
Efficient Computation and Model Selection

in Semi-Supervised Learning ⋆

Gang Wang ∗ Shiyin Qin∗∗ and Pipei Huang ∗∗

∗ Department of Computer Science and Engineering, Hong Kong
University of Science and Technology, Hong Kong, China. (e-mail:

wanggang@cse.ust.hk).
∗∗ School of Automation Science and Electrical Engineering, Beihang

University, Beijing, China. (e-mail: qsy@buaa.edu.cn,
huangpipei@gmail.com)

Abstract: Traditional learning algorithm uses only labeled data for training. However, labeled
examples are often difficult or time consuming to obtain since they require substantial labeling
efforts from humans. On the other hand, unlabeled data are often relatively easy to collect.
Semi-supervised learning addresses this problem by using large quantities of unlabeled data
with the labeled data to build better learning algorithms. In this paper, we propose a general
approach augmenting traditional supervised learning into semi-supervised learning paradigm.
A regularization framework which balances a tradeoff between loss and penalty is established.
We investigate different implementations of loss function and suggest the methods which have
the least computation expenses. The value of a hyperparameter, which determines the balance
between loss and penalty, is crucial in model selection. Hence, we derive an algorithm that can
fit the entire path of solutions for every value of hyperparameter. Its computational complexity
is quadratic in the number of labeled examples only rather than the total number of labeled
and unlabeled examples.

1. INTRODUCTION

Traditional learning algorithms for classification and re-
gression are based on the supervised learning paradigm in
which models are trained on labeled examples only. How-
ever, in many applications, labeled examples are difficult
or expensive to obtain since they need substantial labeling
efforts from humans. On the other hand, large quantities
of unlabeled examples are often readily available and are
easy to obtain. Semi-supervised learning provides an ap-
pealing alternative by augmenting traditional supervised
learning with a large amount of unlabeled data to build
better learning algorithm. In so doing, we only need a
small number of labeled examples for training. In recent
years, semi-supervised learning has aroused a great deal
of research interest and has demonstrated impressive per-
formance improvement in practice. Some semi-supervised
learning methods proposed over the last few years include
co-training, transductive SVM, EM with generative mix-
ture model, and a variety of graph-based methods.

In this paper, we propose a general approach to formulate
the semi-supervised learning problem. Specially, we use
the dictionary method to construct the predicting function
f as a linear expansion of basis functions, such as the
following:

f(x) =

q
∑

i=1

βihi(x) + β0, (1)

⋆ This work was supported by hi-tech research and development
(863) program of China (Grant No. 2006AA04Z207) and research
fund for doctorial program of higher education of China (Grant No.
20060006018).

where H = {h1(x), . . . , hq(x)} is a dictionary of basis
functions and β = (βi)

q
i=1 and β0 are the coefficients of

the function. In the semi-supervised learning paradigm,
we are given a set of l labeled examples DL = {(xi, yi)}

l
i=1

and a set of u unlabeled examples DU = {xj}
j=l+u
j=l+1 . D =

DL

⋃

DU . Here xi and xj are drawn from the input space
X . The output yi is a real number for regression, whereas
it takes values {−1, +1} for classification. In practice, u
is always much larger than l. The problem of learning
is to provide an estimator, i.e., a function f : X → Y,
based on the data set D. The function f can be used to
predict a value y given any value of x ∈ X . Since kernel
methods [Schölkopf and Smola, 2002] have demonstrated
great successes in solving many machine learning and
pattern recognition problems, we use kernels to define
the basis functions in the paper. Thus, the function f(x)
admits a representation of the following form:

f(x) =
l+u
∑

i=1

βiK(xi,x) + β0, (2)

where K(·, ·) is a kernel function defined on X × X . The
decision function depends on both labeled and unlabeled
data and each basis function K(xi,x) is related to only
one input example.

