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Abstract: In this paper, a Reactive Immune Network (RIN) is proposed and employed for mobile robot 

navigation in unknown environments. Rather than building a detailed mathematical model of artificial 

immune systems, this study tries to explore the principle in an immune network focusing on its self-

organization, adaptive learning capability, and immune feedback. In addition, an adaptive virtual target 

method is integrated to solve the local minima problem in navigation. Several trapping situations are 

adopted to evaluate the performance of the proposed architecture. Experimental results show that the 

mobile robot is capable of avoiding obstacles, escaping traps, and reaching the goal efficiently and 

effectively. 

 

1. INTRODUCTION 

Autonomous mobile robots have a wide range of applications 

in industries, hospitals, offices, and even the military, due to 

their superior mobility. In order to adapt the robot's behaviour 

to any complex, varying and unknown environment, path 

planning of robot behaviour plays an important role. The 

design goal for path planning is to enable a mobile robot to 

navigate safely and efficiently without collisions to a target 

position in an unknown and complex environment. The 

navigation strategies of mobile robots can be generally 

classified into two categories, global path planning and local 

reactive navigation. The later, employing some reactive 

strategies to perceive the environment based on the sensory 

information and path planning, is done online. The robot has 

to acquire a set of stimulus-action mechanisms through its 

sensory inputs, such as distance information from infrared 

sensors, visual information from cameras or processed data 

derived after appropriate fusion of numerous sensor outputs. 

The action taken by the robot is usually an alternation of 

steering angle and/or translation velocity to avoid collisions 

and reach the desired target. 

Reactive behavior-based mobile robot responds to stimuli 

from the dynamic environment, and its behaviors are guided 

by local states of the world. Some researches demonstrated 

its robustness and flexibility against an unstructured world 

(Chang, 1996). However, a well-known drawback of reactive 

navigation is that the mobile robot suffers from local minima 

problems in that it uses only locally available environmental 

information without any previous memory. In other words, a 

robot may get trapped in front of an obstacle or wander 

indefinitely in a region whenever it navigates past obstacles 

toward a target position. Several trap escape algorithms, 

including the random walk method (Baraquand, and Latombe, 

1990), the multi-potential field method (Chang, 1996), the 

tangent algorithm (Lee et al., 1997), the wall-

following method (Borenstein, and Koren,1989), the virtual 

obstacle scheme (Park and Lee, 2003), and the virtual target 

approach (Xu, 2000), have been proposed to solve the local 

minima problems. 

 In the last decade, it has been shown that the biologically 

inspired artificial immune system (AIS) has a great potential 

in the fields of machine learning, computer science and 

engineering (de Castro and Jonathan, 1999). Immunized 

systems consisting of agents (immune-related cells) may 

have adaptation and learning capabilities similar to artificial 

neural networks, except that they are based on dynamic 

cooperation of agents (Ishida, 1997). Accordingly, the 

artificial immune system can be expected to provide various 

feasible ideas for the navigation of mobile robots. Ishiguro et 

al. (1995) proposed a two-layer (situation-oriented and goal-

oriented) immune network to behaviour control of 

autonomous mobile robots. Simulation results show that 

mobile robot can reach goal without colliding fixed or 

moving obstacles. Later, Lee et al. (2000) constructed 

obstacle-avoidance and goal-approach immune networks for 

the same purpose. Additionally, it shows the advantage of not 

falling into a local loop. Afterward, Vargas et al. (2003) 

developed an Immuno-Genetic Network for autonomous 

navigation. Some preliminary experiment on a real Khepera 

II robot demonstrated the feasibility of the network. Recently, 

Duan et al. (2004) proposed an immune algorithm for path 

planning of a car-like wheeled mobile robot. Simulations 

indicate that the algorithm can finish different tasks within 

shorter time. It should be noted that, however, all of the 

above researches did not consider solving the local minima 

problems. 

