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Abstract: The shift towards decentralization in power generation raises the need for a large-
scale control infrastructure to support a high number of distributed power generators. Peer-to-
peer computing provides self-organizing, Internet-scale infrastructures being resilient to node
failure, which makes peer-to-peer seem a natural basis for a large-scale control application.
However, raw peer-to-peer overlays lack certain properties that are crucial in a distributed
power generation scenario, like a messaging service, a public key infrastructure for implementing
security, etc. Therefore, the peer-to-peer overlay must be complemented by a set of service layer
components fulfilling the application requirements.
In this paper, we present an industrial case study where generic service components are applied
on top of a peer-to-peer overlay, forming a reliable control infrastructure for distributed power
generation. To illustrate our results, we present a detailed evaluation of the level of reliability
achieved with the combination of a messaging service, and a replication service.

1. INTRODUCTION

Traditionally electricity infrastructures are strictly hierar-
chical with a top-down flow of electric power from a few
large power plants down to a large number of consumers.
This situation is changing dramatically. Driven by govern-
mental subsidies small businesses and private households
install small and medium power plants (ranging from 1 to
1000kW), generating electric power from solar radiation,
wind, waste heat or biogas. This constitutes a paradigm
shift in power generation from a central structure towards
distributed generation.

The new distributed power generation scenario raises the
need for advanced infrastructures in order to maintain a
stable balance of generation and consumption. The control
infrastructure must be highly scalable and failure resilient,
as every single household might potentially have devices
for generating power or regulating power consumption in
the future.

Peer-to-peer computing provides self-organizing, Internet-
scale infrastructures being resilient to node failure. How-
ever, the raw peer-to-peer overlay must be complemented
with service components, such as components supporting
messaging, or components providing a public key infras-
tructure. In this paper, we present a peer-to-peer based
reliable control infrastructure for distributed power gen-
eration. We show how the application requirements can
be fulfilled composing generic, domain independent service
layer components on top of a peer-to-peer overlay.

This paper is organized as follows: In the next section,
we describe the overall scenario. Then, we derive the
related requirements. Section 4 presents the application
architecture, Section 5 gives an overview of related work.
Section 6 describes two components, providing messaging
and replication. In Section 7, we evaluate the level of
reliability achieved with the composition of these two
components. Finally, we summarize our results and present
an outlook on future work in Section 8.

2. USE CASE DESCRIPTION

The control infrastructure is hosted by the utility. The
hosts are located at multiple locations and connected to
the public Internet. Power generators are connected to the
control infrastructure via Internet. The utility uses the
control infrastructure to send control commands, and to
query status information from the power generators.

From the operator’s point of view the control infras-
tructure provides tree like data structures. The power
generators are logically located at the leaf nodes of the
tree structures, and the power company uses the trees
to address the power generators. The tree structures are
a virtual concept and thus independent of physical host
computers. Even if underlying hosts fail, new hosts join,
or leave the network, the tree structures remain available.

Our infrastructure is capable of providing several data-
centric views of the current state of generation and distri-
bution network. Utilities can set the view to include only
task specific data. In Figure 1 an example of two parallel
tree structures is illustrated.
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Fig. 1. Energy-Type-Based View of the Power Generators

The tree on the left organizes the generators according to
their dependence on weather conditions. The tree on the
right is structured by the location of the generators. If the
utility needs to multicast a query to all biomass generators,
then it is likely to choose the tree organized by energy type
whereas if the network operator wants to know the current
capacity of all wind power generators in a specific region,
then it is likely to use a location-based view to broadcast
a query to that region.

3. APPLICATION REQUIREMENTS

As motivated in the introduction, we use a peer-to-peer
overlay as the underlying infrastructure and set up the tree
views on top of that. The key properties of the resulting
control infrastructure can be summarized as follows:

(1) Reliability. The tree-shaped routing infrastructure
must be independent of the underlying hardware, and
it must be resilient to failure of hardware. The logical
tree view must remain available when hardware fails.

(2) Scalability. It is likely that a large share of the house-
holds will provide some power generating devices in
the future, or that they will at least provide some de-
vices where the power consumption can be controlled
to reduce consumption on peak load, e.g. smart me-
ters.