We consider the following optimization problem:

min
f

R =
l

∑

i=1

L(yi, f(xi))+
λ

2

u+l
∑

i,j=1

(f(xi)−f(xj))
2wij , (3)

which maintains a tradeoff between loss and penalty.
L(y, f(x)) is the loss function measuring the error when
predicting y by f(x). Its value depends on the labeled

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6088 10.3182/20080706-5-KR-1001.2109

data only. Similar to the regularization theory [Evgeniou
et al., 2000], a large number of learning models can be
derived subject to different choices of L. For the binary
classification problem where y ∈ {1,−1}, we have:

• Hinge loss: L = |1 − yf(x)|+;
• Exponential loss: L = exp(−yf(x));
• Logistic loss: L = log(1 + exp(−yf(x))).

For the regression problem where y is a real number, the
loss function can be defined as:

• Square loss: L = (y − f(x))2;
• ǫ-insensitive loss: L = |y − f(x)|ǫ;

• Huber loss: L =

{

(y − f(x))2 |y − f(x)| < 1
2(|y − f(x)| − 0.5) |y − f(x)| ≥ 1

.

The second part in (3) is the penalty term which reflects
the intrinsic structure of the data distribution. It forces
the values of f(xi) and f(xj) to be close if xi and xj are
close to each other. Thus, both labeled and unlabeled data
are used in this part. This term is also called the graph
Laplacian, which has been used in dimension reduction
[Belkin and Niyogi, 2001] and manifold regularization
[Belkin et al., 2004]. wij is the edge weight in the adjacency
graph and more weight is given to the entry if its related
two points are closer to each other. Generally, there are two
variations, i.e., ǫ-neighborhood and k-nearest neighbors,
to construct the adjacency graph. In the ǫ-neighborhood
method, nodes i and j are connected by an edge if ‖xi −
xj‖

2 ≤ ǫ. In the k-nearest neighbors method, nodes i and
j are connected by an edge if i is among the k nearest
neighbors of j or j is among the k nearest neighbors of i.

Based on the optimization problem (3) with the decision
function defined in (2), we have a general approach to
formulate the semi-supervised learning problem for either
classification or regression. From investigation on different
implementations of loss function and their related compu-
tational complexity, we suggest to use the hinge loss for
classification and the ǫ-insensitive loss for regression, since
their computation expenses in the optimization depend
only on the labeled examples. The unlabeled data can be
preprocessed before the optimization is performed.

A hyperparameter λ, which balances loss and penalty,
is crucial to determine the generalization ability of the
model. If λ is set by a large value, the coefficients of the
function f tends to be zero. On the other hand, if λ = 0,
we only minimize the training error which always leads to
the overfitting problem. Thus, the penalty term in (3) can
be considered as the regularization, where λ plays a role
in the capacity control. The value of λ has to be specified
in advance by the user. In practice, some default values
are usually chosen and the model is trained for multiple
times. Extensive exploration of the optimal λ values is
seldom pursued since re-training the model many times
under different λ settings is computationally demanding.
Recently, a novel approach has emerged that seeks to
explore the entire path of solutions for all hyperparameter
values without having to re-train the model multiple times
[Rosset and Zhu, 2003, Efron et al., 2004]. By estimating
the generalization errors under different hyperparameter
values, the optimal hyperparameter value can be found
with a low extra computational cost. In this paper, we ap-
ply the solution path algorithm to sequentially calculate all

solutions corresponding to all λ values. The computational
cost is much lower than that of the traditional approach
which requires training the model multiple times.

2. SELECTION ON LOSS FUNCTIONS

For notation simplicity, we denote y = (y1, . . . , yl)
T ,

β = (β1, . . . , βl+u)T , k(x) = (K(x1,x), . . . ,K(xl+u,x))T ,

K = [K(xi,xj)]
l+u
i,j=1, 1 is a column vector with all entries

being one, I is the identity matrix and J = [Il×l,0l×u]
is an l × (l + u) matrix with Il×l being the l × l identity
matrix. The decision function can be expressed as

f(x) = βT k(x) + β0. (4)

When the square loss is used, the optimization problem
becomes:

min
β,β0

Rs = ‖y − JKβ − β01‖
2 +

λ

2
βT KLKβ. (5)

L is given by L = D−W [Belkin and Niyogi, 2001], where
wij in W is the edge weight in the adjacency graph and D

is a diagonal matrix with diagonal entries Dii=
∑l+u

j=1 wij .

