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Abstract: Two state space “like” representation based methods for fractional systems L,-gain computation
are proposed in this paper. The first is based on an approach already presented in the literature and leads to
a new theorem. The theorem is based on the location of the eigenvalues of a matrix issued from the state

space “like” representation and is then converted usin
second theorem. Its formulation is similar to the wel

% Riccati theor

ive the
oes not

into an LMI constraint to
known bounded real lemma whereas it

guarantee stability. The theorems are finally applied to car suspension analysis for the computation of
modulus margins. Prospects of this study are in the fields covered by the usual bounded real lemma such
as H,, control, thus aiming at straightforward extension to fractional systems.

1. INTRODUCTION

Fractional differentiation is now a well known tool for
controller synthesis (Xue and Chen, 2002). Several
presentations and applications of the fractional PID controller
(Podlubny, 1999), (Monje et al., 2004), (Caponetto et al.,
2004), (C}flen etal., 2004; and of CRONE control (Oustaloup
and Mathieu, 1999) demonstrate their efficiency. Fractional
differentiation also permits a simple representation of some
high order complex integer systems (Battaglia et al., 2001).
Consequently, basic properties of fractional systems have
been investigated these last ten years and criteria and
theorems are now available in the literature concerning
stability (Matignon, 1996), observability, and controllability
(Matignon and D’ Andrea-Novel, 1996) of fractional systems.

Lyapunov based methods have also been developed for
stability analysis and control law synthesis of integer linear
systems, and for more complex systems such as nonlinear,
time-varying, and LPV systems (Biannic, 1996). This has
been possible, thanks to the development of efficient
numerical methods to solve convex optimization problems
(Boyd and Vandenberghe, 2004), by resolving Lyapunov
stability conditions or quadratic robust control problems
(Balakrishnan and Kashyap, 1999) (Balakrishnan, 2002)
defined by Linear Matrix Inequalities (LMI).

Paradoxically, only few studies deal with Lyapunov based
control laws synthesis for fractional systems. The most
advanced method for such Eurposes consists in controlling an
integer approximation while considering the remaining
fractional part as perturbation (Hotzel, 19%8). As analytical
impulse response energy computation of fractional systems
becomes available (Malti et a}.), 2002), methods considering
the whole behaviour of fractional systems are now to be
developed.

In this paper, we propose two tools for fractional systems L,-
gain computation. The first one is based on a frequency
analysis to obtain a condition on the location of the
eigenvalues of a matrix issued from the state space “like”
representation of the system. This approach is presented in
section 3. The resulting condition is then converted into an
LMI constraint to give a second condition, presented in

section 4. This condition is based on a lemma whose proof

jnvesti%ates the relation between Riccati equality, Ricatti
inequality and the location of the eigenvalues of a complex
hamiltonian matrix. Both theorems are finally applied to car
suspension analysis, for the computation of modulus margins.
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2. NOTATIONS AND DEFINITIONS

2.1 Fractional calculus

Riemann-Liouville fractional differentiation is used and the
fractional integral of a function £{7) is defined by

t o
1 70=— 5 [l-8r 7 r@ag, T0)=[ers
r(v)
0 0
where ve R™ denotes the fractional integration order.
Using (1), the fractional derivative of order ve R™ of a
function f(¢) is defined by (Miller and Ross, 1993)
D" f()=D" 1" f(e)], ®)

where m is the smallest integer that exceeds v .

2.2 Fractional systems

Let us consider a stable Multi-Input, Multi-Output (MIMO)
Linear Time-Invariant (LTI) fractional system G whose
input u(t)e R™ and output y(t)e R"” are linked by the
fractional differential equation:

D4 (0") v(0)= DB (0" (o). 3)
i=0 i=0

In relation (3), 4; and B; are real matrices of appropriate
dimension, k,; and k,; are positive integers. Note that all

the differentiation orders are multiples of commensurate
order v .
It is also assumed that system G is relaxed at =0, so the

Laplace transforms of Dau(t) and of Day(t) are
respectively given by s%U(s) and s%Y(s) for any o€ R.

Given commensurate order hypothesis, system G also

admits the state-space “like” representation (Cois et al., 2001)
(Miller and Ross, 1993):

10.3182/20080706-5-KR-1001.2193
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Dvx(t) = Ax(t) + Bu(t)

, “4)
y(t) = Cx(t) + Du(t)

where ve R denotes the fractional order of the system, and

AeR™ BeR™™ CeR™™, DeR"
Based on this representation, transfer matrix G(s) is given by

Xny,

-1
Gls)= C((s)V1—A) B+D . (5)
For simplicity, the form (4, B,C ,D,V) is used in the paper to
refer to description (4).

