

Metropolis Criterion Based Q-Learning Flow Control for High-Speed Networks

Xin Li*. Yuanwei Jing*. Georgi M. Dimirovski**. Siying Zhang*

*Institute of Information Science & Engineering,

Northeastern University, Shenyang, Liaoning, 110004, P.R. of China

 (e-mail: lixin820106@ 126.com; ywjjing@ mail.neu.edu.cn; zhangsiying@ ise.neu.edu.cn).

**Dogus University of Istanbul, Faculty of Engineering, TR-347222 Istanbul,

Rep. of Turkey, and with SS (e-mail: gdimirovski@ dogus.edu.tr)

Abstract: For the congestion problems in high-speed networks, a Metropolis criterion based Q-learning

flow controller is proposed. Because of the uncertainties and highly time-varying, it is not easy to

accurately obtain the complete information for high-speed networks. The Q-learning algorithm, which is

independent of mathematic model, shows the particular superiority in high-speed networks. It obtains the

optimal Q-values through interaction with the environment to improve its behavior policy. The Metropolis

criterion of simulated annealing algorithm can cope with the balance between exploration and exploitation

in Q-learning. By means of learning procedures, the proposed controller can learn to take the best action to

regulate source flow with the features of high throughput and low packet loss ratio. Simulation results

show that the proposed method can promote the performance of the networks and avoid the occurrence of

congestion effectively.

1. INTRODUCTION

The growing interest on congestion problems in high-speed

networks arise from the control of sending rates of traffic

sources. Congestion problems result from a mismatch of

offered load and available link bandwidth between network

nodes. Such problems can cause high packet loss ratio (PLR)

and long delays, and can even break down the entire network

system because of the congestion collapse. Therefore, high-

speed networks must have an applicable flow control scheme

not only to guarantee the quality of service (QoS) for the

existing links but also to achieve high system utilization.

The flow control of high-speed networks is difficult owing to

the uncertainties and highly time-varying of different traffic

patterns. The flow control mainly checks the availability of

bandwidth and buffer space necessary to guarantee the

requested QoS. A major problem here is the lack of

information related to the characteristics of source flow.

Devising a mathematical model for source flow is the

fundamental issue. However, it has been revealed that this is

a very difficult task, especially for broadband sources.

In order to overcome the above-mentioned difficulties, the

flow control scheme with learning capability has been

employed in flow controller of high-speed network (Cheng et

al., 1999; Lestas et al., 2007). Of all the learning algorithms,

the reinforcement learning (RL) shows its particular

superiority, which just needs very simple information such as

estimable and critical information, “right” or “wrong” (Sutton

et al., 1998). RL is independent of mathematic model and

priori-knowledge of system. It obtains the knowledge through

trial-and-error and interaction with environment to improve

its behavior policy. So it has the ability of self-learning.

Chatovich proposed a call admission controller combined RL

with neuro-fuzzy network (Chatovich et al., 2001). Hsiao

proposed a RL congestion controller for high-speed network,

consisting of two subsystems called action-value evaluator

and stochastic action selector (Hsiao et al., 2003, 2005).

The Q-learning algorithm of RL is easy for application and

has a firm foundation in the theory. But the balance between

exploration and exploitation is one of the key problems of

action selection in Q-learning (Kaelbling et al., 1996). The

Metropolis criterion of simulated annealing (SA), simulating

an annealing process on computer, is a powerful way to solve

hard combinatorial optimization problems (Metropolis et al.,

1953). So it is applied to control the balance between

exploration and exploitation (Guo et al., 2004).

In this paper, based on the Metropolis criterion based Q-

learning algorithm, a SA-Q-learning flow controller (SAQFC)

for high-speed networks is proposed. In the controller

proposed, the learning agent has a memory structure to

explicitly implement its objectives to achieve optimal Q-

value. The optimal Q-value serves as the optimal sending rate

of traffic sources. By means of learning procedures, the

proposed controller adjusts the source sending rate to the

optimal value to reduce the average length of queue in the

buffer. Simulation results show that the proposed method can

avoid the occurrence of congestion effectively with the

features of high throughput, low PLR, low end-to-end delay,

and high utilization.