The solution to the problem (5) can be obtained directly
through setting the derivative of the objective function to
zero. Thus, we have

[

β
β0

]

= 2(2K̄T JT JK̄ + λK̄T LK̄)−1K̄T JT y (6)

where K̄ = [K,1] is an (u + l) × (u + l + 1) matrix.
The solution is obtained in a simple closed-form. How-
ever, we notice that there is a matrix inversion operation
in the formula (6) with the computational complexity
O

(

(u + l + 1)3
)

. For each possible λ value, such expensive
matrix operation has to be performed once. Accordingly,
it is computational prohibitive to explore a large number
of candidate values of λ.

If we use the exponential loss to define the loss function,
the problem is

min
β,β0

Re =
l

∑

i=1

exp(−yif(xi)) +
λ

2
βT KLKβ. (7)

The gradients of the function Re with respect to β and β0

are

∂R

∂β
=−

l
∑

i=1

exp(−yif(xi))yik(xi) + λKLKβ (8)

∂R

∂β0
=−

l
∑

i=1

exp(−yif(xi))yi (9)

In order to optimize the solution, the numeric method
such as conjugate gradient or quasi-Newton can be used.
Since the term KLK is fixed during the optimization
procedure, its value can be calculated in the preprocessing
step. Thus, it costs O((u + l)2) operations to compute
the gradient (8). The overall complexity in optimizing the
problem (7) depends on the number of iterations until
optimization convergence. The numerical analysis [Burden
and Faires, 2000] gives some theoretical results on the
convergence rate. As we can see, the gradient computation
depends on both labeled and unlabel examples, thus, the
cost of optimizing the solution is expensive. For other

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6089

implementations of loss function such as the logistic loss
and the huber loss where their optimizations are based on
the gradient methods, their computational expenses are
similar to that of using the exponential loss. Therefore, we
have the same difficulty in optimizing solutions for many
λ values as in the square loss.

The hinge loss and the ǫ-insensitive loss are piecewise
linear functions. They are originally used to define the
support vector classification (SVC) and support vector
regression (SVR) [Vapnik, 1998] respectively. Since their
primal optimization problems are not differentiable, the
optimization is always performed in its corresponding dual
problems. Due to the space limitations, we only consider
the hinge loss in this paper 1 . When the hinge loss is used,
the problem is

min
β,β0

Rh =
l

∑

i=1

ξi +
λ

2
βT KLKβ (10)

subject to

{

yif(xi) ≥ 1 − ξi

ξi ≥ 0
i = 1, 2, . . . , l (11)

By introducing Lagrange multipliers α = (α1, . . . , αl)
T

and ζ = (ζ1, . . . , ζl)
T for the constraints (11), we can

obtain the Lagrangian Rh(β, β0, ξ; α, ζ). Setting the cor-
responding derivatives to zero, we have

∂Rh

∂β
: β =

1

λ
(LK)−1JT Yα, (12)

∂Rh

∂β0
:

l
∑

i=1

yiαi = 0, (13)

∂Rh

∂ξi

: αi = 1 − ζi, (14)

where Y = diag(y1, . . . , yl) is a diagonal matrix. For no-
tational simplicity, we let P = (LK)−1JT Y and simplify
(12) to β = 1

λ
Pα.

Substituting (12)–(14) into Rh(β, β0, ξ; α, ζ), we have

Rd(α) =
l

∑

i=1

αi −
1

2λ
αT YJL−1JT Yα, (15)

which eliminates all the primal variables. It follows from
the Karush-Kuhn-Tucker (KKT) conditions that

yif(xi) > 1 ⇒ αi = 0,

yif(xi) = 1 ⇒ αi ∈ [0, 1],

yif(xi) < 1 ⇒ αi = 1.

Thus we arrive at the following dual optimization problem:

max
α

l
∑

i=1

αi −
1

2λ
αT Qα, (16)

subject to











l
∑

i=1

yiαi = 0

0 ≤ αi ≤ 1

i = 1, 2, . . . , l, (17)

where Q = YJL−1JT Y is a matrix with size l × l. As
we can see, the optimization problem (16) is the standard

1 The formulation properties and the optimality conditions in the
ǫ-insensitive loss are very similar to that in the hinge loss.