2.3 Ly-gain of LTI systems

The L,-gain », of a continuous, LTI system whose
transfer function is G(s), can be defined through the H,,
norm defined in the frequency domain as

72 =[G, =supo(G(j@)). weR, ©
2]

where & denotes the maximum singular value.

2.4 Notations

For a complex number A, A4 denotes its conjugate. Complex
matrix 4 also admits a conjugate B = A, whose elements
bjj are the conjugate of the elements a;; of A .*Conjugate
transpose matrix C of A 1is denoted C=4 , and its
elements ¢;; are the conjugate of the elements of AT , such
that cjj = a i -

For hermitian matrix A, the notation 4 >0 means that 4 is
positive definite, such that all its eigenvalues are strictly
positive real.

The notation C( denotes the set of purely imaginary
numbers. This set can be decomposed into C§ and C
which denote the sets of purely imaginary numbers with
respectively positive and negative imaginary part.

Additional notation is standard or otherwise discussed where
used.

3. FREQUENCY DOMAIN APPROACH FOR L,-
GAIN COMPUTATION

In this section a fractional system L,-gain computation
method which uses a bisection algorithm is presented. It is
based on the existence of purely imaginary eigenvalues of a
matrix associated to the system state space “like”
representation. This approach was initially described in
(Sabatier et al., 2005). It is extended here and a new
formulation is proposed, in order to introduce section 4.

3.1 LMI condition

From (6), the L,-gain of fractional system G = (A, B,C, D,V)
described by (4) is bounded by

y>a(D), yeR", ()

if and only if (Alazard et al., 1999)

VaeR, sup o(G(jw)<y, (8)
w

where G( ja)) is the transfer matrix evaluated at frequency
& , such that

—1
G(ja)):C((ja))VI—A) B+D. Q)

Equation (8) can be rewritten
VaeR, Vi=l,..,infl,.n,),

or equivalently,

VaeR, Vi=l,..,infly,.n,), \/ﬂi(G(jw)*G(jw)) <7.
(11)

o,(G(jw) <y, (10)

Due to eigenvalues properties, (11) can be rewritten as

VaeR, Vi=l,..,infln,.n,), 4 (y21—G(jw)* G(jw))> 0,
12)

or, noting that G( ja))* = G(— ja))T ,

VaeR, Vi=l,..,infly,.n,),

-6 jof alio))>0. 13)
which is equivalent to the infinite dimensional LMI:

VweR, 7 I-G(-jw) 6(jw)>0. (14)
3.2 Finite dimensional condition

As

lim 7*I-G(- jo) G(jw)=y*1-D"D, (15)
W—>o0
it comes from (7) that (14) is met if and only if
VaeR, 721 - G(— ja))T G(ja)) is non-singular, (16)
namely if and only if

-1
H(ja)) = (721 - G(— ja))T G(ja))) exists for all real @ .
7)

From (9),

-1
G(- jo) =(-1)" BT ((ja;)vl—(—l)‘VAT) cl +pT (18)
at which can be associated the fractional system
G = ((— 1)‘VAT,(—1)‘VCT,BT,DT,V). (19)
A representation of fractional system whose frequency

response is given in (17) is thus
H}/ = (AHaBHsCHsDH’V) s

where

(20)
= A+BRD'C BRB" @
T\ e e proT ) AT +cToRET))

1
R= (yzl—DTDT :
By, Cy and Dy being omitted here for brevity.

(22)

From condition (17), the L,-gain of fractional system G is
bounded by y defined by (7) if and only if Ay has no
eigenvalues on

C,o= { (jo) =a’e"77? we R } (23)
Let

Cyo=CyoU Cyy, (24)
where
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Co= {(ja))v,a)e R ‘}, and Co= {(ja))v,a)e R +}. (25)
The L,-gain of fractional system G is thus bounded by ¥
defined by (7) if and only if Ay has no eigenvalues on
Cvo * (case 1), and Ay has no eigenvalues on C,,
(case2).

Case 1 Using the exponential form —1= exp(— jiz') and

multiplying by exp((l—V)ﬂ/2), matrix Ay has no

eigenvalue on C ', if and only if

(1—1/)]%( T (I_V)Jg T
4 e A+ BRD" C e BRB
Tl % B
e 2c (I+DRD )C e 2(A +C" DRB )
has no eigenvalues on Ca . (26)

Case 2
and multiplying by exp(— (l—V)n'/2), matrix Ay has no

Using now the exponential form —1= exp( jr)

eigenvalue on C,, if and only if

P (4+BRD"C| S g
(1+v)

~(1+v)/% ~(1+v)j%
e 2CT([+DRDT)C e 2(AT+CTDRBT)

27)

' e
A, =

has no eigenvalues on Cy, .

