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Abstract: For the congestion problems in high-speed networks, a Metropolis criterion based Q-learning 

flow controller is proposed. Because of the uncertainties and highly time-varying, it is not easy to 

accurately obtain the complete information for high-speed networks. The Q-learning algorithm, which is 

independent of mathematic model, shows the particular superiority in high-speed networks. It obtains the 

optimal Q-values through interaction with the environment to improve its behavior policy. The Metropolis 

criterion of simulated annealing algorithm can cope with the balance between exploration and exploitation 

in Q-learning. By means of learning procedures, the proposed controller can learn to take the best action to 

regulate source flow with the features of high throughput and low packet loss ratio. Simulation results 

show that the proposed method can promote the performance of the networks and avoid the occurrence of 

congestion effectively. 

 

1. INTRODUCTION 

The growing interest on congestion problems in high-speed 

networks arise from the control of sending rates of traffic 

sources. Congestion problems result from a mismatch of 

offered load and available link bandwidth between network 

nodes. Such problems can cause high packet loss ratio (PLR) 

and long delays, and can even break down the entire network 

system because of the congestion collapse. Therefore, high-

speed networks must have an applicable flow control scheme 

not only to guarantee the quality of service (QoS) for the 

existing links but also to achieve high system utilization. 

The flow control of high-speed networks is difficult owing to 

the uncertainties and highly time-varying of different traffic 

patterns. The flow control mainly checks the availability of 

bandwidth and buffer space necessary to guarantee the 

requested QoS. A major problem here is the lack of 

information related to the characteristics of source flow. 

Devising a mathematical model for source flow is the 

fundamental issue. However, it has been revealed that this is 

a very difficult task, especially for broadband sources.  

In order to overcome the above-mentioned difficulties, the 

flow control scheme with learning capability has been 

employed in flow controller of high-speed network (Cheng et 

al., 1999; Lestas et al., 2007). Of all the learning algorithms, 

the reinforcement learning (RL) shows its particular 

superiority, which just needs very simple information such as 

estimable and critical information, “right” or “wrong” (Sutton 

et al., 1998). RL is independent of mathematic model and 

priori-knowledge of system. It obtains the knowledge through 

trial-and-error and interaction with environment to improve 

its behavior policy. So it has the ability of self-learning. 

Chatovich proposed a call admission controller combined RL 

with neuro-fuzzy network (Chatovich et al., 2001). Hsiao 

proposed a RL congestion controller for high-speed network, 

consisting of two subsystems called action-value evaluator 

and stochastic action selector (Hsiao et al., 2003, 2005). 

The Q-learning algorithm of RL is easy for application and 

has a firm foundation in the theory. But the balance between 

exploration and exploitation is one of the key problems of 

action selection in Q-learning (Kaelbling et al., 1996). The 

Metropolis criterion of simulated annealing (SA), simulating 

an annealing process on computer, is a powerful way to solve 

hard combinatorial optimization problems (Metropolis et al., 

1953). So it is applied to control the balance between 

exploration and exploitation (Guo et al., 2004).  

In this paper, based on the Metropolis criterion based Q-

learning algorithm, a SA-Q-learning flow controller (SAQFC) 

for high-speed networks is proposed. In the controller 

proposed, the learning agent has a memory structure to 

explicitly implement its objectives to achieve optimal Q-

value. The optimal Q-value serves as the optimal sending rate 

of traffic sources. By means of learning procedures, the 

proposed controller adjusts the source sending rate to the 

optimal value to reduce the average length of queue in the 

buffer. Simulation results show that the proposed method can 

avoid the occurrence of congestion effectively with the 

features of high throughput, low PLR, low end-to-end delay, 

and high utilization. 

2. THEORETICAL FRAMEWORK 

2.1  Architecture of the Proposed Flow Controller 

In the AIMD case, the agent senses the network system’s 

states and makes a decision based on a rate control scheme to 
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avoid packet losses and increase the utilization of 

multiplexer’s output bandwidth (Gevros et al., 2001). 

