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Abstract: This paper proposes a new fast and effective method of image restoration to improve the 
resolution of SEM images. In our approach, image resolution is improved by deconvolution with the point 
spread function modeled as the intensity distribution of the electron beam at the specimen's surface. The 
beam intensity distribution under each imaging condition is estimated by electro-optical simulation to 
achieve high resolution. We propose an iterative technique for the deconvolution process with a cost 
function where the restored image at each iteration can be compared with the original image more directly. 
A wavelet shrinkage denoising algorithm was applied to efficiently suppress noise amplification in noisy 
images, The empirical results demonstrate the outstanding improvements in both resolution and noise 
suppression. The proposed iterative method also speeds up deconvolution by about 3 to 50 times more than 
the conventional Richardson-Lucy method. 

 

1.  INTRODUCTION 

Scanning electron microscopes (SEM) have been widely 
used for observing microstructures in many fields, such as in 
semiconductor manufacturing, medical diagnostics, and bio-
technology because of their high resolution of several 
nanometers (Goldstein et al., 2003). SEM images have 
especially been utilized to monitor the semiconductor 
manufacturing process and to inspect defects in 
semiconductor chips. Improvements to the spatial resolution 
of SEM are required so that semiconductor devices can 
continue to shrink in size and increase in density. 

A focused electron beam scans across a specimen's 
surface point by point to form the SEM image, where the 
number of detected electrons emitted from the specimen is 
represented by a gray level. As the spatial resolution is 
mainly determined by the beam spot size at the specimen's 
surface, a great deal of effort has been made to reduce the 
spot size. However, further improvements to resolution in 
electro-optics (i.e., hardware) tend to become too difficult. 
because of the spot-size limitations imposed by diffraction 
aberrations. 

However, image restoration algorithms can be used to 
reconstruct observed degraded images to high-resolution 
images in software approaches. In many image restoration 
techniques, a restored image can be obtained by 
deconvolving the observed image with the point spread 
function (PSF), which represents the degree of blurring 
(Banham and Katsaggelos, 1997). 

The spatial spread of the electron beam at the sample 
surface is the main cause of SEM image blur. In some image 
restoration methods, PSF is modeled as the intensity 
distribution of the electron beam (Goldenshtein et al., 1998). 
Since the beam intensity distribution varies with imaging 
conditions, such as accelerated voltage, probe current, and 

the angle of the beam, it is difficult to estimate the beam 
intensity distribution under each condition accurately. 

Iterative algorithms for image restoration have been 
widely investigated. Their advantages are that there is no 
need to calculate the inverse of PSF and that knowledge 
about the original (blur-free and noise-free) images can be 
built onto the iterative process. However, iterative algorithms 
have a serious disadvantage in that they are too time 
consuming to obtain good results especially in the field of 
semiconductor manufacturing, where the need to obtain SEM 
images quickly has increased. Therefore, much faster 
iterative algorithms are required for them to be feasible in 
that field. 

To efficiently solve these problems, we propose a new 
iterative method of restoring SEM images. In the proposed 
method, the beam intensity distribution under each imaging 
condition estimated by electro-optical simulation is used as 
PSF. In addition, the proposed method utilizes a cost function 
to achieve faster processing where the restored image at each 
iteration can be compared with the original image more 
directly. 

This paper is organized as follows. Section 2 describes 
conventional iterative image restoration algorithms and 
Section 3 presents the proposed SEM image restoration 
technique. We discuss a way of estimating the beam intensity 
distribution by using an electro-optical simulator, and a way 
of implementing fast iteration. Section 4 presents the 
simulation and experimental results. Finally, concluding 
remarks are given in section 5. 

2.  IMAGE RESTORATION 

2.1  Introduction 
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Fig. 1 outlines the SEM image degradation model. The 
observed SEM image is blurred because the intensity 
distribution of the electron beam at the specimen's surface 
has been spread to some extent because of diffraction and 
lens aberrations. The observed image is also noisy due to 
fluctuations in the number of detected electrons because the 
yield of electrons from the specimen is variable. Then, the 
degradation model is described by 

],[],[*],[],[ lknlkxlkAlky += + ,  (1) 

where A, y, x+, and n respectively represent PSF defined as 
the beam intensity distribution, the observed image, the 
original image, and additive noise. Operator “*” represents 
the spatial convolution. [k, l] represents the position of the 
image. Another representation in terms of a matrix-vector 
formulation of Eq. (1) is given by 

nAxy += + ,     (2) 

where images y, x+, and n are lexicographically ordered 
vectors of length KL (K, L: width and height of images), and 
PSF A represents a matrix of size KL × KL. 