2. HOW BIOLOGICAL IMMUNE SYSTEM WORKS 

The immune system protects living organisms from foreign 

substances such as viruses, bacteria, and other parasites 

(called antigens). The body identifies invading antigens 

through two inter-related systems: the innate immune system 

and the adaptive immune system. The former is mediated 

mainly by phagocytes while the latter is mediated by 

lymphocytes. The adaptive immune system uses lymphocytes 

that can quickly change in order to destroy antigens that have 
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entered the bloodstream. Lymphocytes are responsible for the 

recognition and elimination of the antigens. They usually 

become active when there is some kind of interaction with an 

antigenic stimulus leading to the activation and proliferation 

of the lymphocytes. Two main types of lymphocytes, namely 

B-cells and T-cells, play a remarkable role in both 

immunities (Roitt et al., 1998). Both B-cell and T-cell express 

in their surfaces antigenic receptors highly specific to a given 

antigenic determinant. B-cells take part in the humoral 

immunity and secrete antibodies by the clonal proliferation 

while the latter takes part in cell-mediated immunity. 

The immune system produces the diverse antibodies by 

recognizing the idiotype of the mutual receptors of the 

antigens between antigen and antibodies and between 

antibodies. The relation between antigens and antibodies and 

that amongst antibodies can be evaluated by the value of the 

affinity. In terms of affinities, the immune system self-

regulates the production of antibodies and diverse antibodies. 

Affinity maturation occurs when the maturation rate of a B-

cell clone increases in response to a match between the 

clone’s antibody and an antigen. Those mutant cells are 

bound more tightly and stimulated to divide more rapidly.  

Jerne (1973) has proposed the idiotypic network hypothesis 

(immune network hypothesis) based on mutual stimulation 

and suppression between antibodies. This hypothesis is 

modeled as a differential equation simulating the 

concentration of a set of lymphocytes. The concept of an 

immune network states that the network dynamically 

maintains the memory using feedback mechanisms within the 

network. The various species of lymphocytes are not isolated 

but communicate with each other through the interaction 

antibodies. Based on his speculation, several theories and 

mathematical models have been proposed. In this study, the 

dynamic equation proposed by Farmer et al. (1986) is 

employed as a reactive immune network to calculate the 

variation on the concentration of antibodies, as shown in the 

following equations: 
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where i, ℓ, k = 0, 1,…, NAb are the subscripts to distinguish 

the antibody types and NAb is the number of antibodies. Ai and 

ai are the stimulus and concentration of the ith antibody. st

ijm , 

su

kim  indicate the stimulative and suppressive affinity between 

the ith and the jth, kth antibodies, respectively. mi denotes the 

affinity of antigen and antibody i, and ki  represents the 

natural death coefficient. Equation (1) is composed of four 

terms. The first term shows the stimulation, while the second 

term depicts the suppressive interaction between the 

antibodies. The third term is the stimulus from the antigen, 

and the final term is the natural extinction term, which 

indicates the dissipation tendency in the absence of any 

interaction. Equation (2) is a squashing function to ensure the 

stability of the concentration. 

3. REACTIVE IMMUNE NETWORK 

A reactive immune network inspired by the biological 

immune system for robot navigation (goal-reaching and 

obstacle-avoidance) is described in this section. It implies 

using a combination of both the prior behavior-based 

information and an on-line adaptation mechanism based on 

the features of the immune system. The architecture of the 

proposed navigation system is depicted in Fig. 1. The 

antigen’s epitope is a situation detected by sensors and 

provides the information about the relationship between the 

current location and the obstacles, along with the target. The 

interpreter is regarded as a phagocyte and translates sensor 

data into perception. The antigen presentation proceeds from 

the information extraction to the perception translation. A 

paratope with a built-in robot’s steering direction is regarded 

as an antibody and interacts with each other and with its 

environment. These antibodies/steering-directions are 

induced by recognition of the available antigens/detected-

information. In should be noted that only one antibody with 

the highest concentration will be selected to act according to 

the immune network hypothesis. 