However, it is hard to achieve high system performance by 

reactive AIMD scheme because of the propagation delay and 

the dynamic nature of high-speed networks. Whereas the 

proposed SAQFC can behave optimally only rely on the 

interaction with the unknown environment and provide the 

best action for a given state. The detailed architecture of the 

proposed SAQFC is shown in Fig.1.  
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Fig. 1. Architecture of the proposed SAQFC 

In high-speed networks, SAQFC in bottleneck node acts as a 

flow control agent with flow control ability. The inputs of 

SAQFC are state variables (S) composed of queue length (q) 

and sending rate (u) in the network. The output of SAQFC is 

the feedback signal (a) to the traffic sources, which means the 

probability mass function (PMF) of sending rate. The 

controlled sending rate ut at sample time t is defined by 

maxt tu a u= ⋅ , where umax is the maximum sending rate of the 

traffic sources. Reinforcement signal r for a specified state is 

denoted as r=1 for reward, and r=0 for penalty (Littman, 

2001). The learning agent and the network environment 

interact continually in the learning process. At the beginning 

of each time step of learning, the controller senses the states 

for the network and gets the reinforcement signal (reward). 

Then it selects an action to make decision on which rate the 

sources should use to reduce the PLR and increase the link 

utilization. After the controller selects an action, the network 

responds to the action by changing its state and giving a new 

reward to the controller. Then the next step of learning begins. 

2.2  Associative State Space Partitioning 

The input state variables (q,u) for a node are equally divided 

by ten partitions numbered 0-9, respectively. The number of 

state variables of the system is 10×10=100. The vector of 

quantized input values specifies a discrete state and is used to 

generate the addresses for retrieving information from 

memory for this state. 

In order to reduce the number of state variables of the system, 

a series of mapping as S:I:H is performed. Where S is the 

input state vector, I denotes a set of intermediate variables, H 

is the state vector through transforming. In S:I mapping, 

each of variables q and u has three different ways of block 

decomposition, each with four blocks. For state s55, as 

depicted in Fig. 2, u=5 is mapped into the set I1={B,G,K}, 

and q=5 is mapped into the set I2={b,g,k}. In I:H mapping, 

each hypercube is assigned a unique name that is the 

combination of intermediate variables. In this case, the 

intermediate variables are mapped into a set of three 

hypercubes. i.e., I1 and I2 are mapped to H={Bb,Gg,Kk}, 

where Bb, Gg, and Kk specify three hypercubes. Furthermore, 

the number of state variables of the system is reduced from 

100 to 4×4×3=48. 
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Fig. 2. The mapping for state variables in the network node 

2.3  The Q-learning Algorithm 

Q-learning is an algorithm that belongs to the class of 

reinforcement learning algorithms. Reinforcement learning is 

concerned with the problem how an agent can learn to behave 

optimally from interactions with its environment. The general 

idea of reinforcement learning is as follows. An agent 

interacts repeatedly with its environment. During each 

interaction, the agent first observes the state of the 

environment s�S. The agent then decides to execute an 

action a A.�  This results in a payoff r that is received by the 

agent and in a transition of the state of the environment from 

the old state s to the new state s´. Because the state of the 

environment changes as a result of the action that was 

executed by the agent, the choice of an action may not only 

influence the agent’s immediate payoff r but also its payoffs 

in future periods. The agent’s payoff and the new state of the 

environment only depend (either deterministically or 

stochastically) on the old state of the environment and on the 

action that was executed by the agent. In reinforcement 

learning it is typically assumed that the agent has no prior 

knowledge of the payoff function r(s,a) and the state 

transition function, so the agent has no model of its 

environment. The goal of the agent is to find an optimal 

policy �
*
: S:A for choosing actions. A policy �(s) is optimal 

if in each state s�S it selects an action a�A that maximizes 

the agent’s cumulative payoff, which is the sum of its 

immediate payoff and its future payoffs. 

In Q-learning algorithm, the objective of learning agent is to 

maximize the discounted sum of rewards, with discount 

factor � [0,1)� . Let � be the policy of learning agent, for a 

given initial state s, agent tries to maximize 
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The policy � is defined over the whole course of the learning 

process. �t is the decision rule at time t. We can rewrite (1) as 

( ) ( ) ( ) ( ), , , ,  ,
s

v s r s a p s s a v sπ ππ β π
′

′ ′= + ¦          (2) 

where a� is the action determined by policy �, r(s,a) is the 

reward for taking action a at state s, s´ is the next state, and 

p(s´|s,a) is the probability of transiting to state s´ after taking 

action a in state s. It has been proved that there exists an 

optimal policy � such that for any s�S, the following 

Bellman equation holds 

( ) ( ) ( ) ( )* *
, max , , ,  ,

a
s

v s r s a p s s a v sπ β π
′

­ ½′ ′= +® ¾
¯ ¿

¦     (3) 

where v(s, �
*
) is called the optimal value for state s. 