2. THEORETICAL FRAMEWORK

2.1 Architecture of the Proposed Flow Controller

In the AIMD case, the agent senses the network system’s

states and makes a decision based on a rate control scheme to

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11995 10.3182/20080706-5-KR-1001.2064

avoid packet losses and increase the utilization of

multiplexer’s output bandwidth (Gevros et al., 2001).

However, it is hard to achieve high system performance by

reactive AIMD scheme because of the propagation delay and

the dynamic nature of high-speed networks. Whereas the

proposed SAQFC can behave optimally only rely on the

interaction with the unknown environment and provide the

best action for a given state. The detailed architecture of the

proposed SAQFC is shown in Fig.1.

Switch

Server
Mult iplexer's

 buffer

Flow Control

Agent

States

#
Feedback

 Control

 SignalT raffic

Sources

Fig. 1. Architecture of the proposed SAQFC

In high-speed networks, SAQFC in bottleneck node acts as a

flow control agent with flow control ability. The inputs of

SAQFC are state variables (S) composed of queue length (q)

and sending rate (u) in the network. The output of SAQFC is

the feedback signal (a) to the traffic sources, which means the

probability mass function (PMF) of sending rate. The

controlled sending rate ut at sample time t is defined by

maxt tu a u= ⋅ , where umax is the maximum sending rate of the

traffic sources. Reinforcement signal r for a specified state is

denoted as r=1 for reward, and r=0 for penalty (Littman,

2001). The learning agent and the network environment

interact continually in the learning process. At the beginning

of each time step of learning, the controller senses the states

for the network and gets the reinforcement signal (reward).

Then it selects an action to make decision on which rate the

sources should use to reduce the PLR and increase the link

utilization. After the controller selects an action, the network

responds to the action by changing its state and giving a new

reward to the controller. Then the next step of learning begins.

2.2 Associative State Space Partitioning

The input state variables (q,u) for a node are equally divided

by ten partitions numbered 0-9, respectively. The number of

state variables of the system is 10×10=100. The vector of

quantized input values specifies a discrete state and is used to

generate the addresses for retrieving information from

memory for this state.

In order to reduce the number of state variables of the system,

a series of mapping as S:I:H is performed. Where S is the

input state vector, I denotes a set of intermediate variables, H

is the state vector through transforming. In S:I mapping,

each of variables q and u has three different ways of block

decomposition, each with four blocks. For state s55, as

depicted in Fig. 2, u=5 is mapped into the set I1={B,G,K},

and q=5 is mapped into the set I2={b,g,k}. In I:H mapping,

each hypercube is assigned a unique name that is the

combination of intermediate variables. In this case, the

intermediate variables are mapped into a set of three

hypercubes. i.e., I1 and I2 are mapped to H={Bb,Gg,Kk},

where Bb, Gg, and Kk specify three hypercubes. Furthermore,

the number of state variables of the system is reduced from

100 to 4×4×3=48.

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

A B C D

E F G H

I J K L

l

i

j

k

e

f

g

h

a

b

c

d

q (queue length)

u

(sending rate)

AND operation

0s
1s

9s

10s 90s

99s

55sKk

Gg

Bb

Fig. 2. The mapping for state variables in the network node

2.3 The Q-learning Algorithm

Q-learning is an algorithm that belongs to the class of

reinforcement learning algorithms. Reinforcement learning is

concerned with the problem how an agent can learn to behave

optimally from interactions with its environment. The general

idea of reinforcement learning is as follows. An agent

interacts repeatedly with its environment. During each

interaction, the agent first observes the state of the

environment s�S. The agent then decides to execute an

action a A.� This results in a payoff r that is received by the

agent and in a transition of the state of the environment from

the old state s to the new state s´. Because the state of the

environment changes as a result of the action that was

executed by the agent, the choice of an action may not only

influence the agent’s immediate payoff r but also its payoffs

in future periods. The agent’s payoff and the new state of the

environment only depend (either deterministically or

stochastically) on the old state of the environment and on the

action that was executed by the agent. In reinforcement

learning it is typically assumed that the agent has no prior

knowledge of the payoff function r(s,a) and the state

transition function, so the agent has no model of its

environment. The goal of the agent is to find an optimal

policy �
*
: S:A for choosing actions. A policy �(s) is optimal

if in each state s�S it selects an action a�A that maximizes

the agent’s cumulative payoff, which is the sum of its

immediate payoff and its future payoffs.