The purpose of image restoration is to estimate the 
original image x+ from the observed image y by solving Eq. 
(2). This estimated image is called the restored image. 

2.2 Iterative  Method 

In many iterative methods, the problem of trying to 
estimate original image x+ by using Eq. (2) is formulated as 
an optimization problem that minimizes a certain cost 
function, L(x). To minimize cost function L(x), subject to 

nonnegativity constraints xt ≥ 0 for all t, the following 
algorithm has been proposed (Nagy and Strakos, 2000): 
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where x(j) represents the restored image at the j-th iteration. A 
column vector, c(j), of length KL represents the step size at the 
j-th iteration. 

In the Richardson-Lucy (RL) method, which has been 
widely implemented in image restoration, the following cost 
function is used (Lucy, 1974; Kaufman, 1993): 
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where L(j)(x) is the cost function at the j-th iteration, which 
varies with each iteration. D(j) is a diagonal matrix whose i-th 
diagonal element is D(j)

ii=(Ax(j))i
-0.5. The gradient of L(j)(x) is 
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By substituting Eq. (5) into Eq. (3) and by assuming (c(j))t 
= 1 for all t, the following iteration of the RL method is 
obtained: 
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3.  PROPOSED IMAGE RESTORATION ALGORITHM 

3.1  Introduction 

Fig. 2 outlines the data flow for the proposed image 
restoration algorithm. The observed image and the 
corresponding imaging condition are input for the algorithm. 
The intensity distribution of the electron beam under the 
given condition is estimated as PSF by using the electro-
optical simulator. Our technique first denoises the observed 
image to suppress noise amplification, and then obtains the 
restored image, x, by deconvolving the denoised image with 
the PSF. The wavelet shrinkage algorithm, which provides 
high performance for many applications, has been applied to 
image denoising (Mallat, 1998). The wavelet shrinkage 
algorithm can effectively preserve the detailed structure and 
reduce noise even for a low signal-to-noise ratio. 

3.2  Estimate of Intensity Distribution of Electron Beam 

The proposed algorithm uses an electro-optics simulator 
to precisely estimate the intensity distribution of the electron 
beam to restore images under each imaging condition. 

Fig. 3 shows the method of estimating the beam intensity 
distribution. It involves three steps: calculation of the 
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Fig. 1. SEM image degradation model 
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electromagnetic field in the SEM column (step 1), calculation 
of the parameters of the electromagnetic lenses (step 2), and 
estimation of the beam intensity distribution (step 3). In step 
1, the electromagnetic field distribution in the SEM column is 
calculated by using imaging conditions such as the 
acceleration voltage and excitation current for the electron 
lenses. In step 2, parameters, such as the magnification of 
lenses and aberration coefficients, are calculated by 
simulating the electron trajectory. In step 3, the intensity 
distribution of the electron beam is estimated based on 
electron diffraction theory by using the imaging conditions 
and the lens parameters (Sato, 1997). In this method, the 
beam intensity distribution can be estimated by taking the 
main factors responsible for resolution degradation in SEM 
images into consideration, i.e., diffraction aberration, 
chromatic aberration, spherical aberration, and the size of the 
demagnified electron source. We assumed that the beam 
intensity distribution was not spatially variable, and out-of-
focus blur was negligible. 

3.3  Iterative Method 

The cost function, L(x), in Eq. (4) represents the 
comparison between Ax and y = Ax+ + n, where the restored 
image, x, is compared with the original image, x+, indirectly. 
In this method, however, the difference in the high-frequency 
components between images Ax and Ax+ is small and is 
difficult to utilize to generate restored image x, since 
operating PSF A attenuates the high-frequency components 
of these images. Therefore, we propose a method of 
comparing restored image x with original image x+ more 
directly. The basic idea underlying the proposed method is 
that cost function L(x) does not need to be able to be 
computed, but the iteration formula, such as Eq. (6), must 
exist to calculate the restored image. 