SVM formulation where any SVM solver can be used to
optimize the solution. The decision function is thus given
by

f(x) =
1

λ
αT PT k(x) + β0. (18)

The dimensionality of the parameter α in the dual problem
is l, which is much smaller than the dimensionality of the
parameter α in the primal problem. The information from
the unlabeled data are contained in the two matrices P
and Q. Both of them can be computed in advance before
the optimization is performed. Thus, if more unlabeled
examples are provided, it will only increase the computa-
tional cost in preprocessing, but not affect the complexity
in the optimization procedure. P is a translating matrix
which maps the parameter α with dimensionality l to
its corresponding β with dimensionality l + u. After the

solution α̂ is optimized, the corresponding solution of β̂
can be calculated directly. The complexity in solving the
problem (16) is O(l3), therefore, it allows us to explore
more possible λ values than using other loss functions.

3. SOLUTION PATH ALGORITHM FOR MODEL
SELECTION

The basic idea underlying solution path algorithms comes
from continuation methods, which compute the current
solution based on an already obtained one. Specifically,
we can interpret a solution path algorithm as follows:
given a hyperparameter value µ and its corresponding

solution f̂µ, 2 a solution path algorithm seeks to update

the solution from f̂µ to f̂µ+s in an efficient way as µ
changes to µ+ s by a small value s. The updating formula

is often expressed as f̂µ+s = f̂µ + u(µ, s).

Since this approach has much lower computational de-
mand without the need for training the model multiple
times, we can afford to estimate the generalization errors
for a much larger set of hyperparameter values in searching
for the optimal choice. Solution path is also called regu-
larization path if the path following algorithm is subject
to the regularization hyperparameter. Efron et al. [2004]
proposed an algorithm called the least angle regression
(LARS) algorithm. It can be used to trace the regular-
ization path for linear least square regression regularized
with the L1 norm. An important finding is that the path
of the solutions is piecewise linear and hence it is efficient
to explore the entire path by monitoring the breakpoints
between the linear segments only. Hastie et al. [2004] pro-
posed an algorithm to compute the regularization path for
the standard L2-norm SVC and Zhu et al. [2003] proposed
one for the L1-norm SVC. They are again based on the
property that the paths are piecewise linear with respect
to the regularization hyperparameter. Rosset [2004] and
Wang et al. [2007] proposed path-following algorithms for
approximating nonlinear solution paths. In this paper,
we apply the solution path algorithm to semi-supervised
learning. Specially, we explore the path of solutions for all
possible λ values in the problem (16). Since this problem
can be transformed to the standard SVM formulation, the

2 As the hyperparameter value µ changes, the solution estimator f̂

will change accordingly. Thus the estimator can be considered as a
function of µ. We use f̂µ to indicate the dependence on µ.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6090

solution path algorithm proposed by [Hastie et al., 2004]
can be applied to the problem (16) with some modifica-
tions.

Let I+ denote the set of indices of the points with yi = +1
and l+ the cardinality of I+. Likewise, I− and l− are
defined for the points with yi = −1. We define the
following sets for labeled points: 3

E = {i : yif(xi) = 1, 0 ≤ αi ≤ 1}

L= {i : yif(xi) < 1, αi = 1}

R= {i : yif(xi) > 1, αi = 0}

These three point sets refer to points lying at, inside and
outside the margin, respectively. As we change the λ value,
the margin will change and some events may occur during
this process. An event is said to occur when a point enters
or leaves the elbow, causing some point sets to change. We
categorize these events as follows:

• A point enters the elbow:
· from L to E with αi = 1
· from R to E with αi = 0

• A point leaves the elbow:
· from E to L with αi = 1
· from E to R with αi = 0

For the points not at the elbow, i.e., in R ∪ L, their αi

values remain fixed until an event occurs. Hence, it is
sufficient to focus on the points at the elbow. As a point
passes through E , its αi value will change from 0 to 1 or
from 1 to 0.

3.1 Initialization

The path can start from the solution for any initial
value of λ, since the values of α fully determine the
sets L, E and R. However, finding the solution requires
solving a quadratic programming (QP) problem. The
problem becomes simpler when λ tends to +∞, . The

objective degenerates to maximizing
∑l

i=1 αi subject to
the constraints (17). The initial values α0 and β0

0 depend
on whether or not l+ = l−.

