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Abstract: Recently, local modeling has been received much attention to identify the complex systems.
In local modeling, global system model is obtained by combining a number of local models, each of
which has simpler structure and has a range of validity less than the full range of operation. Since
the local models are identified for corresponding local operating regimes, the performance of the
global model is highly affected by the choice of the local operating regimes. This paper addresses
automatic selection algorithms of suitable local regimes in local modeling. Based on three criteria,
Kullback Discrimination Information (KDI), Akaike Information Criterion (AIC), and Mean Square
Error (MSE), new hybrid regime selection algorithms are developed by combining with regime
integration and partition processes. Numerical simulation studies illustrate the applicability of the
proposed selection algorithms.

1. INTRODUCTION

Recent technological development makes engineering systems
much more complex, and practical approaches to deal with
such systems easily are requested. Since these complex sys-
tems are usually composed by a huge number of components,
which are strongly related with each other and have wide
range of operation, it is difficult to construct a global model
applicable to the full range of operation. Hence, an idea of
local modeling (Johansen and Foss [1995], Johansen and Foss
[1997], Murray-Smith and Johansen [1997]), which closely
relates to piecewise affine systems, switching systems, and
hybrid systems (Roll [2003], Pepke et.al. [2004], Juloski et al.
[2006], Padletti et al. [2007]), has attracted much attention in
modeling of such complex systems.
Local modeling is a modeling framework that is based on
combining a number of local models, each of which has sim-
pler structure and has a range of validity less than the full
range of operation. The range in which each local model is
valid is called the operating regime. It is necessary to select
a number of operating regimes, which completely cover the
full range of operating range of the system based on suitably
chosen variables to characterize the operating conditions of
the system. Then, for each local operating, an adequate local
model is found and then corresponding local model validity
function is specified, which indicates the validity of the local
model for each local operating regime at the specified oper-
ating condition. A global model is constructed by combining
local models with an interpolation technique based on the local
model validity function.
Since the local models and local model validity functions are
closely related to the selection of local operating regimes, qual-
ity of the global model is highly dependent on the selection of
local operating regimes. This paper is concerned with regime
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selection in local modeling, and propose new hybrid automatic
regime selection algorithms, based on the observed input and
output data with three criteria, Kullback Discrimination Infor-
mation (KDI), Akaike Information Criterion (AIC) and Mean
Square Error (MSE), for integration and partition of regimes
to build up suitable local regimes. They are modifications of
previous algorithms (Uosaki et al [2002]) and efficiently find
the better regime selections compared to the previous ones
and prevent necessary increase of local regimes, which occurs
in LOLIMOT (local linear model tree) (Nelles [1997], Nelles
[2001]), by introducing parsimony principles.
Remainder of this paper is organized as follows. After intro-
duction of local modeling approach in section 2, the local
regime selection procedure is proposed with brief review of
three criteria of KDI, AIC and MSE in section 3. Section 4
presents results of some numerical examples. Finally, a con-
clusion is presented in Section 5.

2. LOCAL MODELING

Real systems usually have complex and nonlinear structures.
For such systems, any models have a limited range of operating
conditions and hence do not provide sufficient accuracy or
performance over the full range of operations R. Hence, a
number of local models, each of which has simpler structure
but serves well in a region less than the full range of operating
region, are developed and then a global model is constructed by
combining the local models with an interpolation technique. In
order to develop local models, first, the system’s full range of
operation is decomposed into a number of operating regimes
where simple local models can be applied. In this approach,
suitable choice of operating regimes is a key issue for building
up a good global model.
Consider nonlinear dynamical systems expressed by the fol-
lowing nonlinear autoregressive models with exogenous input
(NARX model):
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y(t) = f(y(t − 1), · · · , y(t − ny),

u(t − 1), · · · , u(t − nu)) + e(t),

= f(φ(t − 1)) + e(t) (1)

φ(t − 1) = (y(t − 1), · · · , y(t − ny),

u(t − 1), · · · , u(t − nu))T

Here y(t), u(t), and e(t) are output, input, and noise, respec-
tively, and φ(t − 1) is called the information vector. Here the
orders ny, nu are assumed to be known.
The total operating regime R is decomposed into a set of
disjoint operating regimes {Ri} such that

R = ∪nr

i−1Ri,

Ri ∩Rj = 0 (empty) i 6= j (2)

