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Abstract: This paper applies a methodology for the design of a fuzzy controller applicable to continuous 
processes based on local fuzzy models and velocity linearizations. It has been applied to the 
implementation of a fuzzy controller for a continuous distillation tower. Continuous distillation towers can 
be subjected to variations in feed characteristics that cause loss of product quality or excessive energy 
consumption. Therefore, the use of a fuzzy controller is interesting to control process performance.  

A dynamic model for continuous distillation was implemented and used to obtain data to develop the fuzzy 
controller at different operating points. The fuzzy controller was built by integration of linear controllers 
obtained for each linearization of the system. Simulation of the model with controller was used to validate 
the controller effectiveness under different scenarios.  

The results showed that the fuzzy controller was able to keep the target output in the desired range for 
different inputs disturbances, changing smoothly from a predefined target output to another. The 
developed techniques are applicable to more complex distillation systems including more operating 
variables. 

 

1. INTRODUCTION 

This paper applies a methodology for the design of a fuzzy 
controller applicable to continuous processes. The controller 
is based on a fuzzy model describing the plant dynamics that 
is previously calculated using experimental or model data. In 
this case, the technique has been applied to the control of a 
continuous distillation tower.  

Continuous distillation is one of the most used separation 
processes in the processing of large amount of products. This 
makes it a highly energy-consuming operation (Treybal, 
1981). Usually, distillation towers are designed for a feed 
stream of constant characteristics and classic control is used 
to change the operation parameters in order to achieve the 
specifications required for the products. However, feed 
streams can be subjected to important variations in 
composition or energy state.  

An efficient control system adaptable to different situations 
would assure product quality and minimize energy expenses 
(Ramanathan, 2001; Luyben, 1994). New approaches to 
control, other than classic linear controllers, can improve 
system performance. Although other techniques could be 
applied to control the distillation tower, such as nonlinear 
MPC or classic gain scheduled control, a Fuzzy Control 
approach as representative of Artificial Intelligence 
techniques has been chosen. In this way, the experience of 

the plant operators can easily be included in the control 
design. 

Control based on fuzzy modelling has been satisfactorily 
applied to many complex systems of different fields of 
science and engineering characterized by significant 
nonlinearities and/or noise. Any static or dynamic system that 
makes use of fuzzy sets is called a fuzzy system. In addition 
to their universal function approximation capabilities, fuzzy 
models resemble human reasoning processes, providing the 
readability of the obtained representations (Wang, 1997). 
Fuzzy models can therefore be validated by experts and 
incorporate additional qualitative or imprecise information 
that engineers or operators may have about the system. 

A fuzzy model is usually automatically developed from 
experimental data by a rule extraction method based on 
genetic algorithms, neural networks, templates or clustering 
techniques (Babuska, 1996; Díez, 2007). However, in the 
case of distillation, the results provided by dynamic models 
are very accurate and can be used instead of experimental 
data. Therefore, a grey box approach, combining basic 
knowledge about the system and black box models, has been 
considered more suitable for this work. The final model built 
in this way consists of a set of local models (one for each 
rule) at different operating points, and it avoids fuzzy 
interpolation problems by means of velocity-based 
linearization (Leith, 2000; Díez, 2004).   
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The second section of this report briefly describes the 
equations of the dynamic distillation model and their 
implementation. The third and fourth sections present the 
theory of the fuzzy controller and the methodology used to 
build it for an example case. The fifth section shows the 
criteria used to choose the optimum variable to perform the 
control. Finally, in the last section, a discussion of the 
performance of the fuzzy controller for the example case is 
presented. 

2. DYNAMIC MODEL FOR CONTINUOS 
DISTILLATION 

Distillation towers are multi-stage separation units conceived 
to separate feeds into streams of different composition. The 
separation is achieved when a vapour and a liquid stream are 
put in contact in the separation stages (trays) and tend to 
thermodynamic equilibrium. Accordingly, the more volatile 
components pass to the vapour phase and the less volatile to 
the liquid phase.  

 

Fig. 1. Scheme of the continuous distillation tower from basic 
principles 

Fig. 1 shows a schematic representation of the tower and the 
streams flows between different stages. The stages are 
numbered increasingly from top to bottom: 1 is the 
condenser, 2 to N-1 are the trays and N is the reboiler. Every 
stream is defined by their flow, composition (expressed as 
molar fractions of components j) and enthalpy. Thus, for the 
the stage i the feed is defined by Fi, zi,j, hFi, the output liquid 
by Li , xij, hLi and the output vapour by Gi, yi,j, hGi. In order to 
generate the vapour stream, a duty heat qN is supplied to the 
reboiler. The vapour stream moves upwards exchanging 
components with the descending liquid stream and it is 

progressively enriched in the most volatile components. 
Consequently, the liquid stream is enriched in the less 
volatile ones. To generate a saturated liquid stream, a heat 
duty q1 must be removed from the vapour in the condenser. 
Part of the liquid stream is recycled back to the column, the 
rest constitute the top product of the column. This 
recirculation is determined by the reflux ratio R, defined in 
(1), which constitutes one of the main operation variables. 
 