As A;,:A_},, it follows that matrices A7 and A;, have
conjugate eigenvalues. A;, has thus an eigenvalue on C,,( if
and only if 4, has an eigenvalue on Cy * . Condition (26)
and condition (27) are thus equivalent, and condition (26)

only is sufficient and necessary.

Defining
R Y 28
H=T4,T ", T= 0 QU=vlmi2y | (28)
implies that 4, and
(1-v);%
2 T T
=€ (A+BRD C) BRB (29)

(1+v);Z
—CT(1+DRDT)C e 2 (AT +CTDRBT)
have the same eigenvalues. The number of eigenvalues of
4, on Cy is thus equal to the number of eigenvalues of H
onCy.
Furthermore the relation

. 0 -1
JH =(JH) , with J:(I j (30)

0
permits to infer that the eigenvalues are symmetric about the
origin. Such a matrix is referred to as a (complex)
hamiltonian matrix.

Theorem 1. The L,-gain of fractional system (A,B, C ,D,V) is
bounded by y if and only if hamiltonian matrix H given by

(29) has no eigenvalue on C{ . O

4. EXTENDED BOUNDED REAL LEMMA

4.1 Hamiltonian matrix and Riccati inequality

Lemma 1. The Hamiltonian matrix

{4
-0 -4

where A=A eC™", R=RTeRrR™",

(€2))

0= QT e R
R >0, has no purely imaginary eigenvalues if and only if the
Riccati inequality

AX+XA+XRX+0<0, (32)
has one solution P =P e C™" O
See section 4.3 for a proof.

4.2 Bounded real lemma for fractional systems
From lemma 1, with
~ vz -1
d=e 2[A+B(7/21—DTD) DTCJ, (33)
5 2 T ) Rl
R:B(;/ I-D D) BT, (34)
and
~ -1
o=cT (1+D(721—DTD) DTjC, (35)

in conjunction with theorem 1, the L,-gain of fractional
system (A,B, C,D,V) is bounded by y if there exists a

matrix P =P e C™" such that

(v-1);% (1-v); %
e 2 (AT +CTRBT)P+Pe 2 (A+BRDTC)

+ PBRBT P+ CT(I +DRD" )C <0. (36)
Relation (36) leads to the LMI

(v-1),Z (1-v);Z
247 P+ Pe 24+cfc+

(1

e
(V_l)jz T T _V)jz T
PB+e 2¢'p|R| B P+e 2pfci|<o, (37)

whose first terms can be seen as a Schur complement to
obtain

(V_l)jir T (I_V)JE T (V_l)]ir T
e 24" P+Pe 24+C'C | PB+e 2¢'D

T (I_V)/E 7
B P+e 2p'c

which can be rewritten

<0 (3%

—(721—DTD)
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( (-2

2AT P+Pe 24 PB |+ e 2CT 2c D|<0,(39)
Bpr /I o
or
e(v R ;[ATP+Pe(1 e %A PB e(v 75 2T
BT'p -1 i <0.(40)
(1-v);%
e 2C D -1

Theorem 2. The L,-gain of fractional system (A, B,C, D,V) is

bounded by 7 if there exists a matrix P=P e C™" such
that (40) holds. O

Proof. Theorem 2 results directly from section 4.2 analysis.

Theorem 2 is an extension of the bounded real lemma for
fractional systems. It enables computation of a fractional
system L,-gain from its state-space “like” representation.
However, stability is not guaranteed with this theorem. Note
that if constraint on the positiveness of P is added and the
system under consideration is integer, theorem 2 matches the
well known bounded real lemma, that also ensures stability.
Note also that stability of fractional system can be inferred by
adding one LMI constraint, such as those described in (Moze
et al., 2005), to the LMI (40).

Whereas theorem 2 is only sufficient due to the extension of
theorem 1 to the whole imaginary axis, it has been noticed
that its application leads to accurate results in general. Future
work will however focus on a sufficient and necessary
condition.

4.3 Proof of lemma 1

The proof is largely inspired from (Scherer and Weiland,
2005) and corresponds to an extension to complex matrices
of the results of Scherer and Weiland. It uses the following
lemma to demonstrate the equivalence of both statements of
lemma 1.

