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Abstract: The problem of robust output-feedback control for a class of uncertain switching fuzzy control 
systems is investigated. Asymptotic stability of the observer, based on the error equation, is obtained by 
using the switching technique and the common Lyapunov function method. Switching laws are also 
designed via using single Lyapunov function method for observer equation such that the closed-loop 
system is asymptotically stable. The sufficient condition for the asymptotic stability of the uncertain 
switching fuzzy control system is transformed into standard solvable LMIs. An illustrative example along 
with the respective simulation results is give to demonstrate the effectiveness of the proposed design 
synthesis. 

 

1. INTRODUCTION  

Recently, the research activities on the synergy of fuzzy 
system based controls,  as an important intelligent control 
approach, combined with some of math-analytical control 
theories has attracted great attention. In particular, the class 
of Takagi-Sugeno (T-S) fuzzy models has been found to be 
most effective as system model in various fuzzy system 
based methods. Based on T-S fuzzy model representations 
and the feedback control strategy, stability and robust 
analysis and design as well as handling parameter 
uncertainties  for fuzzy systems have acquired considerable 
number of fruitful results(see e.g., Berenji, 1992; Dimirovski, 
et al., 2006; Lee, et al., 2001; Lo and Lin 2004; Ma, et al., 
1998; Tanaka, et al., 1996; Tong and Zhou, 2001; Wang, et 
al., 1995; Wang, et al., 1996;). 

Also recently, the switching systems, which are an important 
class of hybrid systems and have wide background and 
technological applications, have also been one of the main 
research focuses. In turn, considerable number of fruitful 
results in analysis and design of switching systems have been 
derived too, (see e.g., Branicky, 1998; Liberzon and Morse 
1999; Wang, et al., 2003; Zhao and Spong, 2001; Zhao and 
Nie, 2003; Zhao and Dimirovski, 2004). Moreover, 
considerable ongoing research is oriented towards the 
synergetic use of fuzzy system and switched system concepts 
for the purpose of designing efficient and robust control 
systems (see e.g., Hiroshi, et al., 2003; Hiroshi, et al., 2006; 
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Tanaka, et al., 2000; Tanaka, et al., 2001; Yang, et al., 2006a; 
Yang, et al., 2006b). 

Conceptually, a switching fuzzy system is a type of switching 
systems in which all of the respective subsystems are fuzzy 
systems. Many nonlinear systems with switching features can 
be modeled as switching fuzzy systems. However, the results 
for switching fuzzy systems in the literature seem to be rather 
limited, (see e.g., Hiroshi, et al., 2003; Hiroshi, et al., 2006; 
Tanaka, et al., 2000; Tanaka, et al., 2001; Yang, et al., 2006a; 
Yang, et al., 2006b) and references therein. Zhao and 
Dimirovski (2004) have given a profound study of the 
problems of stability and controller switching for switching 
fuzzy systems. Hiroshi, et al. (2001) and Tanaka, et al. (2000) 
have developed fuzzy system based controls employing a 
fuzzy system with two level of fuzzy rules. Hiroshi, et al. 
(2006) designed a switching fuzzy controller via the 
augmented system design method.  Following these results 
Yang, et al. (2006a) and Yang, et al. (2006b) have developed 
a novel approach to representation modeling, stability 
analysis, and synthesis design for switched fuzzy systems. 

The present study, while exploiting previous results in Tong 
and Zhou, (2001), is focused on the robust control problem 
for fuzzy systems due to its considerable importance for 
practical applications. In Tong and Zhou, (2001), a fuzzy 
state feedback controller and robust observer are designed on 
the background of fuzzy modeling of the uncertain nonlinear 
process to be controlled. On the grounds of the methodology 
of linear matrix inequalities (LMIs), fuzzy state feedback 
gain matrix and fuzzy observer gain matrix algorithms are 
given. Since the states of system are not always measurable, 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4773 10.3182/20080706-5-KR-1001.2011



 
 

     

 

the observer error )(te  is also unknown, and therefore )(te  
can not be used to design the switching law. 