D
LR 1=  (1) 

For every stage i, non-stationary balances of total amount of 
moles Mi, moles of each component j and energy can be 
established (2-4). These equations constitute the basis to 
obtain the dynamic model of the system (Treybal, 1981; 
Skovborg, 1992). 
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Substitution of (2) into (3) and (4) leads to the time 
derivatives of composition and enthalpy (5, 6). 
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Assuming that there is enough contact time in each stage, the 
exiting phases will be close to equilibrium. So, using a 
thermodynamic model for the mixture, the vapour 
composition can be expressed as a function of the liquid 
composition. Besides, for a saturated liquid, the enthalpy and 
temperature depend exclusively on the liquid composition, 
hence we can express: 
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Our aim is to relate the stream flows and the molar fractions 
in the liquid that remain as the only state-variables of the 
problem. To have a unique vector W representing all the 
unknown internal flows, an index operator n(i,k) is defined 
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for each stage i so that for indices k=0 to 4 stand for the 
streams Fi, Gi, Li-1, Gi+1 and Li respectively.  
 

( ) ( ) kikin +−= 14,   (8) 
 
Additionally, an operator sign(k) is defined as (-1) for the 
output streams and (+1) for the input ones. Thus, 
combination of equations (5-7) yields to: 
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Additional equations are necessary to completely determine 
the stream flows. These equations can be obtained by 
expressing the liquid density as a function of the liquid 
composition and considering constant volume of liquid Vi as 
the liquid overflows in each stage: 
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Thus, the latter equation leads to following relationship: 
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Equations (9, 11) constitute a non-linear system to solve the 
unknown internal flows as a function of the liquid 
composition. The coefficients of the system can be 
rearranged as a banded matrix. As this matrix is usually bad-
conditioned, the Moore-Penrose pseudoinverse was used to 
solve the system of equations. 
 
Therefore, the set of differential equations (5) can now be 
solved to obtain the evolution of the state-variables of the 
system. A multi-step stiff solver (Adams-Bashforth-Moulton 
PECE) was used to compute the tower dynamics as a 
function of feed, reflux ratio and reboiler heat duty.  
 

3. VELOCITY-BASED FUZZY CONTROL OF A 
CONTINUOUS DISTILLATION PROCESS 

 
A suitable modelling and identification of a system is 
essential for controller design. In our case, fuzzy 
identification adjusts those models to available data sets, and 
the local error of a number of local models that represent the 

system in a region is preferred to the usual approach of 
minimizing the global prediction error (Díez, 2006).  
 
The identification of fuzzy models needs to establish a model 
structure for a subsequent parameter identification step 
(Wang, 1997), as occurs in all identification procedures. This 
second identification step can be easily done, for example, by 
least mean squares if the system is linear in parameters 
(Babuska, 1996). This is our case, because input and output 
variables, and antecedent fuzzy membership functions A 
(interpretable as validity regions for local descriptions in a set 
of operating points) will be provided by experts, and rule 
consequents will be affine models following Takagi-Sugeno 
structure described by (12). 
 

Ri: If x is Ai then  yi  =  ai
T x + bi,  

i = 1, 2, ..., K (12) 

 
where ai is a vector of parameters, and bi is a scalar. The 
model output y will be the convex combination of the 
consequents by means of its membership functions µi: 
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(13) 

 
Although the fuzzy model structure showed in (12) and (13) 
can give accurate results for prediction purposes, when the 
final goal is process control, a better approach overcoming 
interpolation problems caused by the terms bi is the use of 
velocity-based models (Leith, 2000; Díez, 2004). These result 
from the substitution of (12) by its incremental form (14) 
where offset term is avoided.   
 

Ri: If ∆x is Ai then  ∆yi  =  ∆ai
T ∆x i  

i = 1, 2, ..., K (14)

 
A controller will be then designed for each rule, leading to 
the modelling and control structures outlined in Figure 2. 
System dynamics can be considered just taking past values of 
appropriate variables as new inputs.  
 
