
A Coupled Transiently Chaotic Neural Network Approach for Scheduling
Identical Parallel Machines with Sequence Dependent Setup Times

Aiqing Yu*. Xingsheng Gu**

Bin Jiao***

* Research Institute of Automation, East China University of Science and Technology
Shanghai, China (e-mail: yuaiqing@ mail.ecust.edu.cn)

** Research Institute of Automation, East China University of Science and Technology
Shanghai, China (e-mail: xsgu@ ecust.edu.cn)

*** Shanghai Dianji University, Shanghai, China (e-mail: binjiaocn@ 163.com)

Abstract: Identical parallel machine scheduling problems with sequence dependent setup times, to
minimize the total completion time are studied in this paper. A mixed-integer programming formulation of
this problem is presented. And a neural computation architecture based on a Coupled Transiently Chaotic
Neural Network is introduced to construct the model. The transiently chaotic dynamics are defined after
the energy function is constructed by a penalty function approach. Tradeoff problem existing among the
penalty terms included in the energy function is overcome by using time-varying penalty parameters.
Simulation results tested on different problems with 100 random initial conditions show that this approach
converges to near-optimal or optimal solutions and outperforms the Hopfield neural networks.

1. INTRODUCTION

The study of parallel machine problems is relevant from both
the theoretical and the practical points of view. From the
practical point of view, it is important because we can find
many examples of the use of parallel machines in the real
world. From the theoretical point of view, it is a
generalization of the single machine problem and a particular
case of problems arising in flexible manufacturing systems.
At present, the vast majority of papers are concentrated on
identical parallel machine scheduling problem (IPMSP)
(Allahverdi, A. et al., 2006). IPMSP is one of the typical NP-
hard combinatorial optimization problems, which is described
as follows: scheduling N jobs on M identical machines in
parallel to optimize the objectives such as makespan, the total
completion time, the sum of weighted tardiness and so on
(Mokotoff, E., 2001). The problem considered here is to
schedule jobs on identical parallel machines with sequence
dependent setup times to minimize the total completion time
(| |sd iP ST C∑).

Over the last decade, Neural Networks (NNs) have been
proposed in the existing literature as an approach to solve a
wide variety of combinatorial optimization problems.
Successful applications of NNs to various classification
problems have caused growing research interest in neural
networks. In particular, Hopfield neural networks have
provided acceptable solutions to optimization problems such
as linear programming and TSP (Hopfield, J.J. and Tank,
D.W., 1985). However, not much progress has been made for
the exploration of the use of NNs in solving multi-machines
scheduling problems, especially the parallel machine
scheduling. One of the difficulties is that the objective
function can not be expressed in neural network energy
function. Another important one is that there is no

theoretically established method for choosing the values of the
penalty coefficients. Attempts to resolve these difficulties
have involved new networks. To the best of our knowledge,
Akyol and Bayhan should be the first to propose a Hopfield
type dynamical gradient neural network for solving the
identical parallel machine scheduling problem(Akyol, D.E.
and Bayhan, G., 2006). The majority of the existing studies
are based on Hopfield network or its extensions. The
difficulty encountered with optimizing networks based on the
Hopfield-Tank model is their tendency to settle into local
minima. Chen and Aihara proposed a transiently chaotic
neural network (TCNN) as an approximation method for TSP,
by introducing transiently chaotic dynamics into neural
networks (Chen, L. and Aihara, K., 1995). Unlike
conventional neural networks only with point attractors,
TCNN has richer and more flexible dynamics, so that it can be
expected to have higher ability of searching for globally
optimal or near-optimal solutions.