The present study considers uncertain switching fuzzy 
systems and finds an alternative solution that overcomes the 
deficiency of results in Tong and Zhou, (2001). For this 
purpose, we reconstruct the system states by means of 
observer design and study stability as to ensure its stable 
asymptotic behaviour. The observer error is made to 
converge to zero under an arbitrary switching law, which has 
been achieved by using the common Lyapunov function 
method. The switching law is designed via single Lyapunov 
function method for the observer such that the overall closed-
loop control system is guaranteed to be asymptotically stable.  
The remainder is written up as follows. Section II presents 
the representation modeling of the plant and the derivation of 
the designed fuzzy output-feedback controller. In Section III, 
the stability analysis and the design synthesis of the 
switching law are carried out; here the main new result is 
given. Section IV presents an illustrative example along with 
the respective numeric and simulation results. Conclusion 
and references are given thereafter. 

2. FUZZY OUTPUT-FEEDBACK CONTEOLLER DESIGN 

Consider the switching fuzzy system with uncertainty. The T-
S fuzzy model of every subsystem is described as follows: 

  then,  is  )(  and  is )(  if: 11
i
pp

ii MtzMtzR σσσ "  

σσ

σσσσσ

NitxCty
tuBBtxAAtx

i

iiii

"
�

,2,1            ),()(
)()()()()(

==
Δ++Δ+=

               (1) 

In here the symbols represent the following: i
jMσ  represent 

fuzzy subsets; T
p(t) ,z(t),  (t),zztz ][)( 21 "=  is the premise 

vector; },2,1{ lM "=∈σ  is a piecewise constant function 

representing the switching signal; nRtx ∈)(  is the system 

state vector; mRtu ∈)(σ  is the system input vector; 
ϑRty ∈)(  is the system output vector; 

,nn
i RA ×∈σ ,mn

i RB ×∈σ
n

i RC ×∈ ϑ
σ are the system matrices; 

and iAσΔ , and iBσΔ   are time varying matrices of appropriate 
dimension, which represent uncertainties of the system. 

Since the system states often are not directly measurable, an 
observer for each subsystem of (1) has to be designed and 
implemented in order to reconstruct them via the 
measurements of the system input and output. For System (1), 
design the rules of switching subsystem state observer 
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where, nRtx ∈)(ˆ  and ϑRty ∈)(ˆ  are the state and the output 
vectors, respectively, of the fuzzy observer, and iLσ  
represents observer gain matrix for the i -th fuzzy rule of the 
σ -th switching subsystem. 

Since the system states often are not directly measurable, we 
consider the switching signal ))(ˆ( txσσ = , which depends on 

observer states. Suppose lΩΩΩ
~,~,~

21 " is a partition of nR , i.e. 

}0{\~
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n
l
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i R=Ω
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∪ , and ∩ jiji ≠Φ=ΩΩ ,~~ . The switching 

signal is rtx == ))(ˆ(σσ , which depends on lΩΩΩ
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21 " . 

when rtx Ω∈
~)(ˆ , the switching signal ))(ˆ( txσ  subjects to 
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21 "  and the switching law σ  will be designed later. 

It can be shown the overall switching fuzzy observer is 
represented by 
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where,
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function of )(tz j belonging to fuzzy set i
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Substituting )(ty  and )(ˆ ty into Eq. (3) yields 
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Now the task is to design the fuzzy feedback controls that are 
represented as follows: 

  then,  is )(  and  is  )(  if: 11
i
pp
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The overall switching fuzzy controller is then represented by 
means of 
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Upon introducing the observer error )(ˆ)()( txtxte −= , we can 
obtain: 
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3. STABILITY ANALYSIS AND SWITCHING LAW 
DESIGN 

In this section, we give sufficient conditions for global 
asymptotic stability of the uncertain switching fuzzy control 
system (1). For observer equation (10), we choose a common 
Lyapunov function, such that the observer error )(te  is 
asymptotically stable under arbitrary switching law. With 
single Lyapunov function method, a switching rule is 
designed by using observed state )(ˆ tx   such that the output-
feedback control system is asymptotically stable. In what 
follows the next assumption and lemma are needed. 

Assumption 1. The parameter uncertainty matrices are norm 
bounded 
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where, riD , riE1 and riE2  are constant matrices of appropriate 
dimension, )(tFri is a unknown time varying matrix, 
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Lemma 1. Given constant matrices X and Y , for 
arbitrary 0>ε , the following inequality 
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Lemma 2: Given constant matrices D  and E  and a 
symmetric constant matrix Y of appropriate dimension, the 
following inequality holds: 
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Then there is a switching law },,2,1{)( lMt "=∈= σσ , such 
that the uncertain switching fuzzy system (1) is global in 
asymptotically stable. 

