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Abstract: Identical parallel machine scheduling problems with sequence dependent setup times, to 
minimize the total completion time are studied in this paper. A mixed-integer programming formulation of 
this problem is presented. And a neural computation architecture based on a Coupled Transiently Chaotic 
Neural Network is introduced to construct the model. The transiently chaotic dynamics are defined after 
the energy function is constructed by a penalty function approach. Tradeoff problem existing among the 
penalty terms included in the energy function is overcome by using time-varying penalty parameters. 
Simulation results tested on different problems with 100 random initial conditions show that this approach 
converges to near-optimal or optimal solutions and outperforms the Hopfield neural networks. 

 

1. INTRODUCTION 

The study of parallel machine problems is relevant from both 
the theoretical and the practical points of view. From the 
practical point of view, it is important because we can find 
many examples of the use of parallel machines in the real 
world. From the theoretical point of view, it is a 
generalization of the single machine problem and a particular 
case of problems arising in flexible manufacturing systems. 
At present, the vast majority of papers are concentrated on 
identical parallel machine scheduling problem (IPMSP) 
(Allahverdi, A. et al., 2006). IPMSP is one of the typical NP-
hard combinatorial optimization problems, which is described 
as follows: scheduling N  jobs on M  identical machines in 
parallel to optimize the objectives such as makespan, the total 
completion time, the sum of weighted tardiness and so on 
(Mokotoff, E., 2001). The problem considered here is to 
schedule jobs on identical parallel machines with sequence 
dependent setup times to minimize the total completion time 
( | |sd iP ST C∑ ).  

Over the last decade, Neural Networks (NNs) have been 
proposed in the existing literature as an approach to solve a 
wide variety of combinatorial optimization problems. 
Successful applications of NNs to various classification 
problems have caused growing research interest in neural 
networks. In particular, Hopfield neural networks have 
provided acceptable solutions to optimization problems such 
as linear programming and TSP (Hopfield, J.J. and Tank, 
D.W., 1985). However, not much progress has been made for 
the exploration of the use of NNs in solving multi-machines 
scheduling problems, especially the parallel machine 
scheduling. One of the difficulties is that the objective 
function can not be expressed in neural network energy 
function. Another important one is that there is no 

theoretically established method for choosing the values of the 
penalty coefficients. Attempts to resolve these difficulties 
have involved new networks. To the best of our knowledge, 
Akyol and Bayhan should be the first to propose a Hopfield 
type dynamical gradient neural network for solving the 
identical parallel machine scheduling problem(Akyol, D.E. 
and Bayhan, G., 2006). The majority of the existing studies 
are based on Hopfield network or its extensions. The 
difficulty encountered with optimizing networks based on the 
Hopfield-Tank model is their tendency to settle into local 
minima. Chen and Aihara proposed a transiently chaotic 
neural network (TCNN) as an approximation method for TSP, 
by introducing transiently chaotic dynamics into neural 
networks (Chen, L. and Aihara, K., 1995). Unlike 
conventional neural networks only with point attractors, 
TCNN has richer and more flexible dynamics, so that it can be 
expected to have higher ability of searching for globally 
optimal or near-optimal solutions.  

Motivated by the recent developments, a Coupled Transiently 
Chaotic Neural Network (CTCNN) is presented as an 
innovative, alternative approach for solving IPMSP in this 
paper. This study is to apply a new neural network energy 
function in solving this problem. In order to design an analog 
neural network for a specified optimization problem, we 
construct a suitable computational energy function whose 
minimization leads to a system of differential equations 
sometimes called equations of motion. The formulation of the 
equations of motions is the central issue in the design of an 
optimizing neural network. In this paper we concentrate on 
the architecture of CTCNN model for IPMSP to minimize the 
total completion time. The major distinction of our approach 
is that it utilizes CTCNN to tackle with this problem including 
sequence dependent setup times and the objective function is 
denoted by penalty function. 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 14882 10.3182/20080706-5-KR-1001.2146



  

The remainder of this paper is organized as follows. In the 
next section, a mixed-integer programming model for 
identical parallel machine scheduling problem is given. In 
Section 3, a neural computation architecture based on 
CTCNN is introduced to describe this problem and a penalty 
function approach is employed to construct a new energy 
function of the network. An improved approach for adjusting 
the penalty parameters is proposed to overcome the tradeoff 
problem. In Section 4, the computational results tested on 
different scale problems of 100 different initial conditions are 
analyzed to investigate efficiency of the model. Finally, we 
give some conclusions and the future research directions. 

2. PROBLEM FORMULATION 

A mixed-integer programming formulation for the 
| |sd iP ST C∑  problem is presented in this section.  