For each operating regime Ri, a local model

y(t) = f̂i(φ(t − 1)) + e(t) i = 1, . . . , nr (3)

is available, and the different local model is sufficiently valid
under different operating conditions. Thus, there may be sev-
eral local models Mi which are valid under some operating
conditions, while no local models are valid under other condi-
tions. The relative validity function ρ̃i(φ) ∈ [0, 1] indicates the
validity of each local model at the operating condition φ. The
local model Mi is accurate for the operating condition φ when
ρ̃i(φ) is close to one, while local model Mj is in accurate if
ρi(φ) is close to zero. And then, these local models with the
relative validity functions are combined to fit for the full range
of operating region as follows (Fig.1):

y(t) = f̂(φ(t − 1)) + e(t),

f̂(φ) =

nr
∑

i=1

f̂i(φ)wi(φ), (4)

wi(φ) =
ρ̃i(d)

nr
∑

j=1

ρ̃j(d)

where φ and d indicate the current operating condition and
the distance between the current operating condition φ and the
operating condition ci that fits most for specified local model
Mi, respectively, i.e.,

d = ‖φ − ci‖, i = 1, . . . , nr

ci = arg max
φ

ρ̃i(φ) (5)

For some cases, Gaussian functions are employed as the
validity functions.

ρ̃i(φ) = exp(−d2(φ, ci, σi)/2),

d(φ, ci, σi) =

√

(φ − ci)T σ−2
i (φ − ci), (6)

where σi is introduced to weight the influence of possible
different covariances. Since the global model (4) are weighted
combination of local models that are, of course, depend on the
choice of local regimes Ri, the regime selection will highly
affect on the modeling performance. Thus, suitable choice of
local regimes should be considered.

3. LOCAL REGIME SELECTION PROCEDURE

Here, automatic regime selection algorithms for suitable local
modeling are proposed. The algorithms are based on three

Fig. 1. Weighted combination of local models

criteria, Kullback Discrimination Information (KDI), Akaike
Information Criterion (AIC) and Mean Square Error (MSE),
for integration and partition of regimes to build up suitable
local regimes.

3.1 Kullback Discrimination Information (KDI)

Kullback Discrimination Information (KDI) is well-known
information criterion for model discrimination. It is a measure
for discriminating in favor of the model M1 over the model
M2, and is defined by

It[1 : 2; yt] =

∫

p1(y
t|ut−1) log

p1(y
t|ut−1)

p2(yt|ut−1)
dyt (7)

where pj(y
t|ut−1) is the probability density function of yt =

(y(t),y(t − 1), . . . , y(1))T given ut−1 = (u(t − 1), u(t −
2), . . . u(1)T under the model Mj (j = 1, 2), respectively.
Since KDI is non-negative and equals to zero if and only
the models are identical, it can be employed as the index of
distance between models M1 and M2.
Consider the following two stable autoregressive models with
exogenous input (ARX) models.

M1 : A1(q)y(t) = B1(q)u(t) + e(1)(t)

M2 : A2(q)y(t) = B2(q)u(t) + e(2)(t) (8)

where Aj(q), Bj(q) are

Aj(q) = 1 +

nj
∑

t=1

a
(j)
t q−t,

Bj(q) =

mj
∑

t=1

b
(j)
t q−t, (j = 1, 2) (9)

e(t)(j) is independently normally distributed with mean zero
and variance σ2

j , and q−1 is delay operator. Since the noise

distribution p(e(t)) is assumed to be normal as above, the
conditional probability distribution p(y(t)|u(t − 1)) can be
computed easily and KDI for these models is constructed as
follows (Hatanaka and Uosaki [1999]).

It[1 : 2; yt] = −
1

2

(

t + log

∣

∣Σ(1)
∣

∣

∣

∣Σ(2)
∣

∣

−
(

µ(1)t − µ(2)t
)(

Σ(2)
)

−1(
µ(1)t − µ(2)t

)

−trace
(

(

Σ(2)
)

−1
Σ(1)

)

)

(10)

where

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13505



Fig. 2. Models before and after integration

µ(j)t = Ej [y
t|ut−1] =

∫

∞

−∞

y(t)pj(y
t|ut−1)dy(t)