In order to give theoretical framework for the proposed 
controller design technique, it is going to be applied as it was 
a classic gain scheduling controller (Leith, 2000). A possible 
approach to gain scheduling requires following the 
subsequent steps (Díez, 2004):  

1. Determine a Linear Parameter Varying model of the 
non-linear system based on the linearization of the 
system at different operating points and integrating 
them, for example, by interpolation.  

2. Calculate a Linear Controller for each linearization of 
the system and then integrate the controllers (for 
example, in the same way as the linearization), then 
obtaining a Non-Linear Controller.  

3. Evaluate the control performance through simulation. 
 
In our case, the proposal is that, once the operating points are 
given by the expert, a fuzzy model in the form of (13) with 
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rules as (14) will be tuned using experimental data. A model 
defined with this structure is a combination of purely linear 
(not affine) models, then matching the first step in the gain 
scheduling approach. 
 
Next step will be the design of a linear (using classic 
techniques) controller for each rule consequent (i.e, each 
linearization or local model). The combination of all the 
controllers will be done using the same formula (13) used in 
the fuzzy modelling, but substituting local model output by 
local control action. In this way, a non-linear controller is 
designed as in the second step of the gain scheduling 
approach.  
 
Performance can be tested via simulations, and a complete 
example is presented in the next section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b) 
Fig.2. Outline of suggested structures for a) modelling and b) 

control. 
 
 

4. MODEL RESULTS AND VALIDATION 

 
The control system can be built using data from a real 
system. However, dynamic distillation models are accurate 
enough and can be used to generate data avoiding 
experimental cost. As an application example, a dynamic 
distillation model as described in section 2 has been used to 
obtain the necessary data to implement the fuzzy controller 
for a distillation of a mixture methanol-water. Parameters 
were: 10 trays, feed tray position = 6, tray volume of 0.064 
m3 and condenser and reboiler volume of 0.4 m3. The same 
model was used to test the capability of the fuzzy controller 
under a set of scenarios. 
 
The input disturbances applied were about ±7.5 and ±15% for 
all inputs but R where the disturbances were ±2.5% and ±5% 
(bigger changes made the system unstable). The analysis of 
the results by experts yielded to the following conclusions:  
 

• a positive increment in the inputs F and zF causes a 
positive increment on x10, 

Local 
model f1

• a positive increment in hF , qN , and R causes a 
negative increment on x10, 

• a positive increment in zF and qN causes a positive 
increment on x1,  Local 

model f2 • a positive increments in F, hF and R causes a 
negative increment on x1, 

• the system response is similar to a first order system 
with a time constant of the system for each input at 
each working point for each output variable, and 

• a set of six operating points (defined as 
combinations of F, zF, hF, qN, and R) are the most 
common for system operation, and are summarized 
in Table 1. 

 

Local 
model fn

Table 1. Operating points for the system under study. 
Point F (kmol/s) zF hF (kJ/kmol) qN (kJ/s) R

1 0.217 0.36 11000 1878 1 
2 0.217 0.46 11000 1878 1 
3 0.217 0.26 11000 1878 1 
4 0.217 0.36 20000 1878 1 
5 0.310 0.36 11000 2744 1 
6 0.110 0.36 11000 1011 1 

Local 
controller 

C1 

Local 
controller 

C2  

Fig. 3. Scheme of the continuous distillation tower from 
simple black box model point of view. 

 
Then, a set of 5 models (one for each input/output pair) for 
each point (and then 30 systems for each output) was 
developed. As far as F and zF are usually constant and that 
the most important output of the system is x1, (and the control 
of product composition x1 will modify x10), a simplified 
input-output view (including possible control variables as 

 

hf 
qN 
R 

x1 
    Tower model 

Local 
controller 

Cn 
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inputs) of these small models is devised in Figure 3. This set 
of first order systems will be integrated with the fuzzy 
structure proposed in the previous section.  
 

Fig. 4. Models of molar fraction x1 versus time (in seconds) at 
the operating point 5 (green: data, blue: model). From top left 
to bottom right, variations of x1 for disturbances in F, zF, hF, 
q, and R. 
 
Equation (15) shows the G general single input single output 
linear discrete first order system (input u, output y, and 
instant k) placed at the consequent of each rule: 
 

1k k
kG y y

z
τ

τ −= → = ⋅ + ⋅
− kk u

ku

  
(15) 

 
That will be used in its incremental form: 
 

1k ky y kτ −∆ = ⋅ ∆ + ⋅ ∆  (16) 