Lemma 1. Suppose l+ = l−. For λ sufficiently large, all

the α0
i = 1 and β0

0 ∈ [−1, 1]. The loss is
∑l

i=1 ξi = l+ + l−
for any β0

0 .

In view of Lemma 1, the initial solution α0 is (1, . . . , 1)T

and thus β0 = 1
λ
Pα0. As λ decreases, in order to satisfy

the constraints (11), all αi’s remain unchanged until one
positive example xi+ and one negative example xi

−

reach
the elbow simultaneously. To find xi+ and xi

−

, note that
yif(xi) ≤ 1 for i = 1, . . . , l. Among all the positive
examples, xi+ is the first one that reaches the elbow.
Similarly, among all the negative examples, xi

−

is the first
one that reaches the elbow. Therefore

i+ = arg max
i∈I+

f(xi) = arg max
i∈I+

(

(α0)T PT k(xi)
)

(19)

i− = arg min
i∈I

−

f(xi) = arg min
i∈I

−

(

(α0)T PT k(xi)
)

. (20)

3 E, L and R are referred to as the Elbow, Left of the elbow and
Right of the elbow, respectively, in Hastie et al. [2004].

When xi+ and xi
−

both hit the elbow, the two equations
yi+f(xi+) = 1 and yi

−

f(xi
−

) = 1 must hold. It then
follows that the initial solutions λ0 and β0

0 are

λ0 =
(α0)T PT

(

k(xi+) − k(xi
−

)
)

2
(21)

β0
0 =

−(α0)T PT
(

k(xi+) + k(xi
−

)
)

(α0)T PT
(

k(xi+) − k(xi
−

)
) . (22)

We next consider the initialization setting when the two
classes are unbalanced, i.e., l+ 6= l−. Without loss of
generality, we assume that l+ > l−. As λ tends to +∞, β
tends to the zero vector 0 due to (12). The optimal choice

of β0
0 is 1 and thus the loss is

∑l

i=1 ξi = l−. The initial
solution α0 can be obtained by solving a QP problem.

Lemma 2. Suppose l+ > l−. For λ sufficiently large, the
initial solution α0 can be obtained as

α0 = arg min
α

αT Qα

subject to

{

αi = 1 ∀i ∈ I−
αi ∈ [0, 1] ∀i ∈ I+

and
∑

i∈I+

αi = l−.

Moreover, the initial solution β0 is given by β0 = 1
λ
Pα0.

In order to find the initial value λ0, we employ the same
strategy as in the balanced case, i.e., finding two points
xi+ and xi

−

such that they both hit the elbow before α0

begins to change. Also, as in the balanced case, xi
−

is
decided by (20). There are two possible cases in which xi+

should be distinctively decided:

(1) Two or more elements in I+ with 0 < α0
i < 1, or

(2) α0
i is either 0 or 1 for all i in I+.

For the first case, xi+ is chosen such that α0
i+

∈ (0, 1)

(at the elbow). For the second case, let I1
+ denote the

set of points in I+ with α0
i = 1. This set is compa-

rable with I+ in the balanced case. Therefore, i+ =
arg maxi∈I1

+
(α0)T PT k(xi). Since both xi+ and xi

−

lie at

the elbow, λ0 and β0
0 are identical in form to (21) and (22).

3.2 Path Following Algorithm

Let us consider the period between the lth event (with
λ = λl) and the (l+1)th event (with λ = λl+1). The set E
is stable during this period. Suppose E contains m indices
which are represented as an m-tuple (E(1), · · · , E(m)) such
that E(i) < E(j) for i < j, where m, which is typically a
very small number m ≤ l, is the number of points at the
elbows. We trace the solution path of αi for each i ∈ E .
For the convenience of derivation, we define α0 = λβ0. It
follows that f(x) = 1

λ
(αT PT k(x) + α0).

We first introduce some notations. Let pi be the ith
column of P. Then PE = [pE(1),pE(2), . . . ,pE(m)] is an

(l + u) × m matrix. Moreover, yE = (yE(1), . . . , yE(m))
T is

an m × 1 vector and KE =
[

k(xE1
), . . . ,k(xEm

)
]T

is an
m × (l + u) matrix. We have the following theorem.