The basis idea of Q-learning is that we can define the Q-

function as 

( ) ( ) ( ) ( )* *, , , ,  .
s S

Q s a r s a p s s a v sβ π
′∈

′ ′= + ¦            (4) 

By this definition, Q
*
(s,a) is the total discounted reward 

attained by taking action a in state s and then following the 

optimal policy thereafter. Then by (3) we have 

( ) ( )* *, max ,  .
a

v s Q s aπ =                        (5) 

If we know Q
*
(s,a), then the optimal policy �

*
, which is 

always taking an action so as to maximize Q
*
(s,a) under any 

state s, can be found. The problem is then reduced to finding 

the function Q
*
(s,a) instead of searching for the optimal value 

of v(s, �
*
). 

Q-learning provides us with a simple updating procedure, in 

which the learning agent starts with arbitrary initial values of 

Q(s,a) for all s�S, a�A, and updates the Q-values as 

( ) ( ) ( ) ( )1 1
, 1 , max ,  ,

t t t t t t t t t
a

Q s a Q s a r Q s aα α β+ +
ª º= − + +
¬ ¼

(6) 

where 0�.<1 is the learning rate. The convergence rate is 

determined by the value of .. If . is small, the convergence 

rate will be slow but it will easily tend to stabilize. On the 

other hand, if . is large, the convergence rate will be fast but 

it will not easily tend to stabilize. The update rule allows an 

agent that does not know the payoff function and the state 

transition function to learn the values of the Q function and, 

consequently, to find an optimal policy for choosing actions. 

Watkins and Dayan has proved that sequence (6) converges 

to optimal Q
*
(s,a) with probability 1 (Watkins et al., 1992). 

However, finding the proper balance between exploration and 

exploitation in Q-learning is one of the key problems in 

action selection. On the one hand, an agent may want to 

explore unknown states and actions to collect new 

information about its environment. On the other hand, an 

agent may want to exploit its current knowledge of the 

environment by executing the action that is expected to 

maximize the cumulative payoff. When the selection is 

greedy (i.e., exploitation), it will lead to locally optimal 

policies that possibly differ from a globally optimal one. On 

the other hand, excessive exploration will drastically decrease 

the performance of a learning algorithm, and in some cases 

might be even harmful with respect to the learning results 

themselves. 

A popular strategy proposed to deal with this problem is the 

0-greedy strategy (with 0�0<1). In the 0-greedy strategy, the 

action with the highest Q-value is selected with probability 

1−0. With probability 0 an action is selected randomly using a 

uniform distribution over all actions. Here, the value of 0 has 

obviously a great impact on the algorithm. Sutton compared 

the performance of learning for different 0 values and 

concluded that the result for a nonzero 0 is usually better than 

that for 0 equal 0, which means that 0-greediness is effective 

(Sutton et al., 1998). However, excessive exploration 

becomes unnecessary after a period of an initial interaction 

between the agent and the environment. 

Therefore, we have decided to explore the possibility of 

improving the simple 0-greedy strategy by appropriately 

reducing 0 during the learning process. This will not only 

improve the ability of agent to acquire new knowledge, but 

will also allow the algorithm to avoid performance decrease 

due to the constant value of 0. Thus, the task of finding the 

optimal policy in Q-learning is transformed into searching for 

an optimal solution in a combinatorial optimization problem. 

Then the Metropolis criterion, the core of simulated 

annealing is applied to the searching procedure in order to 

control the balance between exploration and exploitation.  

2.4  The Metropolis Criterion of Simulated Annealing 

Simulating the annealing process of solids, the SA algorithm 

is one kind of the computational processes resembling nature 

and has been shown to be an effective approximate algorithm 

to solve combinatorial optimization problems. An important 

characteristic of the SA algorithm is that it does not require 

specialist knowledge about how to solve a particular problem. 

This makes the algorithm generic in the sense that it can be 

used in a variety of optimization problems without changing 

the basic structure of computations. The procedure employs 

methods that originated from statistical mechanics to find 

global minima of systems with very large degrees of freedom. 