 
Therefore, the fuzzy system considered 5 inputs (F, zF, hF, qN, 
R) in order to indicate the operating point in what the tower is 
working, and 5 more inputs (∆F, ∆zF, ∆hF, ∆qN, ∆R) to 
indicate the increment that it was applied to each input, and 
finally one more input to indicate the previous output (yk-1). 
Rule selection was carried out for the first five inputs, and the 
other ones were used to calculate the value of the output. As 
the systems in this case just depend on one input, the 
coefficients for the others are zero. The behaviour obtained 
for the models was very good for the whole operation 
systems, being the modelling error lower than 5×10-5 %. As 
an example, the model performance around the operating 
point 5 is shown in figure 4, but results are similar for the 
whole operating space. 
Once the model was available, the controller could be 
designed. In this case it was a simple pole-zero for each rule 
consequent, following for its combination the structure of 
Figure 2.b. In fact, one controller was designed for each 
submodel and then the total model was built for all the 
controllers joined in a fuzzy system. The general incremental 
control equation is: 

 
( ) ( )1

k k

p p
u y

k k
τ− −

kr∆ = ⋅∆ + ⋅ ∆  (21) 

where p is the chosen pole. 

From a practical point of view, the controller can be applied 
to keep the target output in the desired range if unexpected 
disturbances occur in the feed. The controller must also be 
applied to set x1 at a value of interest, and changed it to 
another one if necessary. It can be reached operating on  
one of these: qN, hF or R. System feedback response is 
shown in Figure 5. The cases presented are those of 
possible variations of interest in x1 positive and negative 
steps, and the presented results make use of qN as control 
variable. Results are similar in the whole operating space 
and also using hF and R as control variables. 
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Fig. 5. Control of molar fraction x1 versus time (in seconds) 
for different positive and negative steps (7% and %15) using 
qN as control variable. 
 
The advantage of having different control variables meeting 
the same requirements is that its effectiveness can be checked 
from different points of view (for example: economical, 
resources availability, etc.) and the decision on what control 
variable must be used can change from time to time 
depending on external factors. 

 

5. OPTIMIZATION 

 As shown in Fig. 3 and described through all the text, the 
control can be performed by 3 different inputs. That allows 
the election of one of them attending to the chosen criteria.  

These criteria could be imposed by two methods. One is the 
consideration of the availability of the resources needed to 
perform the control. The limits of each variable in the output 
level. For the hF and qN, variables a heat source is needed, 
whereas a cooling source is needed for the R control input 
case. 
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As well as the limit of the qN is the smallest one (±0.05% in 
the example described here) it reduces the control 
possibilities by means of this variable. The limit of the 
control by the other two variables is bigger (±0.5%), allowing 
a big performance zone.  

However, given that all the resources are available and the 
control could be built by any of the three control input, the 
selection criterion is, industrially attending, economic. As far 
as all the controls perform well, the cheaper one will be the 
chosen. Anyway, it is not only the cost of the application 
what should be studied, but also the benefits from production. 

To apply heat to the stream feed or to the reboiler is more 
expensive than to subtract heat from the condenser, but the 
amount of product decreases when R input gets reduced.  

The prices of fuel to get a heat source or the cooling water to 
perform the refrigeration must be updated from the market, as 
well as the price of the distillate to be sold. Therefore, not too 
many results can be exposed, but several conclusions can be 
drawn: 

When control is applied by hF or qN, variables, the amount of 
product varies even if R is not modified, but this relation is 
no direct. 

Control by R is always the cheaper one looking at application 
price.  

The amount of product varies directly with R changes. 

In all cases applied in the example case, control by R is the 
most profitable one, because the amount of product is not 
very different but the application price is much smaller than 
when control is performed by the other variables. 

However, as said before, generalizations cannot be stated 
from these particular conclusions. In each case, the study 
must be performed again, due to price changes and amount of 
product obtained. 

 

6. CONCLUSIONS 

A velocity-based fuzzy control has been applied to a binary 
distillation simulated by a dynamic model. The necessary 
data were obtained using a dynamic distillation model that 
uses feed characteristics (enthalpy state), reflux ratio, and 
reboiler heat duty as inputs. The model was also useful to 
validate the efficiency of the fuzzy controller.  

The final control structure consisted of a set of 5 local control 
models that were able to change the reflux ratio and heat duty 
either of the reboiler or of the feed stream in order to meet 
effectively the specified product quality for a wide range of 
feed variation. The results showed that the fuzzy controller 
was able to allow changes from a predefined output 
composition x1 to another, and the controller also was capable 
to keep the target output in the desired range. The developed 

techniques are liable to be applied to more complex 
distillations. It was also seen that the variable to perform the 
control could be chosen in most of industrial cases, either by 
the availability of each one of the control variables or by 
economic reasons. 

Future work includes a comparative study between the 
proposed technique and other applicable approaches, such as 
MPC. Additionally, the distillation of new distillation 
mixtures will be tested.  
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