In Q-learning algorithm, the objective of learning agent is to

maximize the discounted sum of rewards, with discount

factor � [0,1)� . Let � be the policy of learning agent, for a

given initial state s, agent tries to maximize

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11996

() ()0
0

, , .t

t
t

v s E r s sπ β π
∞

=

= =¦ (1)

The policy � is defined over the whole course of the learning

process. �t is the decision rule at time t. We can rewrite (1) as

() () () (), , , , ,
s

v s r s a p s s a v sπ ππ β π
′

′ ′= + ¦ (2)

where a� is the action determined by policy �, r(s,a) is the

reward for taking action a at state s, s´ is the next state, and

p(s´|s,a) is the probability of transiting to state s´ after taking

action a in state s. It has been proved that there exists an

optimal policy � such that for any s�S, the following

Bellman equation holds

() () () ()* *
, max , , , ,

a
s

v s r s a p s s a v sπ β π
′

­ ½′ ′= +® ¾
¯ ¿

¦ (3)

where v(s, �
*
) is called the optimal value for state s.

The basis idea of Q-learning is that we can define the Q-

function as

() () () ()* *, , , , .
s S

Q s a r s a p s s a v sβ π
′∈

′ ′= + ¦ (4)

By this definition, Q
*
(s,a) is the total discounted reward

attained by taking action a in state s and then following the

optimal policy thereafter. Then by (3) we have

() ()* *, max , .
a

v s Q s aπ = (5)

If we know Q
*
(s,a), then the optimal policy �

*
, which is

always taking an action so as to maximize Q
*
(s,a) under any

state s, can be found. The problem is then reduced to finding

the function Q
*
(s,a) instead of searching for the optimal value

of v(s, �
*
).

Q-learning provides us with a simple updating procedure, in

which the learning agent starts with arbitrary initial values of

Q(s,a) for all s�S, a�A, and updates the Q-values as

() () () ()1 1
, 1 , max , ,

t t t t t t t t t
a

Q s a Q s a r Q s aα α β+ +
ª º= − + +
¬ ¼

(6)

where 0�.<1 is the learning rate. The convergence rate is

determined by the value of .. If . is small, the convergence

rate will be slow but it will easily tend to stabilize. On the

other hand, if . is large, the convergence rate will be fast but

it will not easily tend to stabilize. The update rule allows an

agent that does not know the payoff function and the state

transition function to learn the values of the Q function and,

consequently, to find an optimal policy for choosing actions.

Watkins and Dayan has proved that sequence (6) converges

to optimal Q
*
(s,a) with probability 1 (Watkins et al., 1992).

However, finding the proper balance between exploration and

exploitation in Q-learning is one of the key problems in

action selection. On the one hand, an agent may want to

explore unknown states and actions to collect new

information about its environment. On the other hand, an

agent may want to exploit its current knowledge of the

environment by executing the action that is expected to

maximize the cumulative payoff. When the selection is

greedy (i.e., exploitation), it will lead to locally optimal

policies that possibly differ from a globally optimal one. On

the other hand, excessive exploration will drastically decrease

the performance of a learning algorithm, and in some cases

might be even harmful with respect to the learning results

themselves.

A popular strategy proposed to deal with this problem is the

0-greedy strategy (with 0�0<1). In the 0-greedy strategy, the

action with the highest Q-value is selected with probability

1−0. With probability 0 an action is selected randomly using a

uniform distribution over all actions. Here, the value of 0 has

obviously a great impact on the algorithm. Sutton compared

the performance of learning for different 0 values and

concluded that the result for a nonzero 0 is usually better than

that for 0 equal 0, which means that 0-greediness is effective

(Sutton et al., 1998). However, excessive exploration

becomes unnecessary after a period of an initial interaction

between the agent and the environment.

Therefore, we have decided to explore the possibility of

improving the simple 0-greedy strategy by appropriately

reducing 0 during the learning process. This will not only

improve the ability of agent to acquire new knowledge, but

will also allow the algorithm to avoid performance decrease

due to the constant value of 0. Thus, the task of finding the

optimal policy in Q-learning is transformed into searching for

an optimal solution in a combinatorial optimization problem.

Then the Metropolis criterion, the core of simulated

annealing is applied to the searching procedure in order to

control the balance between exploration and exploitation.