2.1  Assumptions 

Let N  be the number of jobs to be scheduled at time zero and 
M  be the number of identical machines in parallel where 
N M≥ . We assume that machines are initially setup for 
nominal job 0 and must finish setup for a tear down job 1N + . 
These jobs are the place-holder jobs, which indicate the initial 
machine setup and required ending state. Other assumptions 
are described as follows. 

(i) Each job has only one operation and can be processed on 
any machine but it must be processed without preemption. 

(ii) Each machine can process at most one job at a time. 

(iii) All jobs are available for machine processing 
simultaneously at time zero. 

(iv) Each job requires processing time units and setup time 
before processed. 

2.2  Notations 

For convenience, the notations and decision variables that are 
used in the remainder of this paper are defined as follows. 

jp = the processing time of job j  on identical machines, 
1, ,j N=  

ijs = the sequence-dependent setup time between job i  and 
job j , , {1, , }i j N∈  

1ijX =  if  job i  is scheduled immediately before job j , else 
0ijX = , 0,1, , ,i N=   1, 2, , , 1j N N= +  

jC = the completion time of job j , 1, ,j N=  

2.3  Mixed-Inter Programming Model 

The IPMSP with sequence dependent setup times (denoted by 
Π ) can be formulated as a mixed-integer program as follows. 
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{0,1}ijX ∈     0,1, , ,i N=   1, 2, , , 1j N N= +       (7) 

0ijX =                                i j=                     (8) 

The objective function seeks to minimize the total completion 
time over all jobs. Constraint (1) ensures that exactly M  
machines can be scheduled. Constraint sets (2) and (3) ensure 
that each job is scheduled on one and only one machine. 
Constraint (4) defines the completion time of the non-existent 
job 0 so that the recursive constraint sets (5) can be used to 
find completion times of the jobs. Constraint sets (5) also 
ensure that jobs only begin processing after both the previous 
job and the required setup have been completed. Constraint 
sets (6), (7) and (8) provide limits on the decision variables. 
This model has 2( 1)N +  zero-one variables and N  real-
valued variables. 

3. A CTCNN MODEL FOR IPMSP 

In this section, a neural computation architecture based on 
CTCNN model is introduced to define its corresponding 
quadratic energy function. An improved approach for 
adjusting the penalty parameters is proposed to overcome the 
tradeoff problems. 

3.1  The Energy Function for IPMSP 

Solving an optimization problem with constraints satisfaction 
requires selecting an appropriate representation of the 
problem, and choosing the appropriate weights for the 
connections and input biases. In our approach, the familiar 
matrix representation of neurons for solving the TSP is used. 
A solution of IPMSP is represented by a matrix of neurons 
with 1N +  rows and 1N +  columns, where N  is the number 
of jobs. Assume ijVX  to be the neuron output which 
represents whether job i  precedes job j  on the same 
machine or not. Figure 1 shows a feasible solution to an 
example of identical parallel machine scheduling with 2 
machines and 5 jobs and its transformation process from the 
matrix output (solution) to the Gantt chart. Job 0 and Job 6 
represent the start and the end of all processing jobs 
respectively. The solution in Figure 1 is represented by a set 
of cost function trees (Fig. 1(b)) encoded in the matrix (Fig. 1 
(a)). Each node in the set of trees represents a job and each 
link represents the interdependency between jobs. The total 
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completion time of all jobs can be computed by traversing the 
paths from Job 0 to Job 6.  

In the presented CTCNN, we adopt two types of neurons: one 
type of neurons to represent real valued variables jC  and the 
other type to represent binary valued variables ijX . The inputs 
and outputs to these two types neurons are denoted by iUC , 

iVC  and ijUX , ijVX , respectively. 

           
(a) matrix representation           (b) cost function trees 

 
(c) Gantt chart 

Fig. 1.  An example 5-job 2-machine problem 

A neural network energy function for combinatorial 
optimization is usually of the form: 

A (cost) B (violation of constraint )iE i= ⋅ + ⋅∑                   (9) 

in which penalty weights A  and B 0i > , and cost is the 
objective function value that is to be optimized and 
independent of constraint violations. By minimizing the 
energy function E , we attempt to minimize the original 
objective function, while simultaneously maximizing the 
satisfaction of the constraints. The successful use of such an 
energy function requires an appropriate selection of values for 
parameters A  and Bi . 

According to the assumptions and notations presented in 
Section 2, the energy function in this case will include five 
constraint functions. Here, the first term 1E  adds a positive 
penalty if the solution does not satisfy the initial setup 
constraints (1). In accordance with this constraint, 1E  will 
take the following form. 