Motivated by the recent developments, a Coupled Transiently
Chaotic Neural Network (CTCNN) is presented as an
innovative, alternative approach for solving IPMSP in this
paper. This study is to apply a new neural network energy
function in solving this problem. In order to design an analog
neural network for a specified optimization problem, we
construct a suitable computational energy function whose
minimization leads to a system of differential equations
sometimes called equations of motion. The formulation of the
equations of motions is the central issue in the design of an
optimizing neural network. In this paper we concentrate on
the architecture of CTCNN model for IPMSP to minimize the
total completion time. The major distinction of our approach
is that it utilizes CTCNN to tackle with this problem including
sequence dependent setup times and the objective function is
denoted by penalty function.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 14882 10.3182/20080706-5-KR-1001.2146

The remainder of this paper is organized as follows. In the
next section, a mixed-integer programming model for
identical parallel machine scheduling problem is given. In
Section 3, a neural computation architecture based on
CTCNN is introduced to describe this problem and a penalty
function approach is employed to construct a new energy
function of the network. An improved approach for adjusting
the penalty parameters is proposed to overcome the tradeoff
problem. In Section 4, the computational results tested on
different scale problems of 100 different initial conditions are
analyzed to investigate efficiency of the model. Finally, we
give some conclusions and the future research directions.

2. PROBLEM FORMULATION

A mixed-integer programming formulation for the
| |sd iP ST C∑ problem is presented in this section.

2.1 Assumptions

Let N be the number of jobs to be scheduled at time zero and
M be the number of identical machines in parallel where
N M≥ . We assume that machines are initially setup for
nominal job 0 and must finish setup for a tear down job 1N + .
These jobs are the place-holder jobs, which indicate the initial
machine setup and required ending state. Other assumptions
are described as follows.

(i) Each job has only one operation and can be processed on
any machine but it must be processed without preemption.

(ii) Each machine can process at most one job at a time.

(iii) All jobs are available for machine processing
simultaneously at time zero.

(iv) Each job requires processing time units and setup time
before processed.

2.2 Notations

For convenience, the notations and decision variables that are
used in the remainder of this paper are defined as follows.

jp = the processing time of job j on identical machines,
1, ,j N=

ijs = the sequence-dependent setup time between job i and
job j , , {1, , }i j N∈

1ijX = if job i is scheduled immediately before job j , else
0ijX = , 0,1, , ,i N= 1, 2, , , 1j N N= +

jC = the completion time of job j , 1, ,j N=

2.3 Mixed-Inter Programming Model

The IPMSP with sequence dependent setup times (denoted by
Π) can be formulated as a mixed-integer program as follows.

()Π Minimize
1

N

j
j

C
=

∑

s.t. 0
1

N

j
j

X M
=

=∑ (1)

1

1
1

N

ij
j

X
+

=

=∑ , 1, ,i N= (2)

0
1

N

ij
i

X
=

=∑ , 1, ,j N= (3)

0 0C = (4)

0
()

N

j j ij ij i
i

C p X s C
=

≥ + +∑ , 1, ,j N= (5)

0jC ≥ 0,1, , ,j N= (6)
{0,1}ijX ∈ 0,1, , ,i N= 1, 2, , , 1j N N= + (7)

0ijX = i j= (8)

The objective function seeks to minimize the total completion
time over all jobs. Constraint (1) ensures that exactly M
machines can be scheduled. Constraint sets (2) and (3) ensure
that each job is scheduled on one and only one machine.
Constraint (4) defines the completion time of the non-existent
job 0 so that the recursive constraint sets (5) can be used to
find completion times of the jobs. Constraint sets (5) also
ensure that jobs only begin processing after both the previous
job and the required setup have been completed. Constraint
sets (6), (7) and (8) provide limits on the decision variables.
This model has 2(1)N + zero-one variables and N real-
valued variables.

3. A CTCNN MODEL FOR IPMSP

In this section, a neural computation architecture based on
CTCNN model is introduced to define its corresponding
quadratic energy function. An improved approach for
adjusting the penalty parameters is proposed to overcome the
tradeoff problems.

3.1 The Energy Function for IPMSP

Solving an optimization problem with constraints satisfaction
requires selecting an appropriate representation of the
problem, and choosing the appropriate weights for the
connections and input biases. In our approach, the familiar
matrix representation of neurons for solving the TSP is used.
A solution of IPMSP is represented by a matrix of neurons
with 1N + rows and 1N + columns, where N is the number
of jobs. Assume ijVX to be the neuron output which
represents whether job i precedes job j on the same
machine or not. Figure 1 shows a feasible solution to an
example of identical parallel machine scheduling with 2
machines and 5 jobs and its transformation process from the
matrix output (solution) to the Gantt chart. Job 0 and Job 6
represent the start and the end of all processing jobs
respectively. The solution in Figure 1 is represented by a set
of cost function trees (Fig. 1(b)) encoded in the matrix (Fig. 1
(a)). Each node in the set of trees represents a job and each
link represents the interdependency between jobs. The total

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14883

completion time of all jobs can be computed by traversing the
paths from Job 0 to Job 6.