The major advantage of SA algorithm over the pure local 

search method is the ability to avoid becoming trapped in a 

local solution. 

In SA algorithm, the transition probability P(i:j) of the 

Metropolis criterion is used to decide whether the transition 

from the current state (solution) i to the new state j occurs. 

P(i:j) can be defined as follows: 

( )
( ) ( )

( ) ( )( )( )
1, if  

 ,
exp , otherwise

f j f i
P i j

f j f i T

­ ≥°
→ = ®

−°̄
     (7) 

where T is the temperature of annealing process, f(i) and f(j) 

are the values of the cost function of the optimization 

problem. f(i) and f(j) can be compared to the energy of tstates 

i and j, respectively, in an annealing solid. Obviously, the SA 

algorithm does not greedily reject all the suboptimal solutions, 

and the optimal state can eventually be reached. 
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2.5  The SA-Q-Learning Algorithm 

In order to avoid blind exploration and repeatedly learning 

after finding optimal solution, the Metropolis criterion was 

introduced into Q-learning algorithm to select action, and the 

SA-Q-learning algorithm was proposed. 

Let P be a policy space, and p�P be a policy, the value 

function V(p) of the policy p is the sum of all the Q-values 

obtained for this policy. 

( ) ( )( ) ( )1 2
1

, , , ,
n

p

n k k
k

V p V a a a Q s a
=

= =¦"             (8) 

If the policy p1=(a1,…,ai-1,ai,ai+1,…,an) transits to the policy 

p2=(a1,…,ai-1,bi,ai+1,…,an), then the difference between their 

values is 

( ) ( ) ( ) ( )2 1
, ,  .

i i i i
V p V p Q s b Q s a− = −               (9) 

The policy p1 is considered superior to p2 if V(p1)>V(p2). The 

value of a policy is compared to the energy of the 

microcosmic state in solid annealing. 

The detailed of SA-Q-learning algorithm is as follows: 

1. Initiate arbitrarily all Q(s,a) values; 

2. Repeat (for each episode); 

(a) Choose a random (initial) state s; 

(b) Repeat (for each step in the episode); 

i. Select an action ar in A(s) arbitrarily; 

ii. Select an action ap in A(s) according to the 0-greedy 

strategy; 

iii. Let a8ap; 

iv. Generate a random value � (0,1)� ; 

v. If exp(( ( , ) ( , )) )r pQ s a Q s a Temperatureξ < − , then let 

a8ar; 

vi. Execute the action a, receive immediate reward r, 

then observe the new state s´; 

vii. Update Q(s,a) by (6); 

viii. Let s8s´. 

Until s is one of the goal states. 

(c) Recalculate temperature by the temperature-dropping 

criterion. 

Until the desired number of episodes has been researched. 

Although the temperature-dropping criterion can be in 

general arbitrary, we use the geometric scaling factor 

criterion to reduce temperature according to the following 

1  .k kT Tλ+ = ⋅                                  (10) 

The cooling rate �<1 decides the decreasing velocity of the 

temperature. Usually � is a constant factor close to 1, in order 

to guarantee a slow decay of the temperature factor in the 

algorithm. 

In SA-Q-learning algorithm, no more than one action of the 

policy is modified in steps 2(b)i–2(b)vi, and this corresponds 

to the transition from one policy to another. Therefore, the Q-

learning algorithm can be regarded as the combinatorial 

optimization in the policy space. Hence, the introduction of 

the Metropolis criterion is rational. 

Comparing the 0-greedy Q-learning algorithm, there are only 

two additional steps in SA-Q-learning algorithm: the 

randomized selection of action and the evaluation of the 

Metropolis criterion. Therefore, there is no substantial 

increase of complexity between them, as the two steps take 

the constant time to evaluate. However, SA-Q-learning 

algorithm eliminates the disadvantage of the probability 0 

remaining constant, and the exploration will gradually be 

reduced with the dropping temperature. 

3. SIMULATION AND COMPARISON 

We assume that all packets are with a fixed length of 

1000bytes, and adopt a finite buffer length of 20packets in 

the node. On the other hand, the offered loading of the 

simulation varies between 0.6 and 1.2 corresponding to the 

systems’ dynamics; therefore, higher loading results in 

heavier traffic and vice versa. 