Proof. Consider the Lyapunov function 
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which means that under arbitrary switching law, observer 
error satisfies 0)(lim =
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t
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Next, we design a switching law as follows: 
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Let )(ˆ)(ˆ))(ˆ( 11 txPtxtxV T= and )()())(( 22 tePteteV T= , and then 
we obtain: 

(1)The time derivative of ))(ˆ(1 txV  satisfies 
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According to Lemma 1, the second term on the right hand 
side of (17) is 
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Substituting (18) into (17) gives 
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According to Lemma 2 and Assumption 1, the first term on 
the right hand side of (20) is 
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According to Lemma 1and Assumption 1, the second term on 
the right hand side of (20) is 
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Substituting (21) and (22) into (20), results in 
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In view of (19), (23) and (13), we have 
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From (14) and (15), we know that under the switching law 
(16), for arbitrary 0)(ˆ ≠tx and 0)( ≠te , i.e., 0)( ≠tx , 

0)( <tV�  holds. Therefore, the closed-loop system is 
asymptotically stable, and the observer error )(te  
asymptotically converges to zero. 

From Theorem 1, after an appropriate analysis, the stability 
conditions for the uncertain switching fuzzy control system 
are transformed into the following matrix inequalities: 
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Observe closely  matrix inequalities (25) and (26). It should 
be noted, we may first compute inequality (26) to obtain the 
common Lyapunov function 2P  and the observer gain riL , 
and then to substitute riL into (25) to get the single Lyapunov 
function 1P  and the feedback gain rjK . Furthermore, the 
inequalities (25) and (26) can be transformed into LMIs. 

To this end, let it be defined 

ri
T
rirjri

T
ri

T
rjri

T
ri

ri
T
rirjriri

T
rjriririj

EEICNNCAPPA

EEICLAPPCLAT

1122

1122 )()(

++−−+=

++−+−=
 

where riri LPN 2=  

Now, using Schur’s complement, we obtain the following 
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Via substituting the result riL of the LMI (27) into inequality 
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of both sides of inequality (25) by 1
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−= PQ , we obtain the 
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T
rjri

T
ririj LCCLMBBMQAQA +−−+=Φ  

Thus, the stability conditions of the uncertain switching fuzzy 
control system are transformed into the LMIs (27) and (28), 
which are tractable by LMI Toolbox of the Mathlab. 
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4. SIMULATION EXAMPLE 

Consider the following switching fuzzy system: 

  then,  is  (t)  if: 1
111

1
1 MzR  

)()(
)()()()()(

11

111111111

txCty
tuBBtxAAtx

=
Δ++Δ+=�

 

  then,  is  (t)  if: 2
111

2
1 MzR  

)()(
)()()()()(

12

112121212

txCty
tuBBtxAAtx

=
Δ++Δ+=�

 

  then,  is  (t)  if: 1
211

1
2 MzR  

)()(
)()()()()(

21

221212121

txCty
tuBBtxAAtx

=
Δ++Δ+=�

 

  then,  is  (t)  if: 2
211

2
2 MzR  

)()(
)()()()()(

22

222222222

txCty
tuBBtxAAtx

=
Δ++Δ+=�

                  (29) 

where, 

,
101.0
3.910

11 ⎥⎦
⎤

⎢⎣
⎡

−
−−

=A ,
0
1

11 ⎥⎦
⎤

⎢⎣
⎡=B [ ];1011 =C  

,
5.432

1.00
12 ⎥⎦

⎤
⎢⎣
⎡

−−
=A ,

1.0
1

12 ⎥⎦
⎤

⎢⎣
⎡=B [ ];1012 =C  

,
1.01.0

1010
21 ⎥⎦

⎤
⎢⎣
⎡

−
−

=A ,
1
2

21 ⎥⎦
⎤

⎢⎣
⎡=B [ ];1021 =C  

,
9.08

8.00
22 ⎥⎦

⎤
⎢⎣
⎡

−−
=A ,

1
2.1

22 ⎥⎦
⎤

⎢⎣
⎡=B [ ];1022 =C  

;
01
12.0

1211 ⎥⎦
⎤

⎢⎣
⎡−

== DD ;
01
101.0

2221 ⎥⎦
⎤

⎢⎣
⎡== DD  

;
00
2.01

112111 ⎥⎦
⎤

⎢⎣
⎡== EE ;

00
15.0

122121 ⎥⎦
⎤

⎢⎣
⎡== EE  

;
6.0

0
212211 ⎥⎦

⎤
⎢⎣
⎡== EE ;

8.0
0

222221 ⎥⎦
⎤

⎢⎣
⎡== EE  

⎥⎦
⎤

⎢⎣
⎡====

t
t

tFtFtFtF
cos0

0sin
)()()()( 22211211 . 

