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Abstract: In this paper, numerical aspects of a sensitivity control for the semi-active suspension system 
with a magneto-rheological (MR) damper are investigated. A 2-dof quarter-car model together with a 6th 
order polynomial model for the MR damper are considered. For the purpose of suppressing the vertical 
acceleration of the sprung mass, the square of the vertical acceleration is defined as a cost function and the 
current input to the MR damper is adjusted in the fashion that the current is updated in the negative 
gradient of the cost function. Also, for improving the handling performance, a weighted absolute velocity 
of the sprung mass is added to the control law. The implementation of the proposed algorithm requires 
only the measurement of the relative displacement of the suspension deflection. The local stability of the 
equilibrium point of the closed loop nonlinear system is proved by investigating the eigenvalues of the 
linearized one. Through simulations, the passive suspension, the skyhook control, and the proposed 
sensitivity control are compared. 

 
1. INTRODUCTION 

The use of magneto-rheological (MR) fluids is widely 
spreading in industrial applications: car suspension, seat 
suspension, bridge vibration control, washing machine 
vibration control, and gun vibration control. This paper 
focuses on a sensitivity control (a type of gradient approach) 
in adjusting the current input to the MR damper that is used 
in a car suspension system (Choi et al., 2001; Lee and Choi, 
2001; Liu et al., 2006; Song et al., 2005) 

The semi-active suspension system uses a varying damping 
force as a control force. For example, a hydraulic continuous-
damping-control (CDC) damper varies the size of an orifice 
in the hydraulic flow valve to generate desired damping 
forces. An electro- rheological (ER) damper or a magneto-
rheological (MR) damper applies various levels of electric 
field or magnetic field to cause various viscosities of the ER 
or MR fluids (Song et al., 2005; Liu et al., 2006; Park and 
Jung, 2003; Lee and Jeon, 2002; Park and Jeon, 2002). On 
the other hand, the fully active suspension system produces 
the control force with a separate hydraulic/pneumatic unit. 
Therefore, the cost and the weight of a fully active 
suspension system become obstacles in medium size cars. 
Comparing the three, a semi-active system is simpler and 
uses less energy than an active system, but provides better 
vibration isolation capability than a passive system at the 
sprung mass resonance frequency. The inferior performance 
of a semi-active suspension than an active one comes from 
the fact that the control force can be generated only when the 
desired control force and the damping have the same 
direction. From this view, semi-active suspension systems 
draw more attention because of their low cost and 
competitive performance to the fully active ones (Alleyne 
and Hedrick, 1995, Yi and Hedrick, 1995; Lin and 

Kanellakopoulos, 1997; Hong et al., 2002; Yi and Song, 
1999; Karnopp and Crosby, 1974). 

For a fixed suspension spring constant, the better isolation of 
the car body from the road disturbances can be achieved with 
a soft damping by allowing a larger suspension deflection. 
However, the better road contact can be achieved with a hard 
damping by not allowing unnecessary suspension deflections. 
Therefore, the ride quality and the handling performance of 
vehicle are two conflicting criteria in the control system 
design of suspension systems. 

The skyhook control strategy was introduced by Karnopp et 
al. (1974). The skyhook control can reduce the resonant peak 
of the sprung mass quite significantly and thus achieve a 
good ride quality. But, in order to improve both the ride 
quality and the handling performance of the vehicle, the 
resonant peaks of both the sprung mass and the unsprung 
mass need to be reduced. However, the skyhook damper 
alone cannot reduce both resonant peaks at the same time. 
The implementation of a skyhook control (Lee and Jeon, 
2002) needs two information: the absolute velocity of the 
sprung mass and the relative velocity between the sprung and 
unsprung masses. In this paper, the measurement of only the 
suspension relative displacement between the sprung and 
unsprung masses and the use of a MR damper are assumed. 
The damping force of the MR damper is modeled as a 6th 
order polynomial equation of the relative velocity with 
coefficients as affine functions of input current. The current 
input to the MR damper is adjusted, in principle, in the 
negative direction of the gradient vector of the square of the 
vertical acceleration of the sprung mass, but considering the 
handling performance a weighted absolute value of the 
sprung mass velocity has been added in the law. The stability 
of the proposed nonlinear control law has been analyzed at an 
equilibrium point. 
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2. MODELING: QUARTER CAR AND MR DAMPER 

