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Abstract: The problem of robust output-feedback control for a class of uncertain switching fuzzy control
systems is investigated. Asymptotic stability of the observer, based on the error equation, is obtained by
using the switching technique and the common Lyapunov function method. Switching laws are also
designed via using single Lyapunov function method for observer equation such that the closed-loop
system is asymptotically stable. The sufficient condition for the asymptotic stability of the uncertain
switching fuzzy control system is transformed into standard solvable LMIs. An illustrative example along
with the respective simulation results is give to demonstrate the effectiveness of the proposed design

synthesis.

1. INTRODUCTION

Recently, the research activities on the synergy of fuzzy
system based controls, as an important intelligent control
approach, combined with some of math-analytical control
theories has attracted great attention. In particular, the class
of Takagi-Sugeno (T-S) fuzzy models has been found to be
most effective as system model in various fuzzy system
based methods. Based on T-S fuzzy model representations
and the feedback control strategy, stability and robust
analysis and design as well as handling parameter
uncertainties for fuzzy systems have acquired considerable
number of fruitful results(see e.g., Berenji, 1992; Dimirovski,
et al., 2006; Lee, et al., 2001; Lo and Lin 2004; Ma, et al.,
1998; Tanaka, et al., 1996; Tong and Zhou, 2001; Wang, et
al., 1995; Wang, et al., 1996;).

Also recently, the switching systems, which are an important
class of hybrid systems and have wide background and
technological applications, have also been one of the main
research focuses. In turn, considerable number of fruitful
results in analysis and design of switching systems have been
derived too, (see e.g., Branicky, 1998; Liberzon and Morse
1999; Wang, et al., 2003; Zhao and Spong, 2001; Zhao and
Nie, 2003; Zhao and Dimirovski, 2004). Moreover,
considerable ongoing research is oriented towards the
synergetic use of fuzzy system and switched system concepts
for the purpose of designing efficient and robust control
systems (see e.g., Hiroshi, et al., 2003; Hiroshi, et al., 2006;
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Tanaka, et al., 2000; Tanaka, et al., 2001; Yang, et al., 2006a;
Yang, et al., 2006D).

Conceptually, a switching fuzzy system is a type of switching
systems in which all of the respective subsystems are fuzzy
systems. Many nonlinear systems with switching features can
be modeled as switching fuzzy systems. However, the results
for switching fuzzy systems in the literature seem to be rather
limited, (see e.g., Hiroshi, et al., 2003; Hiroshi, et al., 2006;
Tanaka, et al., 2000; Tanaka, et al., 2001; Yang, et al., 2006a;
Yang, et al, 2006b) and references therein. Zhao and
Dimirovski (2004) have given a profound study of the
problems of stability and controller switching for switching
fuzzy systems. Hiroshi, et al. (2001) and Tanaka, et al. (2000)
have developed fuzzy system based controls employing a
fuzzy system with two level of fuzzy rules. Hiroshi, et al.
(2006) designed a switching fuzzy controller via the
augmented system design method. Following these results
Yang, et al. (2006a) and Yang, et al. (2006b) have developed
a novel approach to representation modeling, stability
analysis, and synthesis design for switched fuzzy systems.

The present study, while exploiting previous results in Tong
and Zhou, (2001), is focused on the robust control problem
for fuzzy systems due to its considerable importance for
practical applications. In Tong and Zhou, (2001), a fuzzy
state feedback controller and robust observer are designed on
the background of fuzzy modeling of the uncertain nonlinear
process to be controlled. On the grounds of the methodology
of linear matrix inequalities (LMIs), fuzzy state feedback
gain matrix and fuzzy observer gain matrix algorithms are
given. Since the states of system are not always measurable,
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the observer error e(¢) is also unknown, and therefore e(¢)
can not be used to design the switching law.

The present study considers uncertain switching fuzzy
systems and finds an alternative solution that overcomes the
deficiency of results in Tong and Zhou, (2001). For this
purpose, we reconstruct the system states by means of
observer design and study stability as to ensure its stable
asymptotic behaviour. The observer error is made to
converge to zero under an arbitrary switching law, which has
been achieved by using the common Lyapunov function
method. The switching law is designed via single Lyapunov
function method for the observer such that the overall closed-
loop control system is guaranteed to be asymptotically stable.
The remainder is written up as follows. Section II presents
the representation modeling of the plant and the derivation of
the designed fuzzy output-feedback controller. In Section III,
the stability analysis and the design synthesis of the
switching law are carried out; here the main new result is
given. Section IV presents an illustrative example along with
the respective numeric and simulation results. Conclusion
and references are given thereafter.