With the control infrastructure presented in this
paper it is possible for the power company to start
with a small number of peers, and to increase the
number of peers significantly later, while keeping the
network traffic load balanced among the peers.

(3) Messaging, Multicasting, and Aggregation. The con-
trol infrastructure must be able to support multicas-
ting when sending control commands from the power
company to the power generators, and it must provide
an aggregation tree for receiving periodic reports from
the power generators.

(4) Self-Organization. The logical tree structure must be
independent of the underlying physical infrastructure.
It must be possible to add or remove hardware
without the need for adapting the tree structure.

(5) Security. Unauthorized disclosure, modification, and
withholding of information must be prohibited, en-
suring confidentiality, integrity, and availability of the
system.

4. SERVICE COMPONENT ARCHITECTURE

The control infrastructure described in Section 2 is im-
plemented using a service component approach. A combi-
nation of generic, domain independent service layer com-
ponents is applied on top of the peer-to-peer overlay,
complementing the overlay with the functionality required
by the application.
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Fig. 2. Layers

The overall architecture is shown in Figure 2. Four layers
are defined that build the application:

(1) On the IP layer there are hosts operated by the utility.
The hosts are located in different data centers, and
are connected through the Internet. In the example
in Figure 2, there are five hosts.

(2) On the peer-to-peer layer, each host provides one
or more peers in a Distributed Hash Table (DHT).
DHTs are structured peer-to-peer systems, where
each peer is responsible for a certain range of key-
words. When data is stored in a DHT, the responsi-
ble peer is found using the keyword associated with
that data. The DHT utilized in our approach maps
keywords uniformly on the set of peers independent
of any network properties.

The raw peer-to-peer overlay merely provides a
routing service, mapping keywords to associated
peers. This routing service is resilient to node failure,
i.e. if a peer fails, another peer takes over responsibil-
ity for the keywords of the failed peer.

(3) The raw routing functionality is used by the service
layer components. These are generic, domain inde-
pendent components being composed to fulfill the
application requirements.

For example, the security requirements are fulfilled
by applying a public key infrastructure (PKI) service.
Likewise, reliability requirements are fulfilled with a
replication service storing backup copies of all data
in the DHT. The routing and aggregation service
is another very important service in the distributed
power generation scenario, as it provides the messag-
ing functionality.
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(4) On top of the service layer the actual application
is built. From the utility’s point of view, a secure
and reliable control infrastructure is available, and
all details of the underlying DHT are hidden and
abstracted by service layer components.

The introduction of a component-based service layer
between the peer-to-peer overlay and the application
layer allows us to use well-defined components fulfilling
application-specific requirements. The component-based
approach helps to reduce the complexity of the application.

5. RELATED WORK

One of the core tasks of the control infrastructure is to
provide a hardware-independent routing and aggregation
infrastructure. This infrastructure shares many similarities
with distributed XML infrastructures. XPath-like expres-
sions are used to address data. XPath can be used to
express singlecasts, multicasts, and broadcasts.

There is a lot of related work addressing the processing
of distributed XML on top of peer-to-peer overlays. Most
related projects provide some means for processing XPath-
like or XQuery-like expressions on the distributed XML.
All these solutions share similarities with our work.

The most extensive project addressing distributed XML
is AXML (Abiteboul et al. [2005a]). The AXML project
provides a distributed XML tree, where some nodes are
regular data nodes, while other nodes are distinguished
function nodes, representing calls to Web services. AXML
supports XQuery processing on the distributed XML
structure. If the query processor detects a relevant function
node, it calls the corresponding Web service and embeds
the result in the XML tree. AXML’s query evaluation
algorithm is described in (Abiteboul et al. [2004]).

Unlike our approach, AXML uses JXTA (Gong [2001])
as the underlying peer-to-peer overlay. There are other
projects focusing on DHTs as the peer-to-peer infrastruc-
ture. KaDoP (Abiteboul et al. [2005b]) is an implementa-
tion of AXML on top of a DHT, with a focus on semantic
modeling of the distributed XML data. XP2P (Bonifati
et al. [2004]) is a distributed XML store on top of the
Chord DHT (Stoica et al. [2001]), providing a distributed
XML database.