In the presented CTCNN, we adopt two types of neurons: one
type of neurons to represent real valued variables jC and the
other type to represent binary valued variables ijX . The inputs
and outputs to these two types neurons are denoted by iUC ,

iVC and ijUX , ijVX , respectively.

(a) matrix representation (b) cost function trees

(c) Gantt chart

Fig. 1. An example 5-job 2-machine problem

A neural network energy function for combinatorial
optimization is usually of the form:

A (cost) B (violation of constraint)iE i= ⋅ + ⋅∑ (9)

in which penalty weights A and B 0i > , and cost is the
objective function value that is to be optimized and
independent of constraint violations. By minimizing the
energy function E , we attempt to minimize the original
objective function, while simultaneously maximizing the
satisfaction of the constraints. The successful use of such an
energy function requires an appropriate selection of values for
parameters A and Bi .

According to the assumptions and notations presented in
Section 2, the energy function in this case will include five
constraint functions. Here, the first term 1E adds a positive
penalty if the solution does not satisfy the initial setup
constraints (1). In accordance with this constraint, 1E will
take the following form.

2
1 0

1
()

N

j
j

E VX M
=

= −∑ (10)

The second term 2E and the third one 3E add a positive
penalty if the solution does not satisfy the row constraints (2)
and column constraints (3). They can be defined as

1
2

2
1 1

(1)
N N

ij
i j

E VX
+

= =

= −∑ ∑ (11)

2
3

1 0
(1)

N N

ij
j i

E VX
= =

= −∑ ∑ (12)

Considering the inequality constraints (5) of the completion
time, penalty function is adopted to formulate the fourth term

4E . It may be written as

4
1 0

(())
N N

j ij ij i j
j i

E p VX s VC VCν
= =

= + + −∑ ∑ (13)

where ν represents the penalty function (Watta, P.B. and
Hassoun, M.H., 1996).

2 0
()

0 0
ξ ξ

ν ξ
ξ

⎧ >
= ⎨

≤⎩
 (14)

Noticed that {0,1}ijVX ∈ . These binary constraints will be
captured by the fifth term and it may be written as follows.

1

5
0 1

(1)
N N

ij ij
i j

E VX VX
+

= =

= −∑∑ (15)

Correspondingly, the global energy function for this network
consisting of the objective function jC∑ and these
constraints of IPMSP can be defined as:

5

1 1
A B

N

total j i i
j i

E VC E
= =

= ⋅ + ⋅∑ ∑ (16)

3.2 The Dynamics

By setting each connection weight the same as the Hopfield
neural network, the equations describing the network
dynamics of CTCNN for the IPMSP are obtained as follows.

0
4

1 0

(1) (())
A B

(())

N

j ij ij i j
itotal

N N
j

ji i li li l i
i l

p VX s VC VC
E
VC

VX p VX s VC VC

ν

ν

=

= =

⎡ ⎤′− ⋅ + + −⎢ ⎥∂ ⎢ ⎥= + ⋅
⎢ ⎥∂ ′+ ⋅ + + −⎢ ⎥
⎣ ⎦

∑

∑ ∑

 (17)

1 0 0 (1)
1

1

2 0 3 (1)
1 0

4 (1)
0

5

B 2 () (1-)

 +B 2 (1) (1-)+B 2 (1) (1-)

 +B () (()) (1-)

 B (1 2)

N
total

l i j N
lij

N N

il i lj j N
l l

N

ij i j lj lj l j j N
l

ij

E
VX M

VX

VX VX

s VC p VX s VC VC

VX

δ δ

δ δ

ν δ

+
=

+

+
= =

+
=

∂
= ⋅ ⋅ − ⋅ ⋅

∂

⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅

′⋅ + ⋅ + + − ⋅

+ ⋅ − ⋅

∑

∑ ∑

∑

(18)

where
1
0 ij

i j
i j

δ
=⎧

= ⎨ ≠⎩
 (19)

and ν ′ is the derivative of the penalty function ν .

