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Abstract: Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered
in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be
investigated with respect to different information levels from the external inputs to the systems. These
inputs are disturbance inputs, reference inputs and auxiliary inputs. The diagnosis of the system is
derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the
signatures form the external inputs are used for detection and isolation of the parametric faults.
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1. INTRODUCTION

Fault diagnosis in dynamic systems can be derived in mainly
two different ways, either by using the well known passive
approach, Basseville and Nikiforov [1993], Chen and Patton
[1998], Gertler [1998], Gustafsson [2000], Willsky [1976], and
the more resent active approach, Campbell and Nikoukhah
[2004], Kerestecioglu [1993], Niemann [2006], Nikoukhah
[1998], Nikoukhah et al. [2000], Zhang [1989]. In the passive
approach, the diagnosis is based only on measurement signals
and the control signals. A consequence of this is that faults can
only be detected and/or isolated when the system is "disturbed"
by external inputs as e.g. disturbances, reference changes etc. In
the active approach, an auxiliary input (test signal) is injected
into the system. The diagnosis is then derived by considering
the signature from the auxiliary input in the outputs from the
system or in residual outputs. The active approach will in gen-
eral allow a fast detection compared with a passive approach.
Further, it will also be possible to detect and isolate faults all
the time, because the auxiliary input can be applied all the time.

Both approaches has some disadvantages. In the passive ap-
proach, the effect from the parametric faults in the residual
outputs in not well described, it will depend on the inputs to the
system. The diagnosis is based on changes in the residuals, but
these changes are more or less unknown. In the active approach,
itis a central element that the input to the system is well defined.
Therefore, it is also well defined how the residual generator
and the associated stochastic test should be optimized. The
disadvantage is that an external input is injected into the system.
The will also have an effect on the controlled outputs with a
performance reduction as the consequence.

There is an alternative between these two approaches that can
be very useful. Instead of using auxiliary inputs, it will in many
cases be possible to use the information from the existing ex-
ternal inputs in connection with the diagnosis. The advantages
with such an approach is that no new signals are injected into
the system with a performance degradation as the result. Fur-
ther, the residual generator and the associated stochastic test can
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be optimized with respect to the information about the inputs.
These inputs can e.g. be disturbance including periodic com-
ponents, constants components or other known time depending
components. A reference input is also an external input that can
be used in connection with fault diagnosis. The diagnosis is
based on the known or partly known signature in the residual
vector from the external input. These type of systems can be
called self-excited systems. Examples of self-excited systems
are mechanical systems including rotating elements as e.g. a
wind turbine, momentum wheels etc. Constant external inputs
on systems can be found as e.g. constant momentum or force
on a system is the gravity force.

The main issue in this paper is to investigate the application of
external inputs in connection with active fault diagnosis. The
derived results can be used for both continuous-time as well
as for discrete-time systems. The applied CUSUM method is
given in a discrete-time version in this paper, but a continuous-
time version can also be derived.

2. SYSTEM SET-UP

Let a general system be given by:
Sy { € =Gea(0)d + Geu(O)u
y = Gy(0)d + Gy, (8)u
where d € ® " is a disturbance signal vector, u € ® ™ the control
input signal vector, e € ® ¢ is the external output signal vector

to be controlled, and y € % ? is the measurement vector. Further,
0 is a vector given by

0=(01,, 0, -, 0 2)

including parametric faults/variations in the system. 6; is the
i'th parametric fault. Let ; =0, i =1,-- -,k represent the fault
free case.

1)

Further, let the system be controlled by a stabilizing feedback
controller given by:

ZC:{M:K)) (3)
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3. PRELIMINARY RESULTS
3.1 Coprime Factorization

Let a coprime factorization of the nominal system Gy, (0)
from (1) and the stabilizing controller K from (3) be given by:

Gy =NM~'=M"'N, N\M,N.M € % ..

K =uv'=v'0, U,v,0,VeRs,
where the eight matrices in (4) must satisfy the double Bezout
equation given by, see Tay et al. [1997]:

(69)- (5 ) (49) - (49) (%)

3.2 FDI Set-up

“)

Based on the system Xpg given by (1) and the feedback con-
troller ¢ given by (3), the following block diagram shown in
Fig. 1 can be derived.

d ——

Ypo
u y

Xc

Fig. 1. Feedback control system.