6. QUICK OVERVIEW OF THE MESSAGING AND
REPLICATION COMPONENTS

In the distributed power generation scenario, a distributed
tree structure is established as a service on top of a peer-
to-peer overlay. The tree structure serves as a messaging
infrastructure, providing multicasting and aggregation.

In this section, we give a short overview of the implementa-
tion of our messaging and replication services. In Section 7,
the results are evaluated.

The tree infrastructure is implemented as data being
stored in the DHT. Each node of the tree infrastructure
is stored as a data resource in the DHT, and each peer
in the overlay is able to store several tree nodes. That
way, the tree structure may consist of more nodes than
the underlying DHT.

A replication service stores backup copies of the data on
neighboring peers 1 . If a peer fails, a neighbor can take
over the responsibility for the corresponding nodes in the
tree structure. That way, a high level of availability can be
achieved.

Our routing mechanism uses a stateless approach. Each
message is tagged with the entire routing information,
and each peer can interpret the information and forward
the message to the next hop. That way, queries and the
corresponding responses are routed independently. If a
peer fails after having sent a query, other peers will take
over the routing of the response.

Another novelty with our approach is that we use chunk-
based routing. The tree structure does not need to be
traversed hop by hop, but path expressions can be used to
jump directly to any position in the tree. Therefore, the
inner nodes in the tree are only needed for multicasting
and aggregation, but they are not needed when single
nodes are addressed directly.

7. EVALUATION

As motivated in Section 1, we consider the peers to be
potentially unreliable, i.e. peers may fail, or the connection
to the Internet may become temporarily unavailable. In
this section we evaluate the reliability of the control infras-
tructure given the potential unreliability of the Internet.
The results can be compared to reliability estimates of
classical client-server based systems.

We only focus on “clean node failures”, i.e. nodes become
unavailable or connections become temporarily unusable.
This does not include malfunctioning nodes sending invalid
messages that could cause invalid routing table entries in
the peer-to-peer overlay. Dealing with incorrect messages
relates to peer-to-peer security, which is an interesting
research topic discussed in (Srivatsa and Liu [2004]).
However, it is beyond the scope of this paper.

7.1 Churn

In peer-to-peer terminology, the continuous appearance
and disappearance of peers is called churn. In this section
we evaluate the resilience of the control infrastructure to
churn.

Peer-to-peer overlays have originally been developed to
support file sharing communities. In typical file sharing
scenarios a fraction of the peers joins and leaves the overlay
very quickly, which results in comparably high churn rates
in these systems (Stutzbach and Rejaie [2006]). As DHT
overlays are designed to cope with these high churn rates,
we expect the DHT-based control infrastructure to be
extremely reliable, as peers in our scenario are run by the
power company, and are expected to run in a quite stable
environment.

The nodes of the tree structure are published as resources
in a DHT. At any given time, there is exactly one peer be-
ing responsible for one particular resource, and there are r
peers holding replicas of the resource. The responsible peer

1 In the Chord DHT, neighbor relationships on the overlay are

independent of the topology of the underlying hardware.
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Fig. 3. Probability that an entire replication group fails
for a = 99% and r = 2. A deployment with 80
peers would have about half of the maximum failure
probability.

plus the peers holding replicas form the replication group
for that resource. The number of replicas r varies with the
DHT implementation, and is typically a value between 2
(as in Rusitschka and Southall [2003]) and 8 (as in Rhea
et al. [2004]). Although peers in the replication group are
neighbors in the DHT this is generally not true for the
physical network where they are uniformly distributed. An
important fact to be considered for evaluation.

The failure of an entire replication group results in data
loss, i.e. the corresponding node in the tree structure
becomes unavailable, and the tree needs to be set up again
by the utility. We analyze the probability of data loss
in the DHT by deriving a formula for the probability of
data loss. We do not use empirical measurements from file
sharing networks as done in previous work. The formula
enables us to show the difference regarding reliability
between classical client-server based systems and peer-to-
peer based architectures.