Theorem 1. Suppose the solutions to {αi} and α0 are {αl
i}

and αl
0 when λ = λl. Then when λl+1 < λ < λl, we have

the following results:

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6091

(1) If i ∈ L ∪ R, αi = αl
i is fixed at 0 or 1 which is

independent of λ.
(2) The solutions to {αE(i)} and α0 are given by















α0

αE(1)

.

.

.
αE(m)















=

















αl
0

αl
E(1)

.

.

.
αl
E(m)

















+ (λ − λl)A−1
E

ya, (23)

where AE =

[

0 yT
E

1 KEPE

]

,ya =

[

0
yE

]

.

We can see that the solutions to {αE(i)} and α0 are
linear in λ while those to others remain unchanged. As
λ decreases, the algorithm monitors the occurrence of any
of the following events:

• One of the αE(i) for i = 1, . . . ,m reaches 0 or 1.
• A point i /∈ E hits the elbow, i.e., yif(xi) = 1.

The λ values for the first type of events can be calculated
directly from (23). Plugging the updating rule (23) into
the regression function (18), we can calculated the λ
values in which the second type of events occur. Hence,
by monitoring the occurrence of these events, we choose
the largest λ < λl for which an event occurs. This λ value
is a breakpoint and is denoted by λl+1. We then update
the point sets and continue until λ tends to zero.

Through this process, we can explore the entire solution
path after the initialization step by updating the param-
eters iteratively. As λ changes from a large value towards
0, most labeled examples pass through the elbow from
inside the margin to outside. It is possible that a point
passes through the elbow multiple times. In each update
along the solution path, a set of linear equations is solved
with O(m3) time complexity where m is typically quite
small. Moreover, scanning through the labeled examples to
evaluate the next move has O(l2) time complexity. From
the experimental results, it often requires O(l) iterations
to explore the entire path. Therefore, the overall time
complexity of the solution path algorithm is O(l3+l×m3),
which is similar to solve the optimization problem (16)
once.

4. EXPERIMENTS

In our experiments, we partition each dataset into a
training set and a test set. In the training set, we randomly
select a small number of points as labeled examples and
keep the rest unlabeled. We then compute the graph
Laplacian and explore the solution path with respect to
λ. In order to simplify the initialization step, we select the
same number of labeled points from each class. To evaluate
the classification performance for different solutions along
the path, out-of-sample classification accuracy is measured
based on the separate test set. In the experiments, all the
points are normalized between [-1,1] before the process,
and the Guassian RBF kernel k(xi,xj) = exp(‖xi −
xj‖

2/σ) is used with σ = 0.1. We use the k-nearest
neighbors method to compute the graph Laplacian where
k is set to 6.

Figure 1 shows the dataset generated from two moons,
which totally contains 200 points. When there is only
one positive and one negative labeled points, the decision
function remains the same along the entire solution path
since no event occurs until λ decreases to 0. We randomly
label one positive and one negative points, hence, the
solution can be obtained right after the initialization. The
corresponding decision function has well separated the
points between two classes.

We randomly select 70%, 50% and 30% of the points
from the two moons data for training while keeping the
rest for testing. The solution path algorithm is then
executed and the classification accuracies on the test
set are shown in Figure 2(a)–(c). In Figure 2(a), since
70% of the points are used for training, the manifold
structure is preserved well by the training data. As a
result, only two labeled points are sufficient to give a good
decision boundary achieving 100% classification accuracy.
Labeling more points is not necessary and hence the four
curves corresponding to different numbers of labeled points
overlap completely. In Figure 2(b) when 50% of the points
are used for training, the manifold structure becomes
weaker. The points from the same class may not belong to
the same manifold. Thus, having only two labeled training
points cannot achieve very high classification accuracy.
Better classification accuracy can be obtained when more
training points are labeled. The decision function changes
dramatically for different λ values. Figure 3 shows a typical
example. When λ = 2, the decision function splits the
points from one class into different parts leading to very
low classification accuracy. As λ decreases, the solutions
for different λ are obtained. We can choose a good decision
function that generalizes well based on the testing data.
When only 30% of the points are used for training, as
shown in Figure 2(c), the two moons structure degenerates
to a number of small clusters. This case may be more
similar to the real data we use in practice. For this case,
having more labeled points is essential for identifying the
class labels of these clusters. We can see some breakpoints
which correspond to the breakpoints on the piecewise
linear solution path. When more labeled points are added
into the training set, the solution path will contain more
breakpoints along the solution path. Since the solution