2.1 A quarter car model 

Fig. 1 depicts a quarter-car model, where sz , uz , and rz  are 
the sprung-mass, the unsprung-mass, and the road 
displacements, respectively. The values of the parameters in 
this model are collected in Table 1. The control strategy is to 
adjust the damping force mrf  properly by applying the 
desired current input I  to the MR damper, whereas the 
relative displacement us zz −  is measured. Besides the 
intrinsic vertical motions limited to this quarter model, other 
issues such as the pitch and roll controls of the vehicle are not 
discussed in this paper. The equations of motion are 

,0),()( =−+−+ Izzfzzkzm usmrussss &&&&           (1) 
,0),()()( =−−−−−+ Izzfzzkzzkzm usmrussduuuu &&&&           (2) 

where mrf  is given as a function of the relative velocity 

us zz && −  and the current input I . It is again remarked that only 
the relative displacement us zz −  is measured. 

 
Fig. 1 1/4 car model. 

Table 1. Nominal parameter values  
 used in simulation. 

Parameters definitions values 
sm  Sprung mass 460 kg 

um  Unsprung mass 36 kg 

sk  Coil spring constant 28,000 N/m 

uk  Tire spring constant 186,000 N/m 
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Fig. 2 Hysteresis curves of the used MR damper when          
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Fig. 3 Hysteresis curves for three sinusoidal relative 
displacements with 3 A current input. 
( 0.04sin 2.5 , 0.04sin 7.5 , 0.04sin15 , and 3 )s uz z t t t I A− = =  
2.2 MR damper modelling 

The semi-active dampers include the hydraulic discrete 
damping control damper using a step motor, the hydraulic 
continuous variable damper (CVD) using a solenoid valve, 
the ER damper, and the MR damper. The use of hydraulic 
dampers might be suitable for suppressing 1-4 Hz road 
disturbances, but may not be suitable for suppressing higher 
frequencies. Since the fluid used in an ER or MR damper has 
a fast response time, it can be used in a broader range of road 
condition. Also, the MR damper is known to be most suitable 
for car application since the strength of a MR fluid is 20-50 
times higher than that of an ER damper and the less 
performance degradation due to impurities and precipitation 
is being reported. One notable feature of MR fluids is the 
hysteresis characteristics appearing in the expansion and 
contraction processes. Among the various models available in 
the literature, the model of Bingham is known simple, but it 
may not fully characterize the hysteresis behavior; the model 
of Bouc-Wen needs a very small step size when solving a 
stiff differential equation numerically; the nonparametric 
model of Song et al. (2005) might be another potential 
candidate (Bouc, 1967; Wen, 1975; Bingham, 1992). 

In this paper, an algebraic approach rather than a differential 
equation approach is pursued. Fig. 2 shows three hysteresis 
curves in association with three current inputs, for a typical 
MR damper, when t5.7cos3.0 )5.7sin04.0.,.( tzzei us =− . It 
is seen that the damping force gets larger as the relative 
velocity gets larger. Also, the slope gets steeper as the current 
input gets bigger. However, it is seen that, for a fixed current 
input, the damping forces follow different curves in the 
expansion (the lower curve) and contraction (the upper curve) 
regions, which is a hysteresis effect. 