Now, including also a residual vector in connection with the
feedback control system in Fig. 1. A residual vector € can be
given by, Frank and Ding [1994]

e=My—Nu (6)

Let’s use the feedback controller described by coprime factors,
i.e. K =V~!U, in the block diagram. Further, include also an
auxiliary input vector 1| in between the two controller coprime
matrices in feedback controller. The block diagram in Fig. 1
including n and € is shown in Fig. 2. The two signal vectors,
M and €, will be applied in connection with the active fault
diagnosis.

Based on the feedback system in Fig. 2, it is possible to give
the transfer functions from the two input vectors d,m to the two
output vectors e, €. This is given by:

()= (R ) (3) ®
where P is given by Niemann and Stoustrup [2002]:
Poy = Gog(8) + Geu(O)U(V — Gyu(0)U) ' Gy (8)
Py = Geu(8)(M —U(V — Gyu(8)U) (N — Gy, (8)M))
Pea = (V- Gyu(e)U)iled(e)
Pey = —(V =Gy (8)U) " (N - G,u(8)M)

®)

Note that the transfer function from the input vector 1 to the
residual vector € is equal to the dual YJBK transfer function,
Niemann [2003], Tay et al. [1997]. The dual YJBK parameter-
ization gives the parameterization of all systems stabilized by

d — —— ¢
Ypo
u y
+
vl U
n
€
N O M

Fig. 2. Controller structure including residual vector € and the
external input vector 1.

a fixed feedback controller in terms of the stable dual YJBK
transfer function. The dual YJBK transfer function is a control
relevant quantity. If a parameter change is not visible in the
dual YJBK transfer function, then it will not have an influence
on the control performance. The dual YJBK transfer function is
normally denoted S. We will use § instead of Pey in the rest of
this paper.

It is possible to rewrite § = Pey given by (8) when the system
Ypg is described as a linear fractional transformation (LFT) of
0, see Niemann [2003].

3.3 Passive Fault Diagnosis

It has been shown in Frank and Ding [1994] that it is possible
to parameterize all residual generators by using the YJBK
parameterization. All residual vectors g, for the Xpg given by
(1) can be described by

€, = Orp,0(My — Nu) = Qrp,0€ ®
where Qrp o is a stable and proper filter of suitable order.
Orp,o needs to be designed such that the residual signal/vector
€, satisfies the following conditions for fault detection, Saberi
et al. [2000]:

g, =0 for =0, V(d,u)

e, £ 0 for 80, ¥(d.u) # (0,0) (10)

Equivalent, definitions for fault isolation can also be derived,
Saberi et al. [2000]. Depending on how many faults that can
occur simultaneously, different conditions can be given, Saberi
et al. [2000]. It is also important to point out that it is not always
possible to design Qrp o such that it is possible to obtain exact
fault detection and fault isolation. Instead, different forms of
approximative fault detection and/or fault isolation need to be
considered, Frank and Ding [1994].

3.4 Active Fault Diagnosis

The system given by (7) will now be applied in connection with
AFD. Let the system be given by:

e = Ped(e)d + Py (G)T]
Yrp :

(1)
€= Pq(0)d + S(6)n
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The internal vectors will be applied for AFD. The system Xgp
is shown in Fig. 3.

d —

Yrp

n——mm —» ¢

Fig. 3. The system set-up for active fault diagnosis.

The first important observation of Xpp is that S(0) is zero in the
fault free case, i.e.

S(0)=0 (12)

It is clear from this first observation, that S(6) is very important
in connection with AFD. Following the definition of fault
signature for additive faults in Massoumnia [1986], S(6) will
be named as the fault signature matrix in connection with
parametric faults, Niemann [2005].

The fault diagnosis based on the active approach considered in
Niemann [2005], Niemann and Poulsen [2005, 2006], Poulsen
and Niemann [2007] is based on using simple periodic auxiliary
inputs. The fault diagnosis is then derived by an investigation
of the residual vector with respect to a signature from the
auxiliary input. This is done by considering the residual vector
at the same frequency applied for the periodic auxiliary input.
However, it is also possible to use other types of auxiliary inputs
than periodic signals. This has e.g. been done in the approach
used in Campbell and Nikoukhah [2004], Kerestecioglu [1993],
Zhang [1989].

4. INFORMATION BASED FAULT DIAGNOSIS

As pointed out in the introduction, one of the disadvantages
with AFD is that an auxiliary input is injected into the system
which will in general reduce the performance of the system.
However, it will in many cases be possible to apply the AFD
concept without an injection of an auxiliary input. The reason
is that the controlled system has a number of external inputs
that can be applied in connection with AFD.