In the proposed method, we have considered the 
following cost function instead of Eq. (4): 
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The function, Lk
(j)(x), compares Akx+ with Akx, where k is a 

real constant, (k < 1). 

In Eq. (7), restored image x is compared with original 
image x+ more directly than in Eq. (4) because of k < 1. We 
assumed that matrix A was diagonalizable. Actually, in many 
cases A[-k, -l] = A[k, l] in Eq.(1), so matrix A is symmetric, 
which is diagonalizable. In that case, Ak can be defined as 

TkTk QAQQQA )(= ,    (8) 

where Q is the orthogonal matrix for diagonalizing A, and QT 
is the transpose of matrix Q. QTAQ becomes a diagonal 
matrix, and (QTAQ)k is a diagonal matrix whose i-th diagonal 
element is the i-th diagonal element of QTAQ to the k-th 
power, i.e., (QTAQ)i

k. 

When matrix A is singular (A has at least one zero 
eigenvalue), the gradient of Lk

(j)(x) can be computed if and 
only if k ≥ 0.5. Especially, in the case of k = 0.5, Eq. (3) can 
be  rewritten as 
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and then the restored image, x(j), can be calculated. 

4.  PERFORMANCE EVALUATION  

4.1  Simulation 

Our simulation was done using SEM secondary electron 
images obtained from an SEM image generating simulator 
that used Monte Carlo simulations. Fig. 4 shows (a) the 
original image, (b) the blurred image, which has degraded 
spatial resolution due to convolution with the beam intensity 
distribution calculated by the electro-optical simulator, (c) the 
restored image using conventional RL image restoration , and 
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Fig. 2. Data flow for proposed algorithm 
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(d) the restored image using our proposed image restoration 
method. In these methods, the same beam intensity 
distribution that was utilized to generate the obtained image 
(Fig. 4(b)) was used as PSF, and the number of iterations J 
was 10. Restoration with the conventional method (Fig. 4(c)) 
a produced certain degree of improved resolution, but 
resulted in insufficient restoration at the edges by comparison 
with the original image. The results revealed that the image 
restored with the proposed method (Fig. 4(d)) had more 
enhanced edges than that restored with the conventional 
method. 

Fig.5 compares the convergence speed of images restored 
with the conventional RL and proposed methods, where the 
original image in Fig. 4(a) was used. The horizontal axis 
represents the number of iterations. The vertical axis is the 
mean squared error (MSE) between the original and restored 
images. This means that the proposed method produced 
substantially lower MSE than the conventional method at the 
same number of iterations. The new approach reduced the 
number of iterations by a factor of approximately 3 to 50 to 
have almost the same MSE. 

4.2  Experiment 

Fig. 6(a) shows two observed SEM secondary electron 
images. The images restored by the conventional RL method 
is shown in Fig. 6(b) and that restored by the proposed 
method is shown in Fig. 6(c). In this experiment, the beam 
intensity distributions estimated by the electro-optical 
simulator (Fig. 3) under corresponding imaging conditions 
were used as PSFs. The number of iterations J was 10. The 
images restored by the conventional method (Fig. 6(b)) show 
greater improvements in edge sharpness than the observed 

images. In contrast, the images restored with the proposed 
method (Fig. 6(c)) achieved additional improvements in 
sharpness, and have excellent resolution. 

Note that as the angle of the specimen was tilted at 
increased, the number of detected electrons increased. This 
phenomenon, called the edge effect, produced bright spots on 
the observed image. The proposed method clearly 
demonstrated the edge effect, which was difficult to 
recognize in the observed images. 

5.  CONCLUSION 

We proposed a new method of restoring SEM images that 
improves their resolution. The intensity distribution of the 
electron beam was estimated by electro-optical simulation to 
appropriately restore images under the corresponing imaging 
condition. We also proposed an iterative deconvolution 
technique with a cost function where the restored image at 
each iteration could be compared with the original image 
more directly. 

Our simulation results revealed that the proposed method 
sped up deconvolution by about 3 to 50 times to achieve 
almost the same improvement in resolution as that with the 
conventional Richardson-Lucy method. The experimental 
results also demonstrated the outstanding improvements both 
in resolution and noise suppression. 
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Fig. 6. Observed and restored SEM images 
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