Σ(j) = Ej [(y
t − µ(j)t)(yt − µ(j)t)T ]

with conditional probability density function pj (y(t) |ut−1)
of y(t) given ut−1 = (u(t− 1), . . . , u(1)) (j = 1, 2). For two
local regimes, Ri and Ri+1 (i, i + 1 ∈ [1, · · · , nr]), which
are adjacent each other, it is examined whether it is better to
integrate these two local regimes Ri, Ri+1 into single regime
Ri,i+1 = Ri ∪ Ri+1, or not. The KDI for discriminating
in favor the local models Mi & Mi+1 for the local regimes
prior to integration over the model Mi,i+1 for the regime
Ri,i+1 = Ri ∪ Ri+1 after regime integration is calculated,
where

Mi & Mi+1 :

Ai(q)y(t) = Bi(q)u(t) + e(t), φ ∈ Ri

Ai+1(q)y(t) = Bi+1(q)u(t) + e(t), φ ∈ Ri+1
(11)

and

Mi,i+1 : Ai,i+1(q)y(t) = Bi,i+1(q)u(t) + e(t)

φ ∈ Ri,i+1 (12)

If the KDI is small, the distance between models Mi & Mi+1

and Mi,i+1 is small. It indicates the possibility to integrate the
adjacent regimes Ri and Ri+1 into single regime Ri,i+1.

3.2 Akaike Information Criterion (AIC)

When a global model is built up by using larger number of
local models, the fitting error becomes smaller. But, in some
cases, the phenomenon of ‘over-fit” is occurs; additional (un-
necessary) increase of local regimes adjust themselves to par-
ticular features of the particular realization of noise realization,
and the models obtained do not work for different possible
operating conditions. Hence idea of ‘parsimony principle’ is
introduced. It says that among the models which explain the
data well, the model with the smallest number of independent
parameters should be chosen. This indicates that the number
of local models, or the number of local regimes should not be
increased so much. One of the ideas to realize this parsimony
principle is introduction of a penalty for model complexity.
Akaike Information Criterion is an example. It is defined by

AIC =−2 log(maximum likelihood)

+2(number of parameters) (13)

For ARX models, AIC is given by

AIC = N log V + 2(n + m) (14)

where N is number of data, n and m are number of parameters
θ = [ai, bj ] in ARX models, respectively, and V is the Mean
Square Error (MSE) of the identified ARX models,

V (θ) =
1

N

N
∑

t=1

ε2(t, θ̂)

ε(t, θ̂) = y(t) − ŷ(t, θ̂) (15)

where θ̂ is the minimum mean square error estimate of the

ARX parameters θ = (a1, · · · , anj
, b1, · · · , bnu

)T and ŷ(t, θ̂)

is the prediction of y(t) based on the estimates θ̂. Hence, the
best choice of orders is

(n̂, m̂) = arg min
n,m

AIC (16)

In local modeling, the best choice of number of local regimes
is given by the number of local regimes minimizing the value
of AIC, since the number of parameters is proportional to the
number of local regimes.

3.3 Regime Selection

Both regime integration and regime partition process are ap-
plied to find good local regimes. The criteria MSE and AIC
are used for regime integration and regime partition processes,
and AIC is used for stopping the whole selection process (in-
tegration and partition).

Regime integration process When the KDI for discriminat-
ing in favor the local models Mi & Mi+1 for the local regimes
prior to integration in Ri & Ri+1 over the model Mi,i+1 for
the regime Ri,i+1 = Ri ∪ Ri+1 after regime integration is
small, it is likely that the distance between models Mi & Mi+1

and Mi,i+1 is small and integration of the adjacent regimes
Ri and Ri+1 into single regime Ri,i+1 is possible. Hence, the
regimes Rj and Rj+1, which give the minimum of KDI among
the KDI’s for all the combination of adjacent local regime
Ri and Ri+1 and their integration Ri,i+1, will be integrated
into single regime Ri,i+1. Then local model should be re-
constructed for the regime Rj,j+1.

Regime partition process For each local model, the ob-
servations and their estimates based on the local model are
compared. If the discrepancy measured by MSE is large, the
fitness is insufficient. It may come from that the regime is
too large to fit the local model. Hence the local regime with
the worst fitness or the largest MSE, will be divided into two
equi-partitioned local regimes and the local models for the
partitioned regimes are re-constructed.

Two algorithms, which conduct regime integration process
only and regime partition process only, respectively, are de-
veloped in (Uosaki et al. 2002) and their usefulness is shown
in local modeling. Here, new two hybrid algorithms, Series
Algorithm and Parallel Algorithm are proposed by combining
these regime integration and regime partition processes.

