map is updated to optimal with delay time as 

controller sampling time as Fig. 5. shown. In the figure, 

T1....TN indicate the sampling time duration and TSampling , the 

sampling time as a parameter. Then, the assist control is 

instantaneously optimized for driving mode. 

4.2 Fuel and current consumption model by using neural 

network 

According to the previous section, the proposed hybrid 

controller embeds the fuel and electric current consumption 

model which is synthesized by neural network model 

technique. This section describes the structure of the model 

and its validation. The neuron used in the model operation is 

shown as Fig. 6.  and the sigmoid function is described as 

follows: 
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where, α indicates the sigmoid gain, xn , the input values to 
the neuron, u  , the output of the neuron, wn  , the associated 

weights, and N , the number of neuron. The both models, 

fuel and current consumption I/O and structure are indicated 

as Fig. 6. and Fig. 7. As learning procedure, these models 

are trained with back propagation method by using one of  

experimental data as shown Fig. 2. Model parameters and 

learning conditions are shown by Table. 2.  
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Fig. 6. A neuron operation in the network 
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Fig. 7. Fuel consumption calculating model structure 
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Fig. 8. Current consumption calculating model structure 
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Table 2. Neural network model parameters and conditions 

PARAMETER FUEL INJECTION CURRENT

Hidden layer sigmoid gain 0.25 0.25

Output layer sigmoid gain 0.45 0.55

Hidden layer learning weithts 0.13 0.25

Output layer learning weights 0.55 0.55

Number of input layer neurons 2 3

Number of hidden layer neurons 15 20

Number of output layer neurons 1 1

Learning time 10000 5000

Data sets 1950 1950  

Fig. 9 ～  Fig. 12 show the calculated result of neural 

network model trained with experimental data. Here, R
2
  

indicates the correlation coefficient between the 

experimental data and the calculated value by using the 

identified model.   
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Fig. 9. Correlation coefficient between experimental data 

and identified fuel consumption model 
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Fig. 10. Comparison of experimental data with identified 

fuel consumption model in time history 
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Fig. 11. Correlation coefficient between experimental data 

and identified current consumption model 
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Fig. 12. Comparison of experimental data with identified 

current consumption model in time history 

 

Model output values show good consistency with 

experimental data, as can be confirmed from the R
2
  values 

and the gradient of linear approximation line. And then, 

generalization of identified models are evaluated by using 

other experimental data that are not used in model learning.  
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Fig. 13. Evaluation for generalization of identified fuel 

consumption model 
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Fig. 14. Evaluation for generalization of identified fuel 

consumption model in time history 
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Fig. 15. Evaluation for generalization of identified current 

consumption model 
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Fig. 16. Evaluation for generalization of identified current 

consumption model in time history 

 

Fig. 13 ～ Fig. 16 show the result for model validation.  The 

results show good consistency with experimental data. 

Therefore, it is proved that the fuel and electric current 

consumption models by using neural network have 

satisfactory effectiveness in predicting fuel consumption and 

electric energy consumption. For the next step, these models 

will be embedded in the hybrid system and utilized for 

computing the torque distribution. 

4.3 Assist control parameters optimization 

In this subsection, the assist torque control logic of new 

hybrid controller is described. The assist torque control is 

expressed as shown in Fig. 17. Here, Treq indicates the driver 

required torque, Tfull(ωe) , the vehicle maximum torque and 

Tass(ωe) , the assist start torque with respect to engine speed, 

Ta_peak and ωe_peak  , the parameter of  Tass(ωe). 

T req×

ω e_peak

T a_peak T ass (ω e )

ω e
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T
o
rq
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Fig. 17. Assist torque distribution control map 

 

Then, the motor and the engine torques are described by the 

following equations. 

                      { } trqeassreqm ETTT ×−= )(ω                         (3) 

 
                               

mreqe TTT −=                                  (4) 

where, Tm indicates the motor assist torque, Etrq  , the assist 

weight from 0 to 1.0, and Te  , the engine torque. The assist 

torque Tass(ωe) which is a function of engine speed is 

assumed to be expressed as follows :  

           

          
peakapeakeeeass TT _

2

_ )()( +−= ωωγω                  (5) 

Then, the parameters of this assist control logic are Ta_peak, 

ωe_peak, Etrq and γ . As shown in Fig. 18, the controller 
simulates fuel and current consumption from the buffered 

data, at the previous sampling time, with all parameter set 

patterns. Here, Iregen_buf indicates the buffered regenerated 

current, ωe_buf , the buffered engine speed , Treq_buf  , the 

buffered driver required torque, Ib_s , the calculated current , 

Fc_s , the fuel consumption by using neural network models, 

and ∆SOC indicates the current balance in the simulation for 
a parameter set. Hybrid controller calculates Fc_s and ∆SOC 
for all parameter sets by using the buffered data. And, the 

optimal assist control parameter set which satisfies the 

predetermined condition will be selected. 
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Fig. 18. On-line simulation with identified fuel and current 

consumption models. 