Including an auxiliary input, the external inputs to a system
can be derived into four different types of inputs depending
on the level of information. These four inputs are: unknown
white disturbance/noise d,,, partly known disturbance input d,,,
complete known reference input » and auxiliary input 1 explicit
designed for AFD. Introducing the these four different inputs in
(11) gives the following description for Xgp:

o= Poy(8)dy + Pog, (0)dy + Por(B)r + Poy()N
P\ &= P, (0)du + Pea, (0)d, + Per(B)r + S(O)
(13)

The system Xgp given by (13) is then modified as shown in Fig.
4.

d, ——
dp——~ Yrp

[ —

n——mm

Fig. 4. The system set-up for information based fault diagnosis.

The information levels related to the four different inputs are
described in the following and related to fault diagnosis.

Unknown disturbance input d,

The disturbance input d,, is assumed to be unknown white noise.
If the disturbance input d,, is not white noise, a noise model can
be included in the system set-up. The colored noise d,, is then
given by: B

d,=Hd,
where d,, is white noise and H is a stable filter. H is included in
the system model.

Fault diagnosis based on d,, is the standard passive fault diag-
nosis, where the residual vector € or g is evaluated with respect
to change in the mean value or the variance. Statistical test
methods as e.g. CUSUM (cumulative sum) or ML (maximum
likelihood) test, see Basseville and Nikiforov [1993], Gustafs-
son [2000] for further details, can be applied.

One of the disadvantages with this method is that a parametric
fault given by 6; might not necessary give a change in the mean
value or the variance of the residual vector. This need to be
investigated for all possible parametric faults.

FPartly known disturbance input d

The input d), is the disturbance input that is partly known. Some
informations about the disturbance input d,, are known. This
can e.g. be the disturbance include a specific frequency or a
limited number of frequencies, the disturbance is only active
in a limited frequency range, the amplitude of the disturbance
is given or is bounded or the disturbance include a constant
component.

Especial the case where the disturbance include one or a few
know frequencies is relevant in a large number of systems
including rotating components. A wind turbine is disturbed by
the shadow from the tower. This is a disturbance with a known
frequency. The disturbance in a gear box will also be related
directly to the velocities of the axes in the box.

Fault diagnosis in connection with rotating components can
in many cases be derived by evaluation of the signatures in
the residuals from periodic disturbances related to the rotation
velocity. A constant disturbance with unknown amplitude will
also be useful to detect and isolate parametric faults.

For a more detailed analysis of this case, let’s consider the
residual vector as function of d,, given by:

€= Peq,(0)d, (14)

where P, (0) is non-zero in the fault free case. This mean that
diagnosis based on d,, is based on detecting of derivation away
from the nominal residual vector. Let’s analyze the case where
the disturbances include a periodic part or the disturbances
include a constant part. Only the SISO case will be considered
in the following, but it will be possible to extend the results to
the MIMO case.

The disturbance d), can be modelled by

d, = agpcos(wpt) + & (15)
where aq is constant, ®y is the frequency for the periodic
disturbance and § is the remaining part of the disturbance. It
is assumed that & is a Gaussian disturbance. The frequency g
as well as the effect of a, might either be known or estimated
from the normal situation. Considering the periodic part of the
disturbance in (15) gives the following residual vector:

€ = [Peq, (0)|apcos(@ot +¢) +v  v=Peq,(0)§ (16)
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In the normal situation the noise component in the residuals €
will be white noise. This can be obtained either by a filter on the
residual signal or by incorporate a Kalman filter in the coprime
factorization.

In order to detect if the signature of the periodic signal is
changed due to faults in the residual, the following two signals
are formed:

¢ =¢ cos(mot)
where according to (16)

s =€ sin(wot)

¢ = [Peg, ()] “7‘” (cos(¢) + cos(200t + ¢)) +v cos(wor)

a . ) .

= |Pea, (8)] 7‘” (— sin(0) + sin(2mor + q>)) +v sin(@ot)
The signal ¢ (equivalent for s) consist of three signals,
a constant signal |P£dp(9)|“7°’ cos(¢) a time varying signal
|Pea, (8)] %> cos(2aot + ¢) with zero mean value and a distur-
bance signal v cos(®ot).