2 0
()

0 0
ξ ξ

ν ξ
ξ

>⎧′ = ⎨ ≤⎩
 (20)

Since the computation is performed in all neurons at the same
time, the CTCNN operates in a fully parallel mode, which

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14884

consists of two sub networks, that is real valued neural
networks and binary valued neural networks.

The states of real valued neurons and binary valued neurons
are updated as follows.

0(1) () () ()(())total
j j j

j

E
UC t kUC t z t VC t I

VC
α

∂
+ = + − − −

∂
 (21)

0(1) () () ()(())total
ij ij ij

ij

E
UX t kUX t z t VX t I

VX
α

∂
+ = + − − −

∂
 (22)

() () ()1 1z t z tβ+ = − (23)

where the variable ()z t is assumed to be common to all
neurons.

Neuron outputs are calculated by ()V f U= , where ()f ⋅ is
the activation function, U is the input and V is the output of
the neuron. Each type of neurons has its own activation
function. Real valued neurons’ activation functions is a
piecewise linear function (see Equation (24)). Binary valued
neurons outputs are calculated by a log-sigmoid function.

 0

0 otherwise
j j

j

UC UC
VC

≥⎧⎪= ⎨
⎪⎩

 (24)

() ()
1

1 ij
ij UX t

VX t
e ε−

=
+

 (25)

3.3 Time-Varying Penalty Coefficients

The energy function for this network is constructed by using
the well known “penalty methods,” which convert a
constrained problem to an unconstrained one by having
penalty terms on constraint violations. The unconstrained
problem is then solved by the neural networks as mentioned
above. To obtain a solution without having coefficients tend
to infinity, a tradeoff between solution optimality and
constraint satisfaction has to be made through the fine turning
of algorithm parameter.

The general form of energy function includes different penalty
parameters for each constraint. The choice of initial values of
penalty parameters is a problem, since they usually have a
major effect on the overall optimization accuracy and
efficiency. If these parameters are chosen to be too small, the
obtained final result may be inexact or even absolutely
incorrect, because of the major constraint violations. On the
other hand, large values of the penalty parameters ensure a
near satisfaction of all constraints, but may create a
computationally and very poorly-conditioned (strongly
nonlinear) energy function, and, consequently, a set of stiff
differential equations, if the initial point is far away from the
desired solution. Because there is no theoretically established
method for choosing the values of the penalty coefficients for
an arbitrary optimization problem, the appropriate values for
these coefficients can be determined by empirically running
simulations and observing the optimality and/or feasibility of
the resulting equilibrium points of the system (Watta, P.B. and
Hassoun, M.H., 1996). Recently, time based penalty
parameters are proposed to overcome the tradeoff. In order to
determining the appropriate values of the penalty parameters,

Wang used monotonically time-varying penalty parameters
for solving convex programming problems (Wang, J., 1991).
Akyol and Bayhan proposed to use time varying penalty
parameters increased in a linear fashion in a stepwise manner
to reduce the feasible region (Akyol, D.E. and Bayhan, G.,
2006). In this paper, we make penalty parameters time
variables, starting with small values and continuously
increasing them when their corresponding constraints are not
satisfied during the optimization process. Firstly, we try to
satisfy the inequality constraints by penalizing them and run
the simulations without considering any other constrains.
Secondly, row and column constraints besides binary
constraints are taken into consideration and corresponding
penalty parameter will be adjusted until all of them are
satisfied. Finally, the penalty parameter of the objective
function is set to 1 and corresponding penalty parameter will
be adjusted until all the constraints are satisfied.

3.4 Pseudo-Code of CTCNN Algorithm

In the following, the pseudo-code of CTCNN algorithm is
described in detail.

Step 1 Generate the initial neuron states randomly.

Step 2 Determinate network parameters 0, , , , , (0)k I zα β ε .