2
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1
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j
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=
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The second term 2E  and the third one 3E  add a positive 
penalty if the solution does not satisfy the row constraints (2) 
and column constraints (3). They can be defined as 
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Considering the inequality constraints (5) of the completion 
time, penalty function is adopted to formulate the fourth term 

4E . It may be written as 

4
1 0

( ( ) )
N N

j ij ij i j
j i

E p VX s VC VCν
= =

= + + −∑ ∑                             (13) 

where ν  represents the penalty function (Watta, P.B. and 
Hassoun, M.H., 1996).  
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Noticed that {0,1}ijVX ∈ . These binary constraints will be 
captured by the fifth term and it may be written as follows. 

1
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Correspondingly, the global energy function for this network 
consisting of the objective function jC∑  and these 
constraints of IPMSP can be defined as: 

5
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N
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3.2  The Dynamics 

By setting each connection weight the same as the Hopfield 
neural network, the equations describing the network 
dynamics of CTCNN for the IPMSP are obtained as follows. 
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where 
1     
0    ij

i j
i j

δ
=⎧
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                                                         (19) 

and ν ′  is the derivative of the penalty function ν . 

2   0
( )

0    0
ξ ξ

ν ξ
ξ
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Since the computation is performed in all neurons at the same 
time, the CTCNN operates in a fully parallel mode, which 
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consists of two sub networks, that is real valued neural 
networks and binary valued neural networks. 

The states of real valued neurons and binary valued neurons 
are updated as follows. 

0( 1) ( ) ( ) ( )( ( ) )total
j j j

j

E
UC t kUC t z t VC t I

VC
α

∂
+ = + − − −

∂
       (21) 

0( 1) ( ) ( ) ( )( ( ) )total
ij ij ij

ij

E
UX t kUX t z t VX t I

VX
α

∂
+ = + − − −

∂
      (22) 

( ) ( ) ( )1 1z t z tβ+ = −                                                           (23) 

where the variable ( )z t  is assumed to be common to all 
neurons. 

Neuron outputs are calculated by ( )V f U= , where ( )f ⋅  is 
the activation function, U  is the input and V  is the output of 
the neuron. Each type of neurons has its own activation 
function. Real valued neurons’ activation functions is a 
piecewise linear function (see Equation (24)). Binary valued 
neurons outputs are calculated by a log-sigmoid function. 

       0

0           otherwise
j j
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                                                  (24) 
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3.3  Time-Varying Penalty Coefficients 

The energy function for this network is constructed by using 
the well known “penalty methods,” which convert a 
constrained problem to an unconstrained one by having 
penalty terms on constraint violations. The unconstrained 
problem is then solved by the neural networks as mentioned 
above. To obtain a solution without having coefficients tend 
to infinity, a tradeoff between solution optimality and 
constraint satisfaction has to be made through the fine turning 
of algorithm parameter.  

The general form of energy function includes different penalty 
parameters for each constraint. The choice of initial values of 
penalty parameters is a problem, since they usually have a 
major effect on the overall optimization accuracy and 
efficiency. If these parameters are chosen to be too small, the 
obtained final result may be inexact or even absolutely 
incorrect, because of the major constraint violations. On the 
other hand, large values of the penalty parameters ensure a 
near satisfaction of all constraints, but may create a 
computationally and very poorly-conditioned (strongly 
nonlinear) energy function, and, consequently, a set of stiff 
differential equations, if the initial point is far away from the 
desired solution. Because there is no theoretically established 
method for choosing the values of the penalty coefficients for 
an arbitrary optimization problem, the appropriate values for 
these coefficients can be determined by empirically running 
simulations and observing the optimality and/or feasibility of 
the resulting equilibrium points of the system (Watta, P.B. and 
Hassoun, M.H., 1996). Recently, time based penalty 
parameters are proposed to overcome the tradeoff. In order to 
determining the appropriate values of the penalty parameters, 

Wang used monotonically time-varying penalty parameters 
for solving convex programming problems (Wang, J., 1991). 
Akyol and Bayhan proposed to use time varying penalty 
parameters increased in a linear fashion in a stepwise manner 
to reduce the feasible region (Akyol, D.E. and Bayhan, G., 
2006). In this paper, we make penalty parameters time 
variables, starting with small values and continuously 
increasing them when their corresponding constraints are not 
satisfied during the optimization process. Firstly, we try to 
satisfy the inequality constraints by penalizing them and run 
the simulations without considering any other constrains. 
Secondly, row and column constraints besides binary 
constraints are taken into consideration and corresponding 
penalty parameter will be adjusted until all of them are 
satisfied. Finally, the penalty parameter of the objective 
function is set to 1 and corresponding penalty parameter will 
be adjusted until all the constraints are satisfied. 