2.FUZZY OUTPUT-FEEDBACK CONTEOLLER DESIGN

Consider the switching fuzzy system with uncertainty. The T-
S fuzzy model of every subsystem is described as follows:

R :if z(t)is M_,---and z,(r) is M_,, then
x(1) = (A + Ad;)x(1) + (B, + AB Ju,, (1)
y(1) = Cyx(2), i=12,---N,

In here the symbols represent the following: M ;. represent

(M

fuzzy subsets; z(t) =[z(t).z,(t), -~ .z,()]" is the premise
vector; o e M ={1,2,---1} is a piecewise constant function
representing the switching signal; x(r) € R" is the system
state vector; u_(f)eR"

(1) e R? is the

is the system input vector;

system output vector;

A, eR"™, B,eR"™, C.eR* are the system matrices;
and A4, and AB_ are time varying matrices of appropriate
dimension, which represent uncertainties of the system.

Since the system states often are not directly measurable, an
observer for each subsystem of (1) has to be designed and
implemented in order to reconstruct them via the
measurements of the system input and output. For System (1),
design the rules of switching subsystem state observer

O, :if z/(t) is M_,---and z,(¢)is M_,, then

3(t) = A0 + B, (6) + L, (y(1) = $(1))
P(1) = Cx(1), i=12,-N,

where, %(f)e R” and j(¢) € R are the state and the output

(@)

vectors, respectively, of the fuzzy observer, and L

represents observer gain matrix for the 7 -th fuzzy rule of the
o -th switching subsystem.

Since the system states often are not directly measurable, we
consider the switching signal o = o(x(¢)) , which depends on

observer states. Suppose £~2, ,§~22,~~-£~2, is a partition of R", i.e.
1 ~ ~ ~

UQi =R"\{0} , and QiﬂQj =®,i# j . The switching
i=1

signal is o =o(x(¢t)) =r, which depends on ﬁl,ﬁz,---ﬁl .

when x(¢) € §N2r , the switching signal o(x(f)) subjects to

i) eq,

R ~,reM
x()eQ,

A 1
v, (x(t)) =
(x(2) { 0
That is, if and only if o=c(G@)=r , v.(X(#)=1 .
ﬁl,ﬁz,---ﬁl and the switching law o will be designed later.

It can be shown the overall switching fuzzy observer is
represented by

. /| N,
3(1) = XY, GO, (2O A0 + B, (1)]

r=l i=1 (3)
I N,
+ 3 2, GO (O, ((0) = 5(0)
30 = X3, GO), (0)C,5(0) O
[T, 2,00
where, u,(z(t)) = Nflp , 0< yri(z(t))ﬁl ,
[Tz, )

i

J

N, .
> U, (z(t)): 1, and M, (z,(t)) represents the membership
I=1 C

function of z,(¢) belonging to fuzzy set M, .

Substituting y(¢) and p(¢) into Eq. (3) yields

20 = Y3 v, (R(0)) 1, (2(0) A, [7(0) + B, (1)]
s 5)
+ 23 3w GO (2Ot (ZO)L,C (6(0) = 50))

r=l i=l j

.

Now the task is to design the fuzzy feedback controls that are
represented as follows:
K :if z/(t) is M., ---and z,(t)is M;,, then
u () =-K_x(), i=12,---N, (6)

The overall switching fuzzy controller is then represented by
means of

u, (1) ==Y 3, (R(0) p, (2(0)K ,(2) )

r=1 i=l
Upon introducing the observer error e(¢) = x(¢) — x(¢) , we can
obtain:

4774



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

o N N (v, ()AC(t))ﬂr;(Z(t))ﬂff (z(®))(4,; + A4,
x(t) = ZZZ{_ (B, +AB,)K,)x(t) }

=l i=1 j=1

@®)
+ 223w, GO (Ot (OB, + AB, K et)
. /| N, N,
X(t) = 22> v, GOty (2(O) 1, (2(D))(A,; — B K )E()
r=l i=l j=1 )
/| N, N,
+ ZZZW (), (2Ot (2L, C (1)
LN (v, GO (20, (2(D)( A, +
= ZZZ{M ~L,C,)e(t) } (10)

I N, N,
£ 3, GO, )i, (2(O)NAL,, —AB, K, )3(1)
r=l i=l j=1
3. STABILITY ANALYSIS AND SWITCHING LAW
DESIGN

In this section, we give sufficient conditions for global
asymptotic stability of the uncertain switching fuzzy control
system (1). For observer equation (10), we choose a common
Lyapunov function, such that the observer error e(?) is

asymptotically stable under arbitrary switching law. With
single Lyapunov function method, a switching rule is
designed by using observed state x(¢) such that the output-

feedback control system is asymptotically stable. In what
follows the next assumption and lemma are needed.