In the simulation, four schemes of flow control agent, AIMD, 

Q-learning flow controller (QFC) with general (0-greedy) Q-

learning and 0.1-greedy Q-learning algorithm, SAQFC 

proposed are implemented individually in high-speed 

network. The first scheme AIMD increases its sending rate 

by a fixed increment (0.11) if the queue length is less than the 

predefined threshold; otherwise the sending rate is decreased 

by a multiple of 0.8 of the previous sending rate to avoid 

congestion. Finally, for the other schemes, the sending rate is 

controlled by the feedback control signal periodically. For 

assuring SAQFC proposed applied to high-speed networks to 

be achievable and feasible, comparisons among those 

schemes are analyzed. Four measures, throughput, PLR, 

buffer utilization, and packets’ mean delay, are used as the 

performance indices. The throughput is the amount of 

received packets at specified nodes (switches) without 

retransmission. The status of the input multiplexer’s buffer in 

node reflects the degree of congestion resulting in possible 

packet losses. For simplicity, packets’ mean delay only takes 

into consideration the processing time at node plus the time 

needed to transmit packets. The details are delineated in the 

following. 
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Fig. 3. The simulation model of network with two switches 
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The simulation model of high-speed network, as shown in 

Fig.3, is composed of two switches, Sw1 with a control agent 

and Sw2 with no controller are cascaded. In addition, two 

sources, S1 and S2, are connected to Sw1, and two 

destinations, D1 and D2, are connected to Sw2. The constant 

output link L1 is 80Mbps. The sending rates of the sources 

S1 and S2 are regulated by SAQFC. Training input epochs 

are generated by a shuffle of loading pattern (0.6, 0.7, 0.8, 0.9, 

1.0, 1.1, 1.2), each of which lasts for 0.6s; i.e., a training 

epoch will last for a period of 4.2s. 

As shown in Fig.4, the PLR is decrease as the training epochs 

go on. After ten training epochs, the PLR for an epoch is less 

than 2.5×10
-5

. It is worth mentioning that no packet loss 

occurs in offered loading less than 1.0. In order to explore the 

reliability and robustness of the controlled structure, an extra 

loading 2.0 is incorporated as a disturbance at the 20th 

training epoch. As shown in Fig.4, the disturbance 

deteriorates the PLR temporarily, but SAQFC can adaptively 

learn to remain at low PLR when the disturbance is removed. 
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Fig. 4. PLR of SAQFC proposed, an extra loading 2.0 is 

incorporated as a disturbance at the 20th training epoch 
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Fig. 5. Throughput versus various offered loading 

The performance comparison of throughput, PLR, buffer 

utilization, and mean delay controlled by four different kinds 

of agents individually are shown in Fig.5-8. Analogously, 

because of the reactive control, the throughput for the AIMD 

method decrease seriously at loading of 0.9. Conversely, the 

SAQFC methods remain a higher throughput even though the 

offered loading is over 1.0. It is obvious that PLR of no 

control is high, even though we adopt the AIMD method. 

However, the SAQFC proposed can decrease the PLR 

enormously with high throughput and low mean delay. The 

SAQFC proposed has a better performance over QFC with 0-

greedy and 0.1-greedy Q-learning in PLR, buffer utilization, 

and mean delay. It demonstrates once again that SAQFC 

possesses the ability to predict the network behavior in 

advance. 
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Fig. 6. PLR versus various offered loading 
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Fig. 7. Mean buffer versus various offered loading 
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Fig. 8. Mean delay versus various offered loading 
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4. CONCLUSION 

In high-speed networks, most packet losses result from the 

dropping of packets owing to congested nodes. The reactive 

scheme AIMD could not accurately respond to a time-

varying environment due to the lack of prediction capability. 

In contrast, the Q-learning algorithm of reinforcement 

learning can cope with the prediction problems and the 

Metropolis criterion of simulated annealing can cope with the 

balance between exploration and exploitation in Q-learning. 

The proposed SAQFC, based on the Metropolis criterion 

based Q-learning algorithm, can respond to the networks’ 

dynamics. Through a proper training process, SAQFC can 

learn empirically without prior information on the 

environmental dynamics. The sending rate of traffic sources 

can be determined by the well-trained optimal Q-values. 

Simulation results have shown that the proposed method can 

increase the utilization of the buffer and decrease the PLR 

simultaneously. Therefore, the SAQFC proposed not only 

guarantees low PLR for the existing links, but also achieves 

high system utilization. 
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