3.4  Pseudo-Code of  CTCNN Algorithm 

In the following, the pseudo-code of CTCNN algorithm is 
described in detail. 

Step 1 Generate the initial neuron states randomly. 

Step 2 Determinate network parameters 0,  ,  ,  ,  ,  (0)k I zα β ε . 

Step 3 Set B1=B2=B3=B5=0 and B4=1 (the coefficient of the 
inequality constraint). If the constraint associated with 
parameter B4 is satisfied, go to Step 4, otherwise increase the 
value of B4 and then go to Step 6. 

Step 4 Select parameters B2, B3 and B5 (higher values than 
B4) and use the predetermined value of B4 to check whether 
both of the constraints associated with these parameters are 
satisfied. If yes, go to Step 5, otherwise increase the value of 
parameter whose associated constraint is not satisfied and then 
go to Step 6. 

Step 5 Set A=1, select parameter B1 (a higher value than B2 
to increase the effect of the initial setup constraint) and use 
the predetermined values of B2, B3 and B4 to check whether 
all the constraints associated with these parameters are 
satisfied. If yes, go to Step 6, otherwise increase the value of 
parameter whose associated constraint is not satisfied and then 
go to Step 6. 

Step 6 Update all the neurons using equations (21) to (25) and 
repeat a number of times. If A=B1=B2=B3=B5=0, go to Step 
3. If A=B1=0, go to Step 4. If A=1, increase the value of 
parameter whose associated constraint is not satisfied.  

Step 7 If the end condition is not satisfied, go to Step 6, 
otherwise stop the evolution and check the feasibility and 
optimality of the final solution. 

4. SIMULATION ANALYSIS 

In this section, the CTCNN approach has been applied to 
identical parallel machine scheduling problems. The program 
for the IPMSP was coded in Matlab software and 
implemented on a personal computer equipped with Intel 
Pentium IV 3.07GHz microprocessor and 512M RAM. To 
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evaluate the performance of CTCNN approach, computational 
experiments were performed on randomly generated test 
problems. For the experiments, different size problems were 
generated. The processing time jp  of job j  was generated 
from the uniform distribution [1,10] . After the processing 
time were generated, the setup time ijs  were set to 

min( , )i ja p p× , where a  is a coefficient randomly generated 
in [ , ]A B , where [ , ] {[0.01,0.1],[0.1,0.2],[0.2,0.5]}A B ∈  
(Nessah, R. et al., 2007). Considering the solution quality 
depending highly on initial conditions, all the solutions were 
obtained by simulations with 100 random initial conditions. 
Problems with 10, 20, 30 jobs were generated with 2 and 3 
machines.  

CTCNN parameters for different size problems were 
determined by trial and error as shown in Table 1. Parameter 
α  affects the energy function to generate transient chaos. 
Parameter β  governs the bifurcation speed of the transient 
chaos.  

Table 1 CTCNN parameters for different size problems 

n k  α  β  0I  ε  (0)z

10 0.997 0.008 0.001 0.65 0.008 0.08

20 0.997 0.010 0.001 0.65 0.008 0.08
30 0.998 0.015 0.0008 0.65 0.008 0.1 

In Appendix A, the results were compared with those of 
Hopfield-like dynamic neural network (HDNN) proposed in 
(Akyol, D.E. and Bayhan, G., 2006) in terms of the best result, 
average of results, the worst one and Percent Feasibility of the 
Solutions (PFS). The results show that along with the increase 
of the test problem size, the percent feasibility of solutions 
decreased and the network were trapped into local minima 
more easily. Compared to HDNN, CTCNN model can find 
better solutions; sometimes even the average of results 
outperformed the best one obtained by HDNN, which has 
been denoted in bold. 

We had to rely upon time varying penalty parameters, while 
there is no systematic guidance available as to what values of 
the parameters ought to be. However, in the experiments, an 
appropriate parameter set of that could lead to a good solution 
was obtained within a few runs, each of which used random 
initial state. It was also noticed that when values were too 
large, the network could not achieve the steady state. Figure 2 
shows the Gantt charts of the best solutions for 6 test 
problems whose [ , ] [0.1,0.2]A B = . 