 

Fig. 1 The architecture of the immunized network system 

In the proposed immune network, antibodies are defined as 

the steering directions of mobile robots as illustrated in Fig. 2, 
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where NAb is the number of antibodies/steering-directions and 

θi is the steering angle between the moving path and the head 

orientation of the mobile robot. Note that 0º≤ θi ≤360º. In 

addition, the antigen represents the local environment 

surrounding the robot and its epitopes are a fusion data set 

containing the azimuth of the goal position θg, the distance 

between the obstacles and the jth sensor dj, and the azimuth 

of sensor θSj. 
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where Ns is the number of sensors equally spaced around the 

base plate of the mobile robot, dmin ≤ dj ≤ dmax and 0º ≤ θSj 

≤360º. Parameters dmin and dmax represent the nearest and 

longest distances measured by the range sensors, respectively. 

It should be noted that different antigens (local environments) 

might have identical epitopes (fusion information from range 
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sensors). There is no necessary relationship between NAb and 

Ns since they depend on the hardware of mobile robot. 

 

Fig. 2 Configuration of mobile robot, target and obstacles 

The potential-field method is one of the most popular 

approaches employed to navigate the mobile robot within 

environments containing obstacles, since it is conceptually 

effective and easy to implement. The approach considers a 

virtual attractive force between the robot and the target as 

well as virtual repulsive forces between the robot and the 

obstacles. The resultant force on the robot is then used to 

decide the direction of its movements. In the proposed 

immune network, the resultant force on the robot is defined 

as mi, the affinity value between the antigen/local 

environment and the ith antibody/steering angle, 

Abobsgoali NiFwFwm
ii

,,2,1           21 ⋅⋅⋅=+=          (5) 

The weighing values w1 and w2 indicate the ratio between 

attractive and repulsive forces. Note that 0≤w1, w2≤1 and w1+ 

w2=1. The attractive force 
igoalF  of the ith steering direction 

(i.e. the ith antibody) is defined as follows: 
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Note that 
igoalF  is normalized and 10 ≤≤

igoalF . Obviously, 

the attractive force is at its maximal level ( 1=
igoalF ) when 

the mobile robot goes straightforward to the target (i.e. θi 

= θg). On the contrary, it is minimized ( 0=
igoalF ) if the 

robot’s steering direction is the opposite of the goal. 

The repulsive force for each moving direction (the ith 

antibody θi) is expressed as the following equation, 
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Fig. 5 demonstrates the relationship between αij and δij. αij 

indicates the weighting ratio for the jth sensor to steering 

angle θi while 
jd  represents the normalized distance between 

the jth sensor and the obstacles. Coefficient δij expresses 

influence and importance of each sensor at different locations. 

It shows that the information derived from the sensor closest 

to the steering direction is much more important due to its 

biggest δij value. Kubota et al. [44] have proposed a similar 

‘delta rule’ to evaluate the weighting of each sensor. 

 

Fig. 3 Relation between αij and δij 

The normalized obstacle distance for each sensor 
jd  is 

fuzzified using the fuzzy set definitions. The mapping from 

the fuzzy subspace to the TSK model is represented as three 

fuzzy if-then rules in the form of sensor too. 

IF  dj  is  s    THEN   y=L1 

IF  dj  is  m   THEN   y=L2          (8) 

IF  dj  is  d    THEN   y=L3 

where L1, L2, and L3 are defined as 0.25, 0.5 and 1.0, 

respectively. The input variable of each rule is the detected 

distance dj of the jth sensor. The antecedent part of each rule 

has one of the three labels, namely, s (safe), m (medium), and 

d (danger). Consequently, the total output of the fuzzy model 

is given by the equation below, 

)()()(

)()()( 321

ddd

LdLdLd
d

dangermediumsafe

dangermediumsafe

j
µµµ

µµµ

++

⋅+⋅+⋅
=       (9) 

where µsafe(d), µmedium(d), µdanger(d), represent the matching 

degree of the corresponding rule. The inputs to the TSK 

model are crisp numbers; therefore, the degree of the input 

matches its rule is and computed using the “min operator”. 

Fig. 6 illustrates the membership function and labels for 

measured distance dj. 