(a) Series Algorithm
Step 1 : Identify a model assuming the system is com-

posed by single regime.
Step 2 : Calculation of AIC.
Step 3 : Execution of regime partition process based on

MSE as above and re-calculation of AIC.
Step 4 : Comparison of AIC’s of Step 2 and Step 3. If

AIC of Step 2 is smaller, stop the regime partition with
the model prior to partition process and go to Step 5.
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Fig. 3. Series Algorithm

Otherwise, renew the model with after partition, and
go back to Step 2.

Step 5 : Calculation of AIC.
Step 6 : Execution of regime integration process based

on KDI as above and re-calculation of AIC.
Step 7 : Comparison of AIC’s of Step 5 and Step 6. If

AIC of Step 5 is smaller, stop the regime integration
with the model prior to integration and go to Step 8.
Otherwise, renew the model with after partition, and
go back to Step 5.

Step 8 : Repeat Steps 2 through 7 while AIC is decreas-
ing.

(b) Parallel Algorithm
Step 1 : Identify a model assuming the system is com-

posed by two regimes with equivalent volume.
Step 2 : Calculation of AIC.
Step 3 : Execution of regime partition process based on

MSE and regime integration process based on KDI as
above and re-calculation of AIC’s for each process.

Step 4 : Comparison of AIC’s after regime partition and
regime integration and choose the process with smaller
AIC.

Step 5 : Repeat Steps 2 through 4 while the smaller
AIC in Step 4 is decreasing.

4. NUMERICAL SIMULATION STUDIES

Numerical simulation studies have been carried out to examine
the applicability of the proposed regime selection algorithms.
Consider the following nonlinear time series model.

Fig. 4. Parallel Algorithms

x(t + 1) =























0.5x(t) + 1.0u(t) + 0.6u(t − 1)
u(t) ≥ 0.7
−1.2x(t) − 0.9u(t) + 1.8u(t − 1)
0.2 ≤ u(t) < 0.7
−0.5x(t) + 1.8u(t) + 1.3u(t − 1)
u(t) < 0.2

x(0) = 0,

y(t) = x(t) + e(t)

u(t) : random number distributed uniformly in [0,1]

(17)

where observation noises e(t) are white Gaussian with mean
0 and variance 0.1. Number of observations is N = 200,
and they are divided into two parts; the first half is used for
the regime selection and the latter half for validation. The
following ARX model is employed here as a local model.

ŷi(t + 1) = a
(i)
1 ŷ(t) + b

(i)
1 u(t) + b

(i)
2 u(t − 1),

i = 1, · · · , nr

The following final identification result, which is same by both
Series and Parallel Algorithms, is obtained after 8 steps of
regime partition and integration processes:
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(a) Series Algorithm

(b) Parallel Algorithm

Fig. 5. Variation of AIC

ŷ(t + 1) =































0.4968ŷ(t) + 0.9672u(t)
+0.5717u(t − 1) u(t) ≥ 0.6815

−1.2123ŷ(t) − 0.9114u(t)
+1.8238u(t − 1)

0.2478 ≤ u(t) < 0.6815
−0.6289ŷ(t) − 0.5738u(t)
+1.6242u(t − 1) u(t) < 0.2478

Here, corresponding variations of AIC are shown in Fig.5(a)
for Series Algorithm, and Fig.5(b) for Parallel Algorithm, re-
spectively. By comparison of the observations and the es-
timates by the proposed algorithm as shown in Fig.6, the
good performance of the identified model can be found. It
should be noted that, regime selection process, which employs
Regime Partition Algorithm (Uosaki et al. 2002) with parti-
tion process only, stops at the stage with 6 sub-regions cor-
responding to AIC=0.5416 and never finds the optimal result
corresponding to AIC=0.3808. This and other examples not
shown here (Manabe [2001]) indicate the applicability of the
proposed algorithms.

5. CONCLUSIONS

This paper has considered automatic selection algorithm of
suitable operating regime in local modeling. Based on three
criteria, Kullback Discrimination Information (KDI), Akaike
Information Criterion (AIC), and Mean Square Error (MSE),

Fig. 6. Modeling result (Number of regimes is 3)

new two regime selection algorithms, Series Algorithm and
Parallel Algorithm, are proposed by combining regime integra-
tion and partition processes. Though their better performance
in local modeling has been shown here, the algorithms do not
assure the best solution analytically, and theoretical analysis
should be pursued.
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