General Formula. As a first step, we present a formula
that can be applied in both, client-server based scenarios
and peer-to-peer architectures. Given a number of n peers
(or servers), each of which having an average availability
of of a = 99.999 . . .%. Let r be the number of replicas of
a resource in the peer-to-peer network (or the number of
backup servers in a client-server based scenario), i.e. each
resource is stored r + 1 times, one original copy plus r
replicas. The probability that an entire replication group
fails is

p = (1 − an) · (1 − a)r

The probability has an upper bound of (1 − a)r, and
the upper bound is converged with an increasing number
of peers n. Increasing the number of replicas r decreases
the probability of an entire replication group being failed.
Figure 3 illustrates the probability for a = 99% and r = 2.

Interpretation. In a client-server based scenario, the
probability of data loss is usually reduced by increasing the
reliability of the server. There are servers with significantly
higher availability rates than 99%. Peer-to-peer based
solutions are designed for running on cheap, unreliable
hardware. These solutions improve the reliability using

self-healing capabilities. We will now show the impact of
self-healing algorithms on the formula above.

All DHTs provide some stabilization protocol including
ping messages being continuously exchanged among neigh-
boring peers. A typical time interval between these mes-
sages is 10 seconds, as in the Bamboo implementation
(Rhea et al. [2004]). If more than t consecutive ping mes-
sages remain unresponded, then the corresponding peer
is considered to be offline, and the DHT protocol takes
another peer into the replication group, and copies the re-
sources to that other peer. A typical value for the threshold
t is 3.

In total, as a very pessimistic assumption we can say that
it takes less than one minute to detect the node failure and
to transfer the replicated resources to another peer. After
one minute, the replication group is established again 2 . If
necessary, the recovery time can be decreased by increasing
the frequency of the ping messages.

The low recovery time dramatically reduces the probabil-
ity of data loss in peer-to-peer based systems. In a classical
client-server based scenario, a server that fails must be
repaired by a service engineer of the service provider host-
ing that server. Depending on the service level agreement,
the provider agrees on how long it takes until the service
engineer reacts. This results in a long time interval where
one server is missing.

If the guaranteed reaction time of the service engineer is
one hour, then the peer-to-peer based system is 60 times
faster when replacing failed peers. In the formula above,
this means that the probability of data loss is reduced to
p = (1 − an) · (1 − a)r/60r. This explains why peer-to-
peer systems are able to provide a high level of reliability
without using highly available hardware.

7.2 Massive Node Failure

In the section above, we studied the probability of data loss
with regular churn, i.e. where the failure of two different
peers is independent of each other. This was valid since the
utilized DHT maps resources uniformly to peers and hence
independent of their physical location in the network.
However, there are scenarios where several peers fail at
the same time, e.g. when a blackout occurs, and the peers
are all affected by the blackout.

In this section we consider the following question: If k
out of n peers fail at the same time, how much is the
probability of data loss? To the best of our knowledge,
this question has not been answered yet in related work
about peer-to-peer systems.

The probability p(n, k) is g(n, k)/m(n, k), where g(n, k) is
the number of ways to choose k failing peers without data
loss, and m(n, k) =

(

n

k

)

is the number of ways to choose k
peers out of n. In order to construct a recursive formula
for g(n, k), we consider all peers in a line. The black peers

2 Note that this does not mean that the resource is unreachable for

one minute. Switching responsibility from one peer to another peer

in the replication group is significantly faster than taking a new peer

into the replication group.
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are the peers that fail, the white peers are the peers that
work. The constraint is that there must not be more than
two neighboring black peers.

Distributing the failed (black) peers starts at the left. One
has three possibilities. First, the first peer is not
failed. In that case, g(n−1, k) possibilities are left. Second,

the first peer does fail, but the next one does
not. In that case g(n−2, k−1) possibilities are left. Third,

the first two peers fail, and the third one
does not. In that case g(n− 3, k − 2) possibilities are left.
These are all possibilities for the first step.

This consideration leads us to the following recursive
formula:

g(n, k) =







































0 if n < 0

1 if
n = k and
0 ≤ n ≤ 2

g(n − 1, k)
+ g(n − 2, k − 1)
+ g(n − 3, k − 2)

otherwise

n decreases with each step of the recursion, and the
recursion terminates when n < 0. Therefore, it is clear
that g(n, k) is well-defined for all n, k ∈ Z. The formula
yields g(n, k) = 0 for n < k, which means that there is
no way to distribute a number of failing peers k that is
greater than the overall number of peers n.