 

Fig. 4 Membership function 
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As to the stimulative-suppressive interaction between the 

antibodies/steering-directions are derived from equation (1) 

as follows, 
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Obviously, stimulative-suppressive effect is positive 

( 0>ss

im
l

) if -90º < ∆θiℓ < 90º. On the contrary, negative 

stimulative-suppressive effect exists between two antibodies 

if their difference of steering angles are greater than 90° or 

less than -90°. In addition, there is no any net effect between 

orthogonal antibodies (i.e. ∆θiℓ = ±90º). The immune system 

responses to the specified winning situation that has the 

maximum concentration among the antibodies be trigged by 

comparing the currently perceived situations (trigged 

antibodies). In other words, antibody with the highest 

concentration is selected to activate its corresponding 

behavior to the world. Therefore, mobile robot moves a step 

along the direction of the chosen steering angle/antibody. 

4.  LOCAL MINIMUM RECOVERY 

As mentioned in the previous section, one problem inherent 

in the potential-field method is the possibility for the robot to 

get trapped in a local minima situation. Traps can be created 

by a variety of obstacle configurations. The key issue to the 

local minima problems is the detection of the local minima 

situation during the robot’s traversal. In this study, the 

comparison between the robot-to-target direction θg and the 

instantaneous direction of travel θi was utilized to detect if 

the robot got trapped. The robot is very likely to get trapped 

and starts to move away from the goal if the robot’s direction 

of travel is more than 90º off-target (i.e. |θi-θg | > 90º). In this 

study, an adaptive virtual target method is developed and 

integrated with the reactive immune network to guide the 

robot out of the trap. 

In immunology, the T-cell plays a remarkable key role in 

distinguishing a “self” from other “non-self” antigens. The 

Helper-T cells work primarily by secreting substances to 

constitute powerful chemical messengers to promote cellular 

growth, activation and regulation. Simulating the biological 

immune system, this material can either stimulate or suppress 

the promotion of antibodies/steering-directions depending on 

whether the antigen is non-self or self (trapped in local 

minima or not). Different from the virtual target method 

proposed in [10], an additional virtual robot-to-target angle θv 

(analogous to the interleukine secreted by T-cells) is added to 

the goal angle θg whenever the trap condition (i.e. |θi-θg |>90º) 

is satisfied, 

θg(k+1)= θg (k)+ θv (k)         (11) 

with 
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where ∆θg=θg(k)-θg(k-1) and θc(k)=θc(k-1)+λ 

Parameters k-1, k, and k+1 represent the previous state, the 

current state and the future state, respectively. Symbol “±” 

indicates that the location of the virtual target can be 

randomly switched to either the right (i.e. “+”) or the left (i.e. 

“−”) side of the mobile robot so that the robot has a higher 

probability of escaping from the local minima in either 

direction. λ is an adjustable decay angle. The bigger the value 

is, the faster the location of virtual target converges to that of 

the true one and the easier it is for the robot to get trapped in 

the local minima again. In this study, λ is determined after 

multiple simulation runs and set to 0.2. The incremental 

virtual angle θv(k) in the proposed scheme is state dependent 

and self-adjustable according to the robot’s current state and 

the action it took previously. This provides powerful and 

effective trap-escaping capability compared to virtual target 

method, which keeps θv a constant value. θc is a converging 

angle and its initial value is 0. 

For carrying out the necessary simulation and validating the 

efficacy of the proposed methodology, a computer program 

was developed using C++ language with graphical user 

interface. The simulation environment contains a robot and 

obstacle constructed by numerous square blocks 10cm in 

length. The environmental condition adopted in simulation is 

a 300cm×300cm grid. The size of the simulated robot is a 

circle with 10cm diameter. Fig. 5 elucidates and demonstrates 

the performance of the proposed strategy for the robot to 

escape from a recursive U-trap situation, which may make 

the virtual target switching strategy [10] ineffective as 

Chatterjee and Matsuno [12] suggested. 