From this it is clear that in the fault free situation

_ a 1
€ N(|Pes, (0)] 22 cos(9), 53)

_ e . 1
$ € N(=|Pea, 0)| = sin(9), 557)
where N indicates the Gaussian distribution with time average

mean and variance. It is assumed that the time average mean:

me| de | cosd()
{ms} - |P£dp(e>|7 [ _ Sin¢(9)
and variance Gp can be determined or estimated from the
normal situation.

a7)

The detection can be implemented as a CUSUM detection
(which in discrete time is) given by

5 1
1) = max(0.3() + [~ 57)) (18)
where
c me
S=| S | =™, 01= 2L 4Py, (0)| %2
- —C me 9 1= \/§ Sdp 2
- ng

The Hy is accepted if z; is smaller than the threshold, i.e.
2(t) < h

where the inequality is to be understood element wise. The
tuning parameters in this CUSUM detector is i, which is related
to the average length between false detections, Y which forms a
typical lower limit of changes to be detected. The latter quantity
is off course related to the lower limits of detection for the
individual parameter changes.

Now, consider the case where d), include a constant part. d), can
then be modelled by

dp=ao+§ (19)
where ag is unknown but constant and & is the remaining part
of the disturbance. The constant part of the residual vector € is

given by

€= |Peg,(0)ao+v v ="Pea,(0)E (20)
Note that there is no phase information available when a con-
stant is applied. This gives that the CUSUM test can only be
based on changes in the mean value of the residual vector €.
This gives two CUSUM tests, one for positive change and one
for negative change of the mean value of €.

Reference input r

The reference input r is known exact, but it will not in general
be possible to change or modify r. The reference input is
designed with respect to the controlled output e. The transfer
function from r to the residual vector is given by:

€= P (0)r 21)
In the construction of the residual vector €, the effect from all

known signals are decoupled in the nominal case. This mean
that the transfer function from r to € is zero in nominal case, i.e.

Per(0) =0, for6 =0

The diagnosis is then derived by an investigation of the residual
signal with respect to signatures from the reference input. In the
case when the reference input is either a periodic, a constant
input or can be described as linear combination of these, the
methods described above can be applied directly. An alternative
to this is to use dedicated filters on the residual signal that will
give a response when a signature from the reference input occur
in the residual vector.

Auxiliary inputm

The auxiliary input vector 1 is free to design with respect to
optimize the fault diagnosis. This mean that the amplitude, the
input direction, the frequency in periodic inputs etc. are free
to select/design with respect to optimizing the fault diagnosis.
As pointed out before, one consequence of using an auxiliary
input is that the input will in general also affect the controlled
output e with a performance reduction as the result. However,
the freedom in the design of 1 can also be applied to minimize
or reduce the effect from m on the controlled output. Some
preliminary results has been derived in Niemann and Poulsen
[2005, 2006] with respect to minimize the time to detect and
also minimize the effect from 1 on the controlled output e.

Instead of using a general criterion for the optimization of the
auxiliary input, it is possible to design M more directly with
respect to remove the effect completely from all or some of
the controlled outputs. Let’s start with considering the transfer
function from 1 to the controlled output e given by

e=Pen(O)M

Now, assume that the considered system is a MIMO system. In
the SISO case, it is not possible to decoupling based on using
specific input directions of the auxiliary input 1. For designing
an auxiliary input 1 such that it will not affect all or some of the
controlled output e, let’s include a stable pre-filter in (22), i.e.

(22)

e = Py (0)Orp, Mg (23)
Decoupling is obtained if:
P (0)Qrp,; = 0, for 6 =0
(24

S(S)QFDJ 75 0, for O 75 0

The last condition will guarantee that the transfer function from
1M to the residual vector is non-zero in the faulty case. The first
condition in (24) can only be satisfied if

(25)
When the above condition is satisfied, a non-zero stable pre-
filter Qpp; can be designed. The design can be derived by
using the method described in Saberi et al. [2000], where design

of post-filters has been considered in connection with passive
fault diagnosis. In connection with the design of Qpp,, it is

g<m
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not necessary to design the pre-filter such that the decoupling
is satisfied for all frequencies. In the case where the auxiliary
inputs is based on simple periodic signals, it is only necessary
that the decoupling is satisfied at the specific frequency or
frequencies. This simplifies the design of the pre-filter.

The condition given above will not be satisfied in all cases
with the result that exact decoupling of the auxiliary input in
the controlled output cannot be obtained. However, it is still
possible to obtain decoupling in a number of controlled outputs.
It will always be possible to obtain an exact decoupling of m — 1
controlled outputs. The decoupling can then be obtained for the
most critical outputs in e.

