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Abstract: This paper presents the hardware implementation of a neural network controller for controlling 

an inverted pendulum system on an x-y plane robot. The inverted pendulum system can move on an x-y 

plane while balancing the angle of the pendulum. Neural network algorithm is implemented on a cost 

effective DSP board in association with an FPGA chip. The reference compensation technique of neural 

network control scheme is used for on-line learning and control of the inverted pendulum system. 

Experimental results of tracking the circular trajectory while balancing the pendulum demonstrate to 

confirm the successful performance of the neural network hardware.  

 

1. INTRODUCTION 

Recently, interests in the intelligent system area have 

enormously been increased. Researches on intelligent 

systems become a very important subject in a variety of 

engineering fields such as control systems, robot systems, 

and signal processing systems. One of the next frontier 

research topics seems to develop intelligent systems that 

apply the intelligence to the systems to solve very 

complicated problems. Although the research history on 

intelligent systems has not been long compared with that of 

other control subjects such as adaptive control, optimal 

control, and robust control, many progresses have been made 

by enormous attraction by researchers.  

After 1980s, the era of intelligent control begins and many 

successful results have been presented. Neural network and 

fuzzy logics are two major tools for developing intelligent 

control systems. Fuzzy logics are more practical and can be 

relatively implemented as hardware since real time 

calculation can be easily satisfied although it suffers from the 

difficulty of determining rules.   

Starting from developing the theoretical analysis of how to 

use neural network in control systems as an online learning 

and control tool, simulation results have been presented. In 

recent days, however, an actual hardware implementation of 

neural network controllers becomes more feasible and it has 

been implemented to confirm the theoretical analysis. 

Successful demonstrations of achieving real-time control 

applications have been presented. 

As a test-bed system for confirming neural network control 

schemes, the inverted pendulum control system has been 

considered as a prototype example of nonlinear system 

control applications whose structure is a single-input 

multiple-output(SIMO) where one single input force has to  

control both the angle of the pendulum and the position of the 

cart at the same time(Hung et al., 1997, Mogana et al., 1998).  

Recently, numerous examples of more challenging 

inverted pendulum systems as extensions of the one 

dimensional pendulum system have been presented.  Control 

of two-degrees-of-freedom inverted pendulum or a spherical 

pendulum moving on the x-y plane has been proposed and 

successfully demonstrated (Kim et al., 2004). Further 

extensions of simple pendulum models include an 

acrobat(Spong et al., 1995), and the Furuta pendulum. 

Increasing interest in inverted pendulum systems extends the 

category to a more interesting and challenging 3D inverted 

pendulum problem(Shen et al., 2004) .  

In this paper, the hardware implementation of a neural 

network controller for controlling an inverted pendulum 

system on an x-y plane robot is presented. The inverted 

pendulum system has two degrees-of-freedom to move on an 

x-y plane while balancing the angle of the pendulum. In our 

previous researches, control of the inverted pendulum system 

on x-y plane has been successfully demonstrated with 

expensive DSP systems(Jung et al., 2004) . Here, we develop 

cost effective neural network control hardware. Neural 

network learning and control algorithm is implemented on a 

cost effective DSP board and the PID control algorithm is 

implemented on an FPGA chip to form the reference 

compensation technique scheme of neural network. 

Experimental results of commanding to track the circular 

trajectory while balancing the pendulum show successful 

demonstration to confirm the performance of the neural 

network hardware. 

 

2. INVERTED PENDULUM SYSTEM ON AN X-Y 

PLANE 
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The inverted pendulum system is shown in Fig. 1. The 

pendulum can move on the x-y plane controlled by an x-y 

table robot. It is a more challenging task compared to one 

axis inverted pendulum system where coupling effects 

between two axes do not exist. The goal is to maintain 

balancing the pendulum while tracking the desired trajectory 

yx,  by regulating two control inputs, yx uu , .   

 

 
Fig. 1 Inverted pendulum system on the plane 

 

3. NEURAL NETWORK CONTROL 

 

When neural network is used in the control system, neural 

network is used as an auxiliary controller to help minimizing 

errors. Without primary controllers, it is very difficult for 

neural network alone to stabilize the system in an on-line 

fashion. Therefore, in most of neural network control 

schemes, the primary controllers are used to stabilize the 

system and neural network eliminates tracking errors due to 

nonlinearities or uncertainties in the system. The detailed 

block diagram of the RCT scheme for controlling the x axis 

of the inverted pendulum system is shown in Fig. 2.  

To regulate the inverted pendulum system on the plane, we 

need a replica of Fig. 2 for the y axis control. Two separate 

neural networks are used for controlling the inverted 

pendulum system on the plane. Each axis is decoupled and 

controlled separately although axes are coupled. Decoupling 

effects by neural network is expected along with nonlinear 

uncertainties compensation.  

 

 
Fig. 2. Neural network control block diagram for x axis 

 

The concept of the RCT is to compensate the system 

controlled by predetermined controllers by closing another 

outer loop. The neural network output signal iφ  compensate 

at the desired trajectory dq  to modify the control input u  by 

minimizing the output error, qqe d −= . 

The detailed control structure for the pendulum system is 

shown in Fig. 2. Neural network outputs are added to 

tracking errors to form PID controller outputs. A control 

input θxu for the pendulum angle and a control input xpu for 

the cart position are summed together to generate an input 

force xu  to the system.  

The pendulum angle error of the x axis is defined as  

         

 xxdxe θθθ −= ,    (1) 

 

where xdθ  is the desired angle of the pendulum and xθ  is 

the actual angle of the pendulum . 