2.4 The Metropolis Criterion of Simulated Annealing

Simulating the annealing process of solids, the SA algorithm

is one kind of the computational processes resembling nature

and has been shown to be an effective approximate algorithm

to solve combinatorial optimization problems. An important

characteristic of the SA algorithm is that it does not require

specialist knowledge about how to solve a particular problem.

This makes the algorithm generic in the sense that it can be

used in a variety of optimization problems without changing

the basic structure of computations. The procedure employs

methods that originated from statistical mechanics to find

global minima of systems with very large degrees of freedom.

The major advantage of SA algorithm over the pure local

search method is the ability to avoid becoming trapped in a

local solution.

In SA algorithm, the transition probability P(i:j) of the

Metropolis criterion is used to decide whether the transition

from the current state (solution) i to the new state j occurs.

P(i:j) can be defined as follows:

()
() ()

() ()()()
1, if

 ,
exp , otherwise

f j f i
P i j

f j f i T

­ ≥°
→ = ®

−°̄
 (7)

where T is the temperature of annealing process, f(i) and f(j)

are the values of the cost function of the optimization

problem. f(i) and f(j) can be compared to the energy of tstates

i and j, respectively, in an annealing solid. Obviously, the SA

algorithm does not greedily reject all the suboptimal solutions,

and the optimal state can eventually be reached.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11997

2.5 The SA-Q-Learning Algorithm

In order to avoid blind exploration and repeatedly learning

after finding optimal solution, the Metropolis criterion was

introduced into Q-learning algorithm to select action, and the

SA-Q-learning algorithm was proposed.

Let P be a policy space, and p�P be a policy, the value

function V(p) of the policy p is the sum of all the Q-values

obtained for this policy.

() ()() ()1 2
1

, , , ,
n

p

n k k
k

V p V a a a Q s a
=

= =¦" (8)

If the policy p1=(a1,…,ai-1,ai,ai+1,…,an) transits to the policy

p2=(a1,…,ai-1,bi,ai+1,…,an), then the difference between their

values is

() () () ()2 1
, , .

i i i i
V p V p Q s b Q s a− = − (9)

The policy p1 is considered superior to p2 if V(p1)>V(p2). The

value of a policy is compared to the energy of the

microcosmic state in solid annealing.

The detailed of SA-Q-learning algorithm is as follows:

1. Initiate arbitrarily all Q(s,a) values;

2. Repeat (for each episode);

(a) Choose a random (initial) state s;

(b) Repeat (for each step in the episode);

i. Select an action ar in A(s) arbitrarily;

ii. Select an action ap in A(s) according to the 0-greedy

strategy;

iii. Let a8ap;

iv. Generate a random value � (0,1)� ;

v. If exp(((,) (,)))r pQ s a Q s a Temperatureξ < − , then let

a8ar;

vi. Execute the action a, receive immediate reward r,

then observe the new state s´;

vii. Update Q(s,a) by (6);

viii. Let s8s´.

Until s is one of the goal states.

(c) Recalculate temperature by the temperature-dropping

criterion.

Until the desired number of episodes has been researched.

Although the temperature-dropping criterion can be in

general arbitrary, we use the geometric scaling factor

criterion to reduce temperature according to the following

1 .k kT Tλ+ = ⋅ (10)

The cooling rate �<1 decides the decreasing velocity of the

temperature. Usually � is a constant factor close to 1, in order

to guarantee a slow decay of the temperature factor in the

algorithm.

In SA-Q-learning algorithm, no more than one action of the

policy is modified in steps 2(b)i–2(b)vi, and this corresponds

to the transition from one policy to another. Therefore, the Q-

learning algorithm can be regarded as the combinatorial

optimization in the policy space. Hence, the introduction of

the Metropolis criterion is rational.

Comparing the 0-greedy Q-learning algorithm, there are only

two additional steps in SA-Q-learning algorithm: the

randomized selection of action and the evaluation of the

Metropolis criterion. Therefore, there is no substantial

increase of complexity between them, as the two steps take

the constant time to evaluate. However, SA-Q-learning

algorithm eliminates the disadvantage of the probability 0

remaining constant, and the exploration will gradually be

reduced with the dropping temperature.