5. EXAMPLE

Let’s consider a sampled version of a simple second order
system given by
k 1

G(s) s24+20ps+y? 24025+ 1
influenced by stochastic disturbances. Variations in the three
parameters k, { and y will be considered as parametric faults in
the system.

In discrete time (with sampling period 7y = 0.01 sec) and in
state space the system is given by

x(t+1)=Ax(t) + Bu(t) +v(t) (26)
y(t) =Cx(t)+e(t) (27)
where the process noise consists of unknown and partly known
disturbances:
v(t) = Bd,(t) + Bd(t)
The stochastic noise processes are zero mean white noise

sequences and
var{ {iu((tt” }= {0(51 0%1}

The process noise (unknown as well as partial known) is here an
input disturbance, but the methods are by no means restricted
to this type. The control is based on a state estimate obtained
by means of a stationary Kalman filter and the control is an
ordinary LQ controller which aim at minimizing the objective
function

J= E{ ZxT( )0x(t) +u”
=0

This design results in a controller given by:
2 —1.9317+0.9332 —0.2664z+0.2661
- 72 —1.957z7+0.9581 B 72 —1.957z7+0.9581

and a model parameterized through
5.05z+5.046

T 2 -1.9572+0.9581

(t)Ru(t)} 0=hL R=02

72 —1.9982+0.998
72 —1.9577+0.9581

107 M=

A simple analysis of this closed system results in G% =1.2¢73
and
do me | 10.0530
|Pgdp(0)|7 =0.0553 {my} = {0.0156]

Notice that m,. and m,; can be estimated from the normal
situation or be determined by means of closed-loop analysis.

The parameters in the CUSUM detector was chosen to be:
vy=001 h=2

2 T T T T T T T T
VAV AVAVAVAVAVAVAVAY AVAVAVAVAVAVAVAVAVAY
0 20 40 60 80 100 120 140 160 180 200
1 T T T T T
2 W\/\NW\/\,/\W/\N\N\\M
0 20 40 60 80 100 120 140 160 180 200
1 T T T T T T
0 20 40 60 80 100 120 140 160 180 200
0.5 T T T T
© AVAAAAAAAANDAAANANANY
20 40 60 80 100 120 140 160 180 200

Fig. 5. The signals (y, u, e, €) for a fault in & at t=100 sec.
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Fig. 6. The cusum signals (z) for a fault in k at t=100 sec.
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}
0 20 40 60 oo
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Fig. 7. The cusum signals for a fault in k at t=0 sec.

The choice of 61 was based on the assumed knowledge of (i.e.
the possibility of estimating) G% and the effect of d), in €.

The relevant signals are plotted in Fig. 5 and 6 for a change in
k (-10 %) at t = 100 sec. The cusum signals are plotted in Fig.
7-9 for an initial (at t = 0) -10%, 50% and a 10 % change in
each of the three parameters: k,  and y. From the plots in Fig.
7-9 it is clear that the shift in mean of m, and m; in (17)

Afme] _[-00021] [me] _ [-0.0026
my | = | —0.0023 mg | = | 0.0013

A [me] _ [—0.0054
my | = | —0.0070
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CUSUM signals
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Fig. 8. The cusum signals for a fault in  at t=0 sec.

CUSUM signals
T

J PARUAANGY ARV AN VAN AYAYAVAT VAV
0 20 40 60 80 100 120 140 160 180 200
time (sec)

Fig. 9. The cusum signals for a fault in y at t=0 sec.

for changes in k, € and y can be used for isolation of the fault.
Note that the oscillations in Figs. 7 - 9 are caused by the time
varying part in the ¢ and s signals.

6. CONCLUSION

An active fault diagnosis approach has been investigated with
respect to fault diagnosis based on different excitations of the
system. Instead of using auxiliary inputs for the fault diagnosis,
it is possible to base the diagnosis on the signatures from
disturbances and/or reference inputs when these inputs has a
well defined signature in the residuals. This does not require
an exact knowledge of the external inputs. Changes in the
signature can then be used to detect and isolate faults in the
system.

Further, using the standard AFD approach, it is investigated
under which conditions it is possible to include auxiliary inputs
in the control-loop without affecting the controlled output. It
has been shown that it is always possible to decouple the effect
in some of the controlled outputs when the auxiliary input is a
vector input.
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