 

 

 

 

 

 

Fig. 2. Gantt charts of the best solutions for 6 problems 
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5.  CONCLUSIONS 

A Coupled Transiently Chaotic Neural Network computation 
scheme that employs time-varying penalty coefficients have 
been introduced to solve identical parallel machines 
scheduling problems with sequence dependent setup times. 
Simulation experiments show that tradeoff problem existing 
among the penalty terms included in the energy function is 
overcome by using time-varying penalty parameters and the 
proposed network generates feasible solutions. After running 
simulations with time evolving penalty coefficients, near 
optimal and optimal solutions can be found in reasonable and 
finite time. 

In this paper, we just construct the network model for the 
basic identical parallel machines scheduling problem. Other 
models with ready time, job splitting etc. can be further 
research directions. Besides, more effective architecture of the 
neural network, selection of penalty parameters and 
construction of energy function also may be research topics. 

ACKNOWLEDGEMENT 

This work is supported by National Natural Science 
Foundation of China (Grant No. 60674075 and No. 
60774078), the Key Technologies Program of Shanghai 
Educational Committee (Grant No. 05ZZ73) and Shanghai 
Leading Academic Discipline Project (Project No. 13504). 

REFERENCES 

Akyol, D.E. and Bayhan, G. (2006). Minimizing Makespan on 
Identical Parallel Machines Using Neural Networks. In: 
Proc. ICONIP, Part III, 553-562. 

Allahverdi, A. et al. (2006). A survey of scheduling problems 
with setup times or costs. European Journal of 
Operational Research. doi:10.1016/j.ejor.2006.06.060. 

Chen, L. and Aihara, K. (1995). Chaotic Simulated Annealing 
by A Neural Network Model with Transient Chaos. 
Neural Networks, 8, 915-930. 

Hopfield, J.J. and Tank, D.W. (1985). Neural Computation of 
Decisions in Optimization Problems, Biological 
Cybernetics, 55, 141-152. 

Mokotoff, E. (2001). Parallel Machine Scheduling Problems: 
A Survey. Asia-Pacific Journal of Operational Research, 
18, 193-242. 

Nessah, R. et al. (2007). An exact method for 

1
/ , / n

i ii
Pm sds r C

=∑  problem. Computers & Operations 
Research, 34, 2840-2848. 

Watta, P.B. and Hassoun, M.H. (1996). A Coupled Gradient 
Network Approach for Static and Temporal Mixed-
Integer Optimization. IEEE Transactions on Neural 
Networks, 7, 78-593. 

Wang, J. (1991). A Time-Varying Recurrent Neural System 
for Convex Programming. In: Proceedings of IJCNN-91-
Seattle International Joint Conference on Neural 
Networks, 147-152. 

Appendix A. Computation results for test problems 

 CTCNN HDNN 
n m [A,B] Best/Avg./Worst PFS(%) Best /Avg. /Worst PFS(%)

[0.01,0.1] 87.27/88.33/89.77 100 88.42/89.56/90.01 96 
[0. 1,0.2] 118.64/118.89/119.36 100 119.01/119.73/120.47 93 2 
[0. 2,0.5] 147.35/148.78/150.45 100 149.06/149.51/151.13 92 
[0.01,0.1] 63.19/65.60/67.01 100 64.55/67.02/68.45 91 
[0. 1,0.2] 86.54/87.79/88.60 100 87.24/89.92/91.99 95 

10 

3 
[0. 2,0.5] 107.05/108.48/109.18 100 107.62/109.34/110.47 90 
[0.01,0.1] 668.3/688.87/695.5 100 678.91/694.37/706.51 88 
[0. 1,0.2] 561.41/568.59/572.69 98 564.05/570.98/576.76 85 2 
[0. 2,0.5] 668.01/679.85/688.55 97 676.72/682.14/692.19 86 
[0.01,0.1] 462.92/473.15/484.85 98 472.2/482.56/492.44 82 
[0. 1,0.2] 393.22/407.11/412.18 96 400.96/413.39/422.22 85 

20 

3 
[0. 2,0.5] 473.04/484.04/498.53 95 475.26/488.73/493.67 87 
[0.01,0.1] 1201.7/1248.9/1279.3 92 1220.5/1236.4/1283.2 83 
[0. 1,0.2] 1119.2/1130.5/1137.1 100 1130.6/1138.2/1210.1 77 2 
[0. 2,0.5] 1413/1432.3/1445.8 93 1434.8/1437.2/1451.3 84 
[0.01,0.1] 848.24/881.23/931.22 89 856.4/883.09/934.55 76 
[0. 1,0.2] 781.35/805.8/823.07 95 790.49/813.54/828.92 75 

30 

3 
[0. 2,0.5] 985.99/1001.1/1103.8 88 1006/1015.4/1043.2 72 
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