Lemma 2. Hamiltonian matrix (31) has no purely imaginary
eigenvalues if and only if the Riccati equality

AX+XA+XRX+0=0, (41)
has one stabilizing solution P.=P." e C™" . O
Proof. The sufficiency is presented first, with some

characteristics of the solution. The necessity is then proven.
Proof of sufficiency As matrix H given by (31) is
hamiltonian, its eigenvalues are symmetric about the origin.
Hence H has no purely imaginary eigenvalue if and only if
there exist full rank matrix ZeC2™"
M e C™"  the later being stable, such that
HZ =7M .

and matrix

(42)

z
LetZ=( lj, 7y, Zye C"™", (43)
Zy

then condition (42) becomes

AZ{+RZ,=7Z\M and —QZ, A" Z, = Z,M (44)
or assuming that Zl_l exists,

A2y +2y27 A2+ 2,27 'RZy + 027, = 0 (45)
Right multiplying by Zl_l permits to infer that

X=2,7"" (46)

is a solution of Riccati equation (41).

Solution (46) is stabilizing ~ Right multiplying by Zl_l the
first equation in (44) gives

A+Rx=7,M 77", (47)
from which can be inferred that 4+ RX and M have the
same eigenvalues. As M is stable, the eigenvalues of
A+ RX are all located in the left half complex plane. X is
then a stabilizing solution.

The solution is hermitian As H is hamiltonian, the

relation
-1
0 ] ’
holds.
Left and right multiplying (48) respectively by Z" and Z
gives

Z"JHZ = (Z*Jﬁz)*.

Ji =), J= (? (48)

(49)
Left multiplying (42) by Z *J and considering (49) shows
that Z" JZM is hermitian, that is such that

Z'JIM-M"Z"J"Z =0, (50)
or, taking into account that J - , such that

ZIZM+M 2 JZ =0. 51
Hence,

7'z =0, (52)
or, considering (43),

212y = 757, . (53)
Left and right multiplying (53) by respectively
(ZI*TI = (Zl_l)* and Zl_l gives

nzit=le) 7 (54)

which shows that matrix X is hermitian (X =X * ).
Two solutions of Riccati

and X = X" are related by
(55)

The stabilizing solution is unique
equality (41), denoted X_ =X -

(3" x + X + xR )~ (T x_+ x_d+ x_Rx_)=0,
or, X, X_ and R being hermitian, by

(AR J (r—x )+ (x—x )+ R ) +(x—x )R(X-X ) =0.(56)

As R > 0,
(A+Rx_ ) (- x_)+(x - x)(d+ Rx_)<o0, (57)

and considering that X_ is stabilizing ( A+RX_is stable),
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X>X_. (58)

Riccati equality (41) has thus only one stabilizing solution.

For all non stabilizing solution, (58) holds.
Existence of the stabilizing solution The solution

properties have been derived assuming that Zl_l exists.
Noticing that it does not exist if and only if there exists
qe C", qg#0, such that

Z1g=0, (59)
or, considering the first equation in (44), such that
RZyq=ZMgq. (60)
Left multiplying by q*ZZ* gives

q Z3RZyq=q' Z5Z,M q (61)
which becomes, considering (53),

q ZyRZyq=q Z,Z,M q, (62)
or, taking the conjugate transpose of (59),

q ZyRZ,q=0. (63)
As R>0 ,

Zyq=0. (64)

Hence (59) implies Zg =0, which contradicts the fact that
Z has full rank and Zl_l does exist.
Proof of necessity  As

N(l oj (1 0]

H = T, (65)

X I X I

where

e A+RX R (66)
—(Z*X+XZ+XEX+§) —(2+1?X) ’

the eigenvalues of H are the eigenvalues of 7. Thus if X is
a solution of the riccati equation (41), the eigenvalues of H

are those of both A+RX and —(Z+1N{X) JIf X is a

stabilizing solution, H has no purely imaginary eigenvalue.

O

Lemma 1 is proven by first considering the implication. The
converse is then proven.

Proof of sufficiency  Suppose that matrix H given by (31)
has no purely imaginary eigenvalues. From eigenvalues

properties, there exists £ R ™ such that

~ A R
H, = ~ ~x (67)
-Q0-¢d -4

has no purely imaginary eigenvalues.
Then from lemma 2, there exists a matrix X, such that
AX+XA+XRX +0=—¢l , (68)
namely such that

AX+XA+XRX +0<0. (69)

Proof of necessity Considering a matrix Y =Y * that

satisfies (32) such that

AY+YA+YRY+0=P, P=P <0, (70)
there exists a matrix X =X such that the Riccati equality
AX+XA+XRX+0=0 (71)
holds if there exists A= X —Y , such that
(1+Ry]a+a(d+Ry)+aRA+P=0, A+R¥<0. (72)
From lemma 2, (72) holds if and only if Hamiltonian matrix
Hy = A+RY N RN i}