On the other hand, for a fixed current input at 3 A, Fig. 3 
shows three different hysteresis curves in association with 
three different sinusoidal relative-displacement profiles with 
the same magnitude but different frequencies, that is, 

us zz − = 0.04 sin 2.5t, 0.04 sin 7.5t, and 0.04 sin 15t. By 
differentiating them, =− us zz &&  t5.2cos1.0 , t5.7cos3.0  and 

t15cos6.0  are obtained, which correspond to three peak 
velocities 0.1, 0.3, and 0.6 m/s. The strategy in this paper is, 
instead of considering two hysteric curves in the expansion 
and contraction regions, to consider the peak damping forces 
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at individual peak-velocity points. In this case, one 
polynomial equation for a given current input (representing 
the peak damping forces) will become sufficient in 
representing the damping force characteristics as follows: 

6,)()(),(
0

=−+=− ∑
=

nzzIbaIzzf
n

k

k
uskkusmr &&&& oo               (3) 

where n is the order of the polynomial (n =6 is used in this 
paper) and 0

ka  and 0
kb  are the coefficients that should be 

determined through experiments. Fig. 4 shows seven such 
curves corresponding to seven different current inputs, where 
the lowest slope can be counted as the passive one with 0 
current input. Table 2 shows a typical combination of the 
coefficients obtained from experiments for a 
SM_FRONT_Left MR CDC damper of Daewoo Precision 
Industries, Ltd., Korea. Fig. 5 depicts the experimental test 
bed using an MTS system. Fig. 6 demonstrates the closeness 
between experimental data and the values calculated from the 
polynomial model of (3) for three different current inputs: 0, 
1, and 2 A. 

Table 2. Coefficients o
ka  and o

kb  in (3) obtained from 
experimental data using the peak values 

Coefficients Values Coefficients Values 
o

0a  0 o

0b  11.6 
o

1a  989.1 o

1b  1228.5 
o

2a  17.4 o

2b  -56 
o

3a  -316.3 o

3b  -970.5 
o

4a  19 o

4b  52.2 
o

5a  98.1 o

5b  254.3 
o

6a  1.1 o

6b  -16.9 
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Fig. 4 Peak values of a typical MR CDC damper for various 
current inputs 

 
Fig. 5 Damping force measurement with an MTS System 
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Fig. 6 Comparison between measured data and polynomial 
model (3). 

3. SENSITIVITY CONTROL 

In this paper, measurement of the relative displacement is 
assumed. In this case, it is known that an identification of the 
sprung mass and the coil spring constant is not possible. 

3.1 Control law 

The square of the vertical acceleration is considered as a 
performance criterion to be minimized as follows.  

.2
szJ &&=                                             (4) 

Observing (1), it is remarked that sz&&  is a function of I (of 
course, it is also a function of other variables and 
parameters). For computing the current input, the following 
control law with two adjustable parameters is proposed as 
follows.  

,21 sz
I
JI && µµ +

∂
∂

−=                                                          (5) 

where I is updated in the negative gradient of J with a 
weighting 1µ , and 

sz&2µ  is an additional term that has been 
introduced to improve the handling performance of the 
vehicle on purpose. Such situations that the ride quality is 
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less important will be addressed in Section 3.3. To implement 
(5), two values are needed: IJ ∂∂ /  and 

sz& . The first term is 
calculated as follows. 

,2
I
zz

I
J s

s ∂
∂

=
∂
∂ &&

&&                  (6) 

in which Iz ∂∂ /&&  is the sensitivity of the vertical acceleration 
with respect to I. In Section 3.2 below, detailed derivations 
are given. On the other hand, sz&&  can be estimated using (1) as 
follows. 

{ }.),()(1 Izzfzzk
m

z usmruss
s

s &&&& −+−−=                        (7) 

Again, sz&  can be calculated by integrating (7). 

3.2 Sensitivity calculation 

The differentiation of (1) with respect to I yields. 

.0),()(
=−+

−
+ Izzf

Id
d

Id
zzdk

Id
zdm usmr

us
s

s
s &&

&&                 (8) 

The last term in (8) can be split into two parts as follows. 