Then a PID control input for the angle control is given by 
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where θθθ xixdxp kkk ,, are PID gains for the pendulum 

control and 321 ,, xxx φφφ  are neural network outputs. 

The mobile pendulum position error is defined by 

     

 xxe dxp −= ,     (3) 

 

where dx  is the desired cart position and x  is the actual 

position of the cart. 

The PID control input for the position control is   
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   (4) 

 

where pxdxix kkk ,,  are PID gains for the cart control and 

654 ,, xxx φφφ  are neural network outputs. 

 

The overall control input is the sum of two PID controller 

outputs, θxu  in (2) and xpu  in (4) 

 

θxxpx uuu += .  (5) 

 

In the same manners, the control input for the y axis is given 

by 
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θyypy uuu += .  (6) 

 

where  
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4. NEURAL NETWORK LEARNING 

 

Here, a two layered feed-forward neural network structure 

consists of ijw , the weight between the input and the hidden 

layer, jkw , the weight between the hidden and output layer, 

jb , the bias weight for the hidden layer, and kb , the bias 

weight for output layer. For the neural network structure, 6 

inputs, 9 hidden units, and 6 output units are used as shown 

in Fig. 3. Inputs to neural networks are selected as error 

signals and their delayed signals to represent system 

dynamics by the neural network. The number of hidden units 

is selected experimentally. The number of neural network 

outputs is set to 6 to compensate at each component of 2 PID 

controllers in equations (2) and (4). 

The nonlinear function for a neuron is the hyperbolic 

tangent function whose bound is 1± . 
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Fig. 3 Neural network structure for the x axis 

 

From equation (2), the control input for the pendulum angle 

becomes 

 

θθθθθθθθ Φ+++= ∫ )()()( tekdttekteku diP
& ,    (8) 

 

where 
321 φφφ θθθθ idp kkk ++=Φ .   

In the same way, we have the control input for the cart 

position 

 

 
ppdppippppp tekdttekteku Φ+++= ∫ )()()( & ,(9) 

 

where 
654 φφφ ppxdpipp kkk ++=Φ . 

If the system dynamic equation is represented as 

),,,,,( pppf &&&&&& θθθ , then combining the system dynamic 

equation with (8) and (9) yields  

 

Φ−=++ ∫ ),,,,,(
...

pppfeKedtKeK DIP θθθ &&&& , (10) 

 

where 
pΦ+Φ=Φ θ ,  ],[ pppP kkK θ= , ],[ pppI kkK θ= , 

],[ dpdD kkK θ= , and T

peee ],[ θ=  . 

 

To learn the inverse dynamic of the system, we set the 

training signal as 

     

 eKdteKeKv DIP
&++= ∫ .            (11) 

 

When the error converges, that is, when the training 

signal v converges to zero, the neural network output 

becomes ),,,,,( pppf &&&&&& θθθ≅Φ  so the inverse dynamic 

control can be accomplished.  

Next is to develop on-line learning algorithm, the back-

propagation algorithm for the neural controller. Define the 

objective function to be minimized as  

 

      

   
2

2

1
vE = .  (12) 

 

Differentiating (12) with the weight vector w yields 
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In details, for each output, the weight adjustment jkw∆ we 

have 

          

 jkjk Ow ηδ=∆ ,   (15) 

 

where η  is the learning rate, 
jO is the jth output of the 

hidden layer, and 
kδ is 
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where 
kS is the kth summation of the output layer and kφ is 

the kth output of the output layer. The gradient 
k

v

φ∂
∂ can be 

obtained from equation (13) as   
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The weights are updated as  
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where α is the momentum constant for helping the faster 

convergence of the error. 

 

5.  EXPERIMENTS 

5.1  Experimental Setups 

Fig. 4 shows the experimental setup for regulating the 

inverted pendulum system. Initially the pendulum angle is set 

to zero position by the encoder sensor. 

 

 

 
Fig. 4 Experimental setups 

 
Fig. 5 shows the corresponding control hardware for the 

pendulum which consists of a DSP controller and a motor 

driver. The motor drivers receive PWM signals from 

remotely located controllers through a serial communication 

and change it to currents. All calculations are done in the 

DSP controller shown in Fig. 5. 

 

 
Fig. 5. Neural network control hardware 

5.2  Circular Trajectory Tracking Task 

The experiment is to test the desired trajectory tracking 

control of the pendulum system. The pendulum system is 

commanded to track desired circular trajectories while 

balancing the pendulum. The radius of the circle is 0.2m. Fig. 

6 shows the tracking result. The pendulum tracks the 

trajectory well while maintaining the balance. The 

corresponding angle tracking error is within ±0.02rad as 

shown in Fig. 7. We see a bit larger angle error in y axis since 

the y axis carries the x axis. The relative position tracking 

error is within 3㎝ as shown in Fig. 8.  

 

 
Fig. 6 Circle trajectory tracking result  

 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5442



 

 

     

 

 
(a) x axis angle 

 
(b) y axis angle 

Fig. 7 Angle balancing of inverted pendulum system 

 

 
(a) x axis position tracking result 

 
(b) y axis position tracking result 

Fig. 8 Position tracking of inverted pendulum system 

 

6. CONCLUSION 

The successful hardware implementation of the neural 

network controller has been presented. A cost effective DSP 

controller has been designed to calculate the on-line learning 

algorithm of two neural networks. Although there exist 

coupling effects between two axes, neural network was able 

to decouple and compensate for uncertainties. The neural 

controller successfully regulates the position of the cart while 

balancing the pendulum which is quite difficult since the 

system is coupled and nonlinear.  
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