Step 3 Set B1=B2=B3=B5=0 and B4=1 (the coefficient of the
inequality constraint). If the constraint associated with
parameter B4 is satisfied, go to Step 4, otherwise increase the
value of B4 and then go to Step 6.

Step 4 Select parameters B2, B3 and B5 (higher values than
B4) and use the predetermined value of B4 to check whether
both of the constraints associated with these parameters are
satisfied. If yes, go to Step 5, otherwise increase the value of
parameter whose associated constraint is not satisfied and then
go to Step 6.

Step 5 Set A=1, select parameter B1 (a higher value than B2
to increase the effect of the initial setup constraint) and use
the predetermined values of B2, B3 and B4 to check whether
all the constraints associated with these parameters are
satisfied. If yes, go to Step 6, otherwise increase the value of
parameter whose associated constraint is not satisfied and then
go to Step 6.

Step 6 Update all the neurons using equations (21) to (25) and
repeat a number of times. If A=B1=B2=B3=B5=0, go to Step
3. If A=B1=0, go to Step 4. If A=1, increase the value of
parameter whose associated constraint is not satisfied.

Step 7 If the end condition is not satisfied, go to Step 6,
otherwise stop the evolution and check the feasibility and
optimality of the final solution.

4. SIMULATION ANALYSIS

In this section, the CTCNN approach has been applied to
identical parallel machine scheduling problems. The program
for the IPMSP was coded in Matlab software and
implemented on a personal computer equipped with Intel
Pentium IV 3.07GHz microprocessor and 512M RAM. To

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14885

evaluate the performance of CTCNN approach, computational
experiments were performed on randomly generated test
problems. For the experiments, different size problems were
generated. The processing time jp of job j was generated
from the uniform distribution [1,10] . After the processing
time were generated, the setup time ijs were set to

min(,)i ja p p× , where a is a coefficient randomly generated
in [,]A B , where [,] {[0.01,0.1],[0.1,0.2],[0.2,0.5]}A B ∈
(Nessah, R. et al., 2007). Considering the solution quality
depending highly on initial conditions, all the solutions were
obtained by simulations with 100 random initial conditions.
Problems with 10, 20, 30 jobs were generated with 2 and 3
machines.

CTCNN parameters for different size problems were
determined by trial and error as shown in Table 1. Parameter
α affects the energy function to generate transient chaos.
Parameter β governs the bifurcation speed of the transient
chaos.

Table 1 CTCNN parameters for different size problems

n k α β 0I ε (0)z

10 0.997 0.008 0.001 0.65 0.008 0.08

20 0.997 0.010 0.001 0.65 0.008 0.08
30 0.998 0.015 0.0008 0.65 0.008 0.1

In Appendix A, the results were compared with those of
Hopfield-like dynamic neural network (HDNN) proposed in
(Akyol, D.E. and Bayhan, G., 2006) in terms of the best result,
average of results, the worst one and Percent Feasibility of the
Solutions (PFS). The results show that along with the increase
of the test problem size, the percent feasibility of solutions
decreased and the network were trapped into local minima
more easily. Compared to HDNN, CTCNN model can find
better solutions; sometimes even the average of results
outperformed the best one obtained by HDNN, which has
been denoted in bold.

We had to rely upon time varying penalty parameters, while
there is no systematic guidance available as to what values of
the parameters ought to be. However, in the experiments, an
appropriate parameter set of that could lead to a good solution
was obtained within a few runs, each of which used random
initial state. It was also noticed that when values were too
large, the network could not achieve the steady state. Figure 2
shows the Gantt charts of the best solutions for 6 test
problems whose [,] [0.1,0.2]A B = .

Fig. 2. Gantt charts of the best solutions for 6 problems

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14886

5. CONCLUSIONS

A Coupled Transiently Chaotic Neural Network computation
scheme that employs time-varying penalty coefficients have
been introduced to solve identical parallel machines
scheduling problems with sequence dependent setup times.
Simulation experiments show that tradeoff problem existing
among the penalty terms included in the energy function is
overcome by using time-varying penalty parameters and the
proposed network generates feasible solutions. After running
simulations with time evolving penalty coefficients, near
optimal and optimal solutions can be found in reasonable and
finite time.