I
f

Id
zzd

zz
fIzzf

Id
d mrus

us

mr
usmr ∂

∂
+

−
−∂

∂
=−

)(
)(

),(
&&

&&
&& .         (9) 

Using (3), )(/ usmr zzf && −∂∂  and Ifmr ∂∂ /  can be written as 
follows. 

∑
=

−−+=
−∂

∂ 6

1

1 ,)()(
)( k

k
uskk

us

mr zzIbak
zz

f
&&

&&
oo                          (10) 

∑
=

−=
∂

∂ 6

0
.)(

k

k
usk

mr zzb
I

f
&&o                                                      (11) 

Finally, one notable observation is that the displacement and 
velocity of the unsprung mass are not much affected by the 
current input I. This is because the spring coefficient of the 
tire is 10 times larger than that of the coil spring and the 
unsprung mass um  is 1/10 of the sprung mass sm . Hence,  

Idzzd us /)( && −  and  Idzzd us /)( −  can be computed as 
follows 

,)(
Id
zd

Id
zzd sus &&&

=
−                                                              (12) 

.)(
Id
zd

Id
zzd sus =

−                                                               (13) 

Using (9)-(13), (8) can be written as follows. 
6

1

0

6

0

( )( )

( ) 0 ,

k
s k k s u

k

k
s k s u

k

m s k a b I z z s

k s b I z z
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+ + −⎨ ⎬
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+ + − =

∑

∑

o o

o

&& && &

& &

                              (14) 

where s&& , s&  and s  correspond to Idzd s /&& , Idzd s /& , and 

Idzd s / , respectively. As a conclusion, the sensitivity s&&  
appears in a second order differential equation, and by 
solving this, IdJd /  in (6) can be obtained. Finally, the 
control law (5) is given as follows. 

s

k
us

k
kkuss

s

z

szzIbazzk
m

I

&

&&&&& oo

2
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0
1

            

))(()(2

µ

µ

+

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−++−= ∑
=

                       (15) 

3.3 Effect of sz&2µ  

As discussed earlier, the second term 
sz&2µ  in (6) has been 

added for the purpose of improving the handling performance 
of the vehicle. It is known that, in the case of a passive 
damper, that is, )( ussdamper zzcF && −= , the resonant peak at near 
1 Hz decreases as the damping coefficient sc  increases. 
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Fig. 7 Frequency responses of the sprung mass acceleration 
for three different damping coefficients (simulation results 
with the values in Table 1). 
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Fig. 8 Frequency response of the sprung mass velocity in the 
passive case of Fig. 7. 

On the other hand, in the frequency range above 1 Hz, the 
sprung mass acceleration increases as the damping coefficient 
increases. Therefore, it is desirable to have a large damping 
coefficient at the resonant frequency and to have a small 
damping coefficient in the frequency range above the 
resonant frequency. Fig. 8 depicts the frequency response of 
the sprung mass velocity of a typical passive damper. As can 
be seen, the maximum magnitude of the sprung mass velocity 
appears at the resonant frequency of the sprung mass. 
Henceforth, by adding the term 

sz&2µ  in (6), such an effect 
of increasing the damping coefficient at the resonant 
frequency can be obtained. 

4. STABILITY ANALYSIS 

4.1 Figures and tables 

In this section, the stability of the proposed control law in 
(15) is analyzed. The following state variables and state 
vector are defined. 

, and,,
,,,,

765

4321

sxsxIx
zxzzxzxzzx urusus

&

&&

===
=−==−=              (16) 

.]...[ 7321
TxxxxX =                                                       (17) 
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Using (16), the state equations including (1), (2), (3), (6) and 
(15) are given as follows. 