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0

0

0

0

Fig. 1. Two moons dataset generated from two centroid
moons. The decision boundary is the solution when
only one positive and one negative points are ran-
domly labeled.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6092

0.5 3 10
0.6

0.7

0.8

0.9

1

1.1

1.2

λ

o
u
t−

o
f−

s
a
m

p
le

 c
la

s
s
if
ic

a
ti
o
n
 a

c
c
u
ra

c
y

70% for training

16 labeled

8 labeled

4 labeled

2 labeled

0.2 1 2
0.7

0.8

0.9

1

λ

o
u
t−

o
f−

s
a
m

p
le

a
c
c
u
ra

c
y

50% for training

16 labeled

8 labeled

4 labeled

2 labeled

20.50.2
0.6

0.7

0.8

0.9

1

λ

o
u
t−

o
f−

s
a
m

p
le

 a
c
c
u
ra

c
y

30% training

16 labeled

8 labeled

4 labeled

2 labeled

(a) (b) (c)

Fig. 2. Out-of-sample classification accuracy along the solution path for different numbers of labeled points. (a) 70%
points for training; (b) 50% points for training; (c) 30% points for training. The horizontal axis is in log scale.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0

0

λ = 2

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2 0 0

0

0

0

0

0
0

λ = 0.78706

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
0

0

0
0

0

0

0 0

0

0

λ = 0.4556

(a) (b) (c)

Fig. 3. When 4 examples are labeled and the others are unlabeled, different decision functions are shown for different
λ values. (a) λ = 2; (b) λ = 0.79; (c) λ = 0.46.

path algorithm explores the solutions for all λ values,
the solution which generalizes best on the test set can be
identified easily.

5. CONCLUSIONS

In this paper, we propose a general approach to formulate
the semi-supervised learning problem and investigate dif-
ferent implementations of the loss function. We prefer to
use the hinge loss in the classification problem, since the
optimization in its dual problem has the complexity O(l3),
which is only related to labeled examples. Furthermore, we
apply the solution path algorithm to sequentially explore
all solutions for all possible λ values when the hinge loss
is used. The complexity to explore an entire range of λ
values is similar to training the model once, thus, it gives
an efficient method to choose the optimal hyperparameter
value. The solution path for the ǫ-insensitive loss also ex-
tends in piecewise linear manner, thus it can overcome the
difficulty in model selection. Due to the space limitation,
we do not illustrate the derivation of this loss function and
more experimental results.

REFERENCES

M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Advances in
Neural Information Processing Systems 14 (NIPS-01),
2001.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold reg-
ularization: a geometric framework for learning from

examples (tr-2004-06). Technical report, Department
of Computer Science, University of Chicago, 2004.

R.L. Burden and J. D. Faires. Numerical Analysis (7th
Edition). Brooks Cole, 2000.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least
angle regression. Annals of Statistics, 32(2):407–499,
2004.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization
networks and support vector machines. Advances in
Computational Mathematics, 13(1):1–50, 2000.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire
regularization path for the support vector machine.
Journal of Machine Learning Research, 5:1391–1415,
2004.

S. Rosset. Following curved regularized optimization
solution paths. In Advances in Neural Information
Processing Systems 17 (NIPS-04), 2004.

S. Rosset and J. Zhu. Piecewise linear regularized solution
paths. Technical report, Stanford University, 2003.

B. Schölkopf and A.J. Smola. Learning with kernels. MIT
Press, 2002.

V. N. Vapnik. Statistical learning theory. John Wiley &
Sons, New York, 1998.

G. Wang, D.Y. Yeung, and F. Lochovsky. A kernel path
algorithm for support vector machines. In Proceedings of
the 24th International Conference on Machine Learning
(ICML-07), 2007.

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-
norm support vector machines. In Advances in Neural
Information Processing Systems 16 (NIPS-03), 2003.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6093