In this paper, we just construct the network model for the
basic identical parallel machines scheduling problem. Other
models with ready time, job splitting etc. can be further
research directions. Besides, more effective architecture of the
neural network, selection of penalty parameters and
construction of energy function also may be research topics.

ACKNOWLEDGEMENT

This work is supported by National Natural Science
Foundation of China (Grant No. 60674075 and No.
60774078), the Key Technologies Program of Shanghai
Educational Committee (Grant No. 05ZZ73) and Shanghai
Leading Academic Discipline Project (Project No. 13504).

REFERENCES

Akyol, D.E. and Bayhan, G. (2006). Minimizing Makespan on
Identical Parallel Machines Using Neural Networks. In:
Proc. ICONIP, Part III, 553-562.

Allahverdi, A. et al. (2006). A survey of scheduling problems
with setup times or costs. European Journal of
Operational Research. doi:10.1016/j.ejor.2006.06.060.

Chen, L. and Aihara, K. (1995). Chaotic Simulated Annealing
by A Neural Network Model with Transient Chaos.
Neural Networks, 8, 915-930.

Hopfield, J.J. and Tank, D.W. (1985). Neural Computation of
Decisions in Optimization Problems, Biological
Cybernetics, 55, 141-152.

Mokotoff, E. (2001). Parallel Machine Scheduling Problems:
A Survey. Asia-Pacific Journal of Operational Research,
18, 193-242.

Nessah, R. et al. (2007). An exact method for

1
/ , / n

i ii
Pm sds r C

=∑ problem. Computers & Operations
Research, 34, 2840-2848.

Watta, P.B. and Hassoun, M.H. (1996). A Coupled Gradient
Network Approach for Static and Temporal Mixed-
Integer Optimization. IEEE Transactions on Neural
Networks, 7, 78-593.

Wang, J. (1991). A Time-Varying Recurrent Neural System
for Convex Programming. In: Proceedings of IJCNN-91-
Seattle International Joint Conference on Neural
Networks, 147-152.

Appendix A. Computation results for test problems

 CTCNN HDNN
n m [A,B] Best/Avg./Worst PFS(%) Best /Avg. /Worst PFS(%)

[0.01,0.1] 87.27/88.33/89.77 100 88.42/89.56/90.01 96
[0. 1,0.2] 118.64/118.89/119.36 100 119.01/119.73/120.47 93 2
[0. 2,0.5] 147.35/148.78/150.45 100 149.06/149.51/151.13 92
[0.01,0.1] 63.19/65.60/67.01 100 64.55/67.02/68.45 91
[0. 1,0.2] 86.54/87.79/88.60 100 87.24/89.92/91.99 95

10

3
[0. 2,0.5] 107.05/108.48/109.18 100 107.62/109.34/110.47 90
[0.01,0.1] 668.3/688.87/695.5 100 678.91/694.37/706.51 88
[0. 1,0.2] 561.41/568.59/572.69 98 564.05/570.98/576.76 85 2
[0. 2,0.5] 668.01/679.85/688.55 97 676.72/682.14/692.19 86
[0.01,0.1] 462.92/473.15/484.85 98 472.2/482.56/492.44 82
[0. 1,0.2] 393.22/407.11/412.18 96 400.96/413.39/422.22 85

20

3
[0. 2,0.5] 473.04/484.04/498.53 95 475.26/488.73/493.67 87
[0.01,0.1] 1201.7/1248.9/1279.3 92 1220.5/1236.4/1283.2 83
[0. 1,0.2] 1119.2/1130.5/1137.1 100 1130.6/1138.2/1210.1 77 2
[0. 2,0.5] 1413/1432.3/1445.8 93 1434.8/1437.2/1451.3 84
[0.01,0.1] 848.24/881.23/931.22 89 856.4/883.09/934.55 76
[0. 1,0.2] 781.35/805.8/823.07 95 790.49/813.54/828.92 75

30

3
[0. 2,0.5] 985.99/1001.1/1103.8 88 1006/1015.4/1043.2 72

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14887