3. SIMULATION AND COMPARISON

We assume that all packets are with a fixed length of

1000bytes, and adopt a finite buffer length of 20packets in

the node. On the other hand, the offered loading of the

simulation varies between 0.6 and 1.2 corresponding to the

systems’ dynamics; therefore, higher loading results in

heavier traffic and vice versa.

In the simulation, four schemes of flow control agent, AIMD,

Q-learning flow controller (QFC) with general (0-greedy) Q-

learning and 0.1-greedy Q-learning algorithm, SAQFC

proposed are implemented individually in high-speed

network. The first scheme AIMD increases its sending rate

by a fixed increment (0.11) if the queue length is less than the

predefined threshold; otherwise the sending rate is decreased

by a multiple of 0.8 of the previous sending rate to avoid

congestion. Finally, for the other schemes, the sending rate is

controlled by the feedback control signal periodically. For

assuring SAQFC proposed applied to high-speed networks to

be achievable and feasible, comparisons among those

schemes are analyzed. Four measures, throughput, PLR,

buffer utilization, and packets’ mean delay, are used as the

performance indices. The throughput is the amount of

received packets at specified nodes (switches) without

retransmission. The status of the input multiplexer’s buffer in

node reflects the degree of congestion resulting in possible

packet losses. For simplicity, packets’ mean delay only takes

into consideration the processing time at node plus the time

needed to transmit packets. The details are delineated in the

following.

Sw1

SAQFC

Sw2

S2 D2

D1

L1

L1:80Mbps

S1

Fig. 3. The simulation model of network with two switches

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11998

The simulation model of high-speed network, as shown in

Fig.3, is composed of two switches, Sw1 with a control agent

and Sw2 with no controller are cascaded. In addition, two

sources, S1 and S2, are connected to Sw1, and two

destinations, D1 and D2, are connected to Sw2. The constant

output link L1 is 80Mbps. The sending rates of the sources

S1 and S2 are regulated by SAQFC. Training input epochs

are generated by a shuffle of loading pattern (0.6, 0.7, 0.8, 0.9,

1.0, 1.1, 1.2), each of which lasts for 0.6s; i.e., a training

epoch will last for a period of 4.2s.

As shown in Fig.4, the PLR is decrease as the training epochs

go on. After ten training epochs, the PLR for an epoch is less

than 2.5×10
-5

. It is worth mentioning that no packet loss

occurs in offered loading less than 1.0. In order to explore the

reliability and robustness of the controlled structure, an extra

loading 2.0 is incorporated as a disturbance at the 20th

training epoch. As shown in Fig.4, the disturbance

deteriorates the PLR temporarily, but SAQFC can adaptively

learn to remain at low PLR when the disturbance is removed.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5
x 10

-3

number of learning epochs

p
a
c
k

e
t

lo
ss

 r
a
ti

o

Fig. 4. PLR of SAQFC proposed, an extra loading 2.0 is

incorporated as a disturbance at the 20th training epoch

0.6 0.7 0.8 0.9 1 1.1 1.2
0

1

2

3

4

5

6

7
x 10

5

offered loading

th
ro

u
g

h
p

u
t

AIMD

QFC with 0-greedy Q-learning

QFC with 0.1-greedy Q-learning

SAQFC proposed

Fig. 5. Throughput versus various offered loading

The performance comparison of throughput, PLR, buffer

utilization, and mean delay controlled by four different kinds

of agents individually are shown in Fig.5-8. Analogously,

because of the reactive control, the throughput for the AIMD

method decrease seriously at loading of 0.9. Conversely, the

SAQFC methods remain a higher throughput even though the

offered loading is over 1.0. It is obvious that PLR of no

control is high, even though we adopt the AIMD method.

However, the SAQFC proposed can decrease the PLR

enormously with high throughput and low mean delay. The

SAQFC proposed has a better performance over QFC with 0-

greedy and 0.1-greedy Q-learning in PLR, buffer utilization,

and mean delay. It demonstrates once again that SAQFC

possesses the ability to predict the network behavior in

advance.