 

Fig. 5 Robot path and state of the indices along the trajectory 
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The robot first enters a U-shaped obstacle and is attracted to 

the target due to the target’s reaching behavior until it reaches 

the critical point . Clearly, the azimuth of goal θg is kept 

the same during this stage; however, the distance between the 

robot and the target is decreased quickly. The detection of the 

trap possibility because of the abrupt change of target 

orientation at location  (θg) makes the target shift to a 

virtual position A
*
 (θg-∆θg). ∆θg is defined as 45° is this 

study. Note that the switch-to-left or the switch-to-right of the 

virtual target (i.e., minus or plus ∆θg) is selected randomly. 

On the way → , ∆θg is decreased gradually according to 

equation (8) until a new local minimal is found at location . 

Again, the location of virtual target switches from A
*
 to B

*
. 

Fig. 9 and Fig. 10 show that there is a successive virtual 

target switching A
*→B1→B2→B

*
 when the robot moves 

around the left upper corner where it is tracked in a trap (to 

satisfy condition |θi - θg| > 90º) three times. After passing 

through the critical point , the robot keeps approaching the 

virtual target until reaching the third critical point . 

Concurrently, the associated orientation of the virtual target 

is decreased from B
* 
to C. Once more, it takes three times for 

the robot to escape from the trap situation in the left lower 

corner on the path →  (orientation of the virtual target 

C→C1→C2→C
*→D). Similar navigation procedures take 

place on the way →  (orientation of virtual target 

D→D1→D2→D
*→E→E

*
). After escaping from the recursive 

U-shaped trap, the mobile robot revolves in a circle and 

finally reaches target  without any trapping situations 

(azimuth of virtual target θg decreases gradually from E
*
 to T 

illustrated with a dashed line). The derived trajectory 

illustrated in Fig. 9 is quite similar to the results derived by 

Chatterjee and Matsuno [12]. Fig. 6 illustrates the other 

possible trajectory to escape the same trap situation due to the 

random choice of the “plus” or “minus” robot-to-target angle 

∆θg, as shown in equation (8). Obviously, the mechanism for 

virtual target switching to the right or to the left (i.e., ± ∆θg) 

increases the diversity and possibility of the robot’s escaping 

from the local minima problem. 

 

Fig. 6 The other possible escape trajectory 

5. EXPERIMENTAL RESULTS 

Numerous experiments were implemented to evaluate the 

performance in real application. Fig. 7 shows the mobile 

robot (with omni-directional wheel) used. It’s dimension is 

416mm×363.7mm×670mm. The robot installed with 8 

ultrasonic sensors, two web-cams, and a laser range finder. 

Figs.8-11 demonstrate the pictures of the robot navigate in 

two “U” shape obstacles (with different length and width: 

160mm×320mm, and 300mm×100mm) and their 

corresponding trajectories, respectively. All these figures 

show that the mobile robot is capable of navigating to the 

goal and escaping from local minimum traps employing the 

proposed reactive immune network. Note that mobile robot 

can approach target from both sides randomly as described in 

previous section. 

   

Fig. 7 Dimension and pictures of the mobile robot 

 

Fig. 8 Navigation of robot in 160mm×320mm “U” obstacle 

 

Fig. 9 Trajectories of robot in 160mm×320mm “U” obstacle 

 

Fig. 10 Navigation of robot in 300mm×100mm “U” obstacle 
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Fig. 11 Trajectories of robot in 300mm×100mm “U” obstacle 

Figs. 12, 13 illustrate the pictures of the robot navigate in a 

“sequential-U” shape obstacle (400mm×190mm with a 90mm 

bar in middle) and its corresponding trajectory, respectively. 

Apparently, the mobile robot is able to navigate easily 

employing the proposed reactive immune network. 

 

Fig.12 Navigation of robot in “sequential-U” shape obstacle 

 

Fig. 13 Trajectories in “sequential-U” shape obstacle 

5. CONCLUSIONS 

A reactive immune network inspired by the biological 

immune system is proposed for mobile robot navigation. In 

addition, an adaptive virtual target method is integrated to 

solve the local minima problem. Several “U” shape trap 

environments are employed to evaluate the performance of 

the proposed methodology. Experimental results validate the 

flexibility, efficiency and effectiveness of the robot 

navigation architecture, especially the solution of the local 

minima problem. 
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