 

The condition for select parameter are expressed as the 

following equations. 

          )()( maxmin SOCSOCSOCSOCSOC ∆≤∆≤∆     

                           (6) 

                 ),,,( __ trqpeakepeaka ETSOC γω∆  

 

where, ∆SOCmin(SOC) and ∆SOCmax(SOC) respectively 

indicate the allowable minimum and maximum range with 

respect to current SOC for save Ni-MH battery, to prevent 

extraordinary charge or discharge as indicated in Fig. 19. 
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Fig. 19. ∆SOC allowable range with respect to current SOC 
for saving battery. 
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And the most important condition for parameter evaluation 

is fuel consumption as following equation. 

 

                )],,,(min[ ___ trqpeakepeakasc ETF γω                (7) 

 

Then, the hybrid controller is updated with the parameters 

selected on the above mentioned conditions, and distributes 

the driver’s required torque to the engine and the motor 

based on the optimized parameters. 

5. SIMULATION 

Simulation was conducted to evaluate new controller 

described in the previous section for the improvement in the 

fuel economy as well as the SOC balance. As shown in 

Table 3, the proposed controller as control A selects and 

updates the optimal assist control parameter set in the 1008 

pattern , and the fixed parameter set is used in conventional 

controller as control B. In addition, the running generating is 

started by using surplus engine torque if the battery SOC is 

less than the GenON_SOC as indicated in Fig. 20., and the 

parameter Etrq is fixed to 0.5 during generating mode. 

 

Table 3. Assist control parameters 

Control B

min max step fixed

T a_peak Nm 50 300 50 80

ω e_peak RPM 500 2000 250 500

γ - 2.5×10
-4
5.5×10

-4
1.0×10

-4
2.5×10

-4

Ε trq - 0 1.0 0.2 1.0

Total pattern - 11008

Control A
Parameter unit

 
 

GenON_SOC GenOFF_SOC

ON

OFF

SOC

 

Fig. 20. Running generating mode range 

 

Simulation was conducted in the condition of repeated 

driving pattern indicated in Fig. 21. The fuel consumption 

and the SOC balance for 13 cycles of the pattern were 

evaluated. Number of cycles, as repeating the driving pattern, 

was determined with the condition which recovers battery 

SOC to initial condition as Time = 0s. Here, the controller 

parameter of sampling time for the controller A was 

determined as TSampling = 50s.  

The results of simulation, the time history of the fuel 

consumption and the SOC balance, are shown in Fig. 22. 

The controller A was optimized in 1 cycle, and it held the 

balance of SOC. In contrast, with the controller B, SOC 

decreased less than the GenON_SOC, and the generating 

mode was started at about 400s. Generating mode is 

ineffective for the hybrid system, and the assist control is not 

optimized for the driving pattern with the controller B. 

Therefore, the fuel consumption with the controller A was 

improved about 7% compared with control B as shown 

Table 4. 
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Fig. 21. Driving pattern for evaluate new hybrid controller 
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Fig. 22. Comparison of fuel consumption between the 

controller A and B 

 

Table 4. Simulation results 

HV controller Control A Control B Improvement

Fuel consumption 308cc 331cc ∆23cc
 

6. CONCLUSIONS 

From the modelling of the fuel and the electric current 

consumption by using neural network, and the designed 
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hybrid controller based on the models, the major conclusions 

to be drawn from the study can be summarized as follows: 

 

- The fuel and the electric current consumption models are 

identified by using neural network, and the models show 

good consistency in time history and correlation coefficient 

when comparing the calculated results with the experimental 

data. 

-The proposed assist controller is designed that selects 

optimal assist parameter under the running condition in real 

time and embeds the synthesized fuel consumption 

computational models. The effectiveness of the proposed 

controller is evaluated by using computer simulation under 

driving patterns.  It was found that the fuel economy 

improvement can be achieved about 7% compared with the 

conventional hybrid system control algorithm. 

In future works, the effectiveness of the proposed assist 

controller on fuel economy improvement will be verified 

under actual driving condition. Moreover, the relationship 

between the controller parameter update including sampling 

rate, and contribution to fuel economy improvement will be 

investigated. 
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