The membership functions chosen are as follows: 

),1/(11)()( 1
1
21

1
11

4
11

x
MM exx −+−== μμ  

),1/(1)()( 1
2
21

2
11

4
11

x
MM exx −+== μμ  

By carrying out computations for LMI (27), we obtain 

⎥⎦
⎤

⎢⎣
⎡=

3287.01240.0
1240.02511.0

2P ; 

[ ]
[ ] ;6392.227228.53

;7707.146903.23

12

11
T

T

L

L

−=

−= [ ]
[ ] ;0788.131609.14

;1755.52002.8

22

21
T

T

L

L

−=

=
 

Upon choosing 8.0,2.0 21 == λλ , computing LMI (28) yields 

⎥⎦
⎤

⎢⎣
⎡=

0303.00223.0
0223.00199.0

1P ; 

[ ]
[ ]
[ ]
[ ];8234.1121912.70

;8234.1121912.70
;5408.6029297.374

;5408.6029297.374

22

21

12

11

=
=

−−=
−−=

K
K
K
K

 

let 

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

ˆ ( )[( )
ˆ ˆ( ) ( ) , ( ) 0

ˆ] ( ) 0

T T
i i j

n
i i j

T T
i j j i ij

x t A B K P

x t R P A B K x t

P L C C L P x t

⎧ ⎫−
⎪ ⎪⎪ ⎪Ω = ∈ + − ∀ ≠⎨ ⎬
⎪ ⎪

+ + Π <⎪ ⎪⎩ ⎭

 

2 2 2 1

2 1 2 2 2

1 2 2 2 2 1 2

ˆ ( )[( )
ˆ ˆ( ) ( ) , ( ) 0

ˆ] ( ) 0

T T
i i j

n
i i j

T T
i j j i ij

x t A B K P

x t R P A B K x t

P L C C L P x t

⎧ ⎫−
⎪ ⎪⎪ ⎪Ω = ∈ + − ∀ ≠⎨ ⎬
⎪ ⎪

+ + Π <⎪ ⎪⎩ ⎭

 

Then 
2

1 2 \{0}RΩ Ω =∪ . we design a switching law as follows: 

⎩
⎨
⎧

ΩΩ∈
Ω∈

=
.\)(ˆ,2

)(ˆ,1
))(ˆ(

12

1

tx
tx

txσ  

In Matlab-Simulink carried computer simulation the initial 
condition Tx ]2,1[)0( −=  has been adopted. This way the 
simulation results depicted in Figures 1 to 3 have been 
obtained. Figure 1 and Figure 2 show the system state and the 
observer state trajectories respectively, i.e. these represent the 
respective evolution time histories. The state observer error 
trajectories are depicted in Figure 3. These trajectories 
indicate that uncertain switching fuzzy system (29) is 
asymptotically stable via switching law (16), and also the 
observer error )(te  asymptotically converges to zero at the 
same time. 

)(1 tx

)(ˆ1 tx

 
Fig. 1. The trajectory of state )(1 tx  and observer state )(ˆ1 tx  

)(2 tx

)(ˆ2 tx

 
Fig. 2. The trajectory of state )(2 tx  and observer state )(ˆ2 tx  
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Fig. 3. The observer error trajectory 

6. CONCLUSIONS 

The problems of simultaneous output-feedback control and 
observer design for a class of uncertain switching fuzzy 
control systems has been investigated and a novel solution 
derived. Observers for subsystem states and a switching law 
are designed. A sufficient condition for asymptotic stability 
of the overall system in the closed-loop is derived. The 
simulation results demonstrate the feasibility of this design 
method, its effectiveness, and the achievable control 
performance of the designed system, which is superior to 
many results reported in the literature. 
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