0.6 0.7 0.8 0.9 1 1.1 1.2
10

-8

10
-6

10
-4

10
-2

offered loading

p
a
c
k

e
t

lo
ss

 r
a
ti

o

AIMD

QFC with 0-greedy Q-learning

QFC with 0.1-greedy Q-learning

SAQFC proposed

Fig. 6. PLR versus various offered loading

0.6 0.7 0.8 0.9 1 1.1 1.2
0

5

10

15

20

offered loading

m
e
a
n

 b
u

ff
e
r

(p
a
c
k

e
t)

AIMD

QFC with 0-greedy Q-learning

QFC with 0.1-greedy Q-learning

SAQFC proposed

Fig. 7. Mean buffer versus various offered loading

0.6 0.7 0.8 0.9 1 1.1 1.2
10

-5

10
-4

10
-3

10
-2

10
-1

offered loading

m
e
a
n

 d
e
la

y
 (

se
c
)

AIMD

QFC with 0-greedy Q-learning

QFC with 0.1-greedy Q-learning

SAQFC proposed

Fig. 8. Mean delay versus various offered loading

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

11999

4. CONCLUSION

In high-speed networks, most packet losses result from the

dropping of packets owing to congested nodes. The reactive

scheme AIMD could not accurately respond to a time-

varying environment due to the lack of prediction capability.

In contrast, the Q-learning algorithm of reinforcement

learning can cope with the prediction problems and the

Metropolis criterion of simulated annealing can cope with the

balance between exploration and exploitation in Q-learning.

The proposed SAQFC, based on the Metropolis criterion

based Q-learning algorithm, can respond to the networks’

dynamics. Through a proper training process, SAQFC can

learn empirically without prior information on the

environmental dynamics. The sending rate of traffic sources

can be determined by the well-trained optimal Q-values.

Simulation results have shown that the proposed method can

increase the utilization of the buffer and decrease the PLR

simultaneously. Therefore, the SAQFC proposed not only

guarantees low PLR for the existing links, but also achieves

high system utilization.

ACKONWLEDGMENT

This work is supported by the National Natural Science

Foundation of China, under grant 60274009, and Specialized

Research Fund for the Doctoral Program of Higher Education,

under grant 20020145007.

REFERENCES

Chatovich, A., S. Okug and G. Dundar (2001). Hierarchical

neuro-fuzzy call admission controller for ATM networks.

Computer communications, 24 (11), 1031-1044.

Cheng, R. G., C. J. Chang and L. F. Lin (1999). A QoS-

provisioning neural fuzzy connection admission

controller for multimedia high-speed networks.

IEEE/ACM Transactions on Networking, 7 (1), 111-121.

Gevros, P., J. Crowcoft, P. Kirstein and S. Bhatti (2001).

Congestion control mechanisms and the best effort

service model. IEEE Network, 15 (3), 16-26.

Guo, M. Z., Y. Liu and J. Malec (2004). A new Q-learning

algorithm based on the metropolis criterion. IEEE

Transactions on System, Man, and Cybernetics-Part B:

Cybernetics, 34 (5), 2140-2143.

Hsiao, M. C., K. S. Hwang, S. W. Tan and C. S. Wu (2003).

Reinforcement learning congestion controller for

multimedia surveillance system. In: Proc. of the 2003

IEEE International Conf. on Robotics and Automation,

Taipei, Taiwan. 4403-4407.

Hsiao, M. C., S. W. Tan, K. S. Hwang and C. S. Wu (2005).

A reinforcement learning approach to congestion control

of high-speed multimedia networks. Cybernetics and

Systems, 36 (2), 181-202.

Kaelbling, L. P., M. L. Littman and A. W. Moore (1996).

Reinforcement learning: A survey. Journal of Artificial

Intelligence Research, 4 (1), 237-285.

Lestas, M., A. Pitsillides, P. Ioannou and G. Hadjipollas

(2007). Adaptive congestion protocol: a congestion

control protocol with learning capability. Computer

Networks: The International Journal of Computer and

Telecommunications Networking, 51 (13), 3773-3798.

Littman, M. L. (2001). Value-function reinforcement learning

in Markov games. Journal of Cognitive System Research,

2 (1), 55-66.

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller and

E. Teller (1953). Equation of state calculations by fast

computing machines. The Journal of Chemical Physics,

21 (6), 1087-1092.

Sutton, R. S. and A. G. Barto (1998). Reinforcement

Learning: an Introduction. MIT. Cambridge, MA. USA.

Watkins, C. J. C. H. and P. Dayan (1992). Q-learning.

Machine Learning, 8 (3), 279-292.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12000