Figure 4 shows the probability of data loss depending on
the percentage of the peers that fail at the same time. The
x-axis is cut at 66%, because if more than 2/3 of the peers
fail the probability for data loss is always 100%.

For small n, the formula above produces slightly different
results than a simulation. This is because the actual DHT
is a ring structure, and not a line. Therefore, g(n, k) counts
three cases that would lead to data loss in a ring structure:
First, one peer fails at the beginning of the line and two
peers fail at the end of the line. Second, two peers fail at
the beginning of the line and one peer fails at the end of
the line. Third, two peers fail at the beginning of the line
and two peers fail at the end of the line. These three cases
would lead to data loss if we had a closed ring. However,
these three additional cases become insignificant for large
n.

Locality. The consideration above is based on the as-
sumption that the distribution of the replicated resources
is independent of the distribution of the peer failures. This
is true if the underlying DHT algorithm is based on the
Chord protocol (Stoica et al. [2001]), because in these
implementations the peers forming a replication group are
determined by their peer-id, which is a “random” value.

However, if the underlying DHT algorithm is based on
Pastry (Rowstron and Druschel [2001]) or Tapestry (Zhao
et al. [2001]), then the replication groups are formed by
peers that are close to each other in terms of the underlying
network topology. The result of locality-aware replication
is that peers being physically located in the same data
center are likely to form a replication group. In case of a
black out in the data center, the entire replication group
is lost.

Therefore we propose to choose Chord as the underlying
DHT infrastructure, and to sacrifice the better replication-
performance for better reliability in case of blackouts.

7.3 Race Conditions

In the last sections, we focused on the probability that
an entire replication group is lost because of peer failures.
However, the control infrastructure might be temporarily
unstable even if no entire replication group fails. In this
section, we will focus on these temporary anomalies.

In case a peer becomes unavailable, queries for that peer
are routed to the peer’s successor in the replication group.
However, it might happen that the original peer becomes
available again shortly afterwards. This leads to ambigu-
ous situations when responses are routed back to the root
of the tree structure. It might happen that some child
nodes report their responses to the peer holding a repli-
cated node, while other child nodes report their responses
to the original node.

There are two ways to deal with this situation. First,
this situation can be avoided using consensus protocols
to elect the responsible peer within the replication group.
That way, the peers in the replication group always have
a consistent view of the responsibilities. The disadvantage
of this approach is that running these protocols requires a
significant amount of messages to be exchanged, causing a
delay in routing operations.

The second way to deal with this situation is to ignore
it. In that case, neither the original peer nor the peer
in the replication group will receive responses from all
children, so both peers will run into a timeout and forward
the incomplete response. As a result, the two incomplete
responses will finally reach the utility, and the application
at the utility’s site can put these responses together
to reconstruct the complete response. Considering the
low churn rates in the control infrastructure, this should
happen very rarely, so this seems to be the best alternative
to handle temporary anomalies.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a reliable control infrastructure
for decentralized power generation. We achieved a high
level of reliability without the need of unused stand-by
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hardware. The network load is distributed among all peers
building the routing infrastructure.

We showed that due to the self-healing capabilities of
the underlying peer-to-peer infrastructure, the routing
infrastructure presented here is more resilient than a
classical client-server based approach.

The control infrastructure scales well if there is a huge
amount of power generators delivering data, and due to
the aggregation of response messages the root node does
not become a bottleneck.

Future work includes to investigate the implementation of
time constraints, in order to give some guarantees for how
long it may take to process a query. Another interesting
future topic is further optimization. For example, if a peer
is responsible for more than one node in the tree structure,
parts of the routing algorithm could be skipped.

Further research must be invested in the aggregation
capabilities of the infrastructure. So far, only responses
for given queries are aggregated, which means that the
routing infrastructure operates in pull mode. It would
be interesting to investigate how power generators could
actively push data to the power company, e.g. for reporting
threshold violations.
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