-P - (A +RY )
has no purely imaginary eigenvalues.
The value A= j&, weR, is an eigenvalue of matrix H, if

(73)

and only if there exists a vector V=(xT yT )[, V+0,

x,y€ C" such that

(Hy—jol )V =0, (74)
that is such that inequalities
(4+RY)x+Ry=0 and - Px—(A+Ry) y=0 (75)

hold. Left multiplying by y* and x" respectively leads to
y*(z+§Y)x+y*}~3y =0 (76)

and—x*Px—x*(Z+EY)*y=0 . )
Using the conjugate transpose of (77) in (76) gives the
condition:

x Px= y*INQy . (78)
As P<0 and R > 0, condition (78) never holds and matrix
H  has no purely imaginary eigenvalue. Condition (72) thus
holds, therefore H has no purely imaginary eigenvalue.

5. APPLICATION

In (Moreau, 1995), car suspension design is presented as a
robust controller synthesis problem, without consideration of
the underlying technological aspect. This approach leads to
the CRONE suspension (Moreau et al. 2002), its design
relying on a CRONE controller design (Oustaloup and
Mathieu, 1999).

Fy(s) Zy(s)

1 zy(s) _/L Z1o(s)
?ﬁ “ + Ms? 14\ >

Fig. 1. Functional diagram associated with car suspension

The functional diagram associated with this approach is
shown on Fig. 1, where z, (s) and z (s) are respectively the
vertical displacement of the road and of the car, Fl(s) and
F, (s) are respectively the load shift applied and the force
due to the suspension. The feedback system then appears to
regulate the suspension deflection Z;(s)=Z(s)—Z,(s)

around a null reference signal. The associated plant

Gls)=1/ (Msz) then appears to be only function of the mass

M of the car. In (Ramus-Serment, 2001) the fractional
CRONE controller C(s) is given by
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0.5
L [
ay Wp, 1
S 0.5 Ky ’
— 5 1+
wy, @h

where @y, =3.82rad /s, w;, =3438rad /s ,and Cy =9.95.

(79)

The aim of this section is to obtain the modulus margin
Anoq of the system for M =150kg . As the modulus margin
is the inverse of the L,-gain of sensitivity function
S(s)= 1/(C(S)G(S)), theorems 1 and 2 are thus successively
applied to its fractional state space “like” representation:

2 09() = Ax(e)+ Bz (1)

20(0)=Cxl0)+ D=ole) 0
where
0| -Cow)’a,/M —Cowi > wy, | M
~Comh > 1 M —Coah >y I M
~Cow}> IM —Cow)® IM
—Cowh? 1, | M —Coah > I M
A=|1 0 , B= 0 . (81)
0 0
- a),11'5 0
-y, 0
- w2'5 0

C=0 0000000 -l)and D=-1. (82)

Table 1 gives the results obtained with theorems 1 and 2
conjointly with a bisection algorithm. Last column shows the

result obtained measuring the peak of the gain Bode diagram
of S (s) Results shown attest the efficiency of the theorems.

Table 1. Modulus margin computed using theorem 1,
theorem 2 and through a graphical prospect.

Theorem 1 Theorem 2 Graphic
| ]| 1.131653 1.131653 1.1317
Apod 0.8366 0.8366 0.8363

6. CONCLUSIONS

Fractional PID regulators and CRONE robust regulators are
now well known in the field of fractional differentiation
applications in control theory. Synthesis of these two classes
of regulators is usually done in the frequency domain and is
mainly based on the application of Nyquist criterion and its
extensions. Paradoxically, no method based on more
powerful tools such as Lyapunov stability or small gain
theorem has been investigated for fractional systems.
However, such methods are now essential for the extension
of the existing control methods to time-varying or/and
nonlinear fractional systems. In order to develop control
methods for more complex fractional systems than the linear
ones, this paper proposes two theorems for the computation
of a fractional system L,-gain. The first one is based on a
frequency analysis and is easy to implement as it relies on the
location of the eigenvalues of a matrix issued from the
system state-space “like” representation. Using Riccati
theory, the condition involved is then converted into an LMI

constraint to give the second theorem. Relations between
Riccati equality, Ricatti inequality and the location of the
eigenvalues of a complex hamiltonian matrix are investigated
for the proof of theorem 2.

Short term prospects of this study are in the fields covered by
the usual bounded real lemma for integer systems such as
Heo control, thus aiming at its extension to fractional
systems.
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