,),(1421 tXfxxzzx us ≡−=−= &&&                                         (18) 
6
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∑ o o& &&           (19) 

3 4 3 ( , ),u rx z z x f X t= − = ≡& & &                                       (20) 
since 0 can be assumed for stability analysis,rz =   
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The equilibrium points from (18)-(24) are 

.,value)any(
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Recall that 5x  denotes the current input in the range of [0, 3] 
A. Now, the linearization of equations (18)-(24) with respect 
to the equilibrium point =eX  

T
ss kbxkxba ]0,/,,0,0,0,/)([ 05500

ooo −+− yields. 

,X
X
F

X
eX∂

∂
=&                                                                 (26) 
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   (27) 

 
Observing the first, third, and fifth rows in (27), the existence 
of a linear dependence relationship among them can be seen. 
Hence, 

eX
XF ∂∂ /  has nullity 1 and any value in the 

nullspace can be an equilibrium point. Also, since 
eX

XF ∂∂ /  

involves 5x , the eigenvalues of  
eX

XF ∂∂ /  is given as a 

function of 5x . Therefore, using MATLAB, the real parts of 
all eigenvalues can be computed. Fig. 9 shows that the real 
parts of all the eigenvalues are negative except one eigen 
value having zero real part. Therefore, the local stability is 
proved. 

 
Fig. 9 Real parts of the eigenvalues of 

Xe
XF ∂∂ / over the 

range of 5x  (0~3 A) 

5. SIMULATIONS 

Three aspects are simulated: the role of the second term in 
(6), the performance of the sensitivity control law in 
comparison with the skyhook control, and the robustness of 
the proposed control algorithm against the variations of the 
sprung mass and coil spring constant. 

5.1 The effect of 
sz&2µ  

Fig. 10 compares the sprung mass acceleration of the 
sensitivity algorithm with 5.01 =µ  and 02 =µ  with that of a 
passive damper. As seen in Fig. 10, the performance of the 
sensitivity control is inferior in the lower frequency range. 
However, as seen in Fig. 11, by increasing 2µ  values, 
improved performances in the lower frequency range as well 
as in the high frequency range can be obtained. It is desirable 
to have a large 2µ -value below 3 Hz and to have a small 2µ -
value above 3 Hz. 

5.2 Comparison with the Skyhook Control 

The skyhook control algorithm is given as follows (Alleyne 
and Hedrick, 1995). 

.0)(if,0

,1500,0)(if,

<−=

=>−=
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&&&&        (28) 

0.1 1 10

10

100

 Passive system
 Sensitivity control 

           (µ
1
 = 0.5 , µ

2
 = 0)

 

 

M
ag

ni
tu

de
 o

f S
pr

un
g 

M
as

s A
cc

el
er

at
io

n

Frequency [Hz]  
Fig. 10 Frequency responses of the sprung mass acceleration 
with 1µ =0.5 and 2µ =0 
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Fig. 11 Frequency responses of the sprung mass acceleration 
for various values of 2µ ( 1µ =0.5). 
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Fig. 12 Comparison of the frequency responses of the sprung 
mass acceleration. 

Fig. 12 compares the passive damper, the skyhook control 
law with 500,1=skyc , and the sensitivity control law with 

5.01 =µ  and 302 =µ . At the resonant frequency, both the 
skyhook control and the sensitivity control show comparable 
performance, but at the resonant frequency of the unsprung 
mass of 11.7 Hz, the sensitivity control shows a comparable 
or better performance to the passive damper. 

6. CONCLUSIONS 

In this paper, to improve the ride quality at 1 Hz without 
sacrificing the handling performance, a sensitivity control 
law combining a negative gradient of the performance index 
and a weighted absolute velocity of the sprung mass was 
developed. The proposed algorithm demonstrated a 
comparable performance with the passive damper at the 
resonant frequency of the unsprung mass, but an improved 
performance of the ride quality at the resonant frequency of 
the sprung mass. It was desirable to have a large value of 2µ  
at a low frequency road input, but to have a small value at a 
high frequency road input. 
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