Assumption 1. The parameter uncertainty matrices are norm
bounded

[AAri ABri] =D,F, (t)[Elri EZri]
where, D,,, E,,,and E,, are constant matrices of appropriate

dimension, F,(¢#) is a unknown time varying matrix,

SatiSfying FnT ([)E¢ (t) <I > i= 1’27 o ‘Nr .

Lemma 1. Given constant matrices X and Y , for

arbitrary ¢ > 0, the following inequality

1

XY+Y"'X<eX"X+=Y"Y
&

holds.

Lemma 2: Given constant matrices D and £ and a
symmetric constant matrix Y of appropriate dimension, the
following inequality holds:

Y+DFE+E"F'D" <0
where F satisfies F”F <R, if and only if for some & >0

Y+eDDT +¢'ETE <0

Theorem 1. Suppose there exist positive definite
matrix £, and P, , controller gain K, and observer gain L, , and

1
parameter A, €[0,1],Y 4, =1, such that

r=0

(Ari - L;~iC;j)TPz + Pz (Ari - Lrier) +1+ Elrn'Eln' (1 1)
+2P,D.D.P, <0

/

ZI/LF,_U. <0 (12)

where
Frij = (Ari - Brinj)Tl)l + })I(Ari - B”iK’"j) + })IL”CUC;LZR " Hrij
I1,; = (E —Ezerrj)T(E ~E2Ky)

1ri 1ri

Then there is a switching lawo =o(t) e M ={1,2,---,1} , such
that the uncertain switching fuzzy system (1) is global in
asymptotically stable.

Proof. Consider the Lyapunov function

V() =3 (Ri(1) + e (1) Pel?) (13)

where P, and P, are two positive definite matrices. For any

e(t) # 0, it follows form (11) that
er(t)[(Arf - Lr[C/;/‘)T}DZ + })2 (Ari - Lr[C;j/) + I

+2P,D_D'P,Je(t) <0

ritri

(14)
+ETE

1ri™=1ri

which means that under arbitrary switching law, observer
error satisfies lime(¢) =0.

t—o

For any x(¢) # 0, inequality (12) yields

ZI:/wT(z)r x(t)<0

rij
Therefore there exists at least a », such that

)%T(t)[(Ari - BriKrj)Tl)l +R(4, - BriKrj)

. (15)
+PL,C,C LB +T1,,]%(t) <0
For arbitraryr e M , let
)’eT(t)[(Arl - Bl‘iK;jj)Tl)l
Q, =.x(t)eR"+ B(4, - B,K,) V() =0

+PL.C.C'I'P +TI

i i rij

1x(@) <0

then [JQ,=R"\{0} , construct set Q=0 ..,

_ r=1__ .
Q,=Q,-J% , it is apparent that | JQ, =R"\{0}, and

i=l1 i=1
QNQ, =d,i= .
Next, we design a switching law as follows:
c(F@) =r,if $(t)eQ

reM (16)

Let V,(x(t)) = " (1)Px(t) and V,(e(t)) = €’ (t)Pe(t) , and then
we obtain:

[)

(1)The time derivative of V;(x(¢)) satisfies
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V(&) = 2 (OP&(0) + & () PA(0)
2 e [v, GO, () 1, (2()ZT OI(A,
- Z‘Z; ~B,K,)' B +P(4,-B,K, )]fc(t)}
L2 2 v, GO, (20, (2(0)e() (L,C,) BE(1)
r |

+

a7

According to Lemma 1, the second term on the right hand
side of (17) is

¢ (1)(L,C,)" Bi(t)+ & (B(L,C,)e(t)

<z"(t)BL,C,.CLL.Px(t)+ e (t)e(t)

IRy Ay vy ]

(18)

Substituting (18) into (17) gives

v, (RO 1, (2(0) 1, (2(0))

'QT (t)[(A)z - BriK;y' )T Pl + Pl (Ari - BriK;y')
+PL,C CIL P1%(?)

i i

M=
M=

I

Il
~.

I

V,(2(0)) <

r=1

!

+Z.

r=li

,

2V RO, (2(0) 1, (2(D)e” (D)e(t)

j=

(19)

M=

(2)The time derivative of V,(e(¢)) is

V,(e(t) =" (t)Pe(t) + " (H)Poé(1)

L& [0, GO, (20 (2(0)e” (OI(A,; + A4, =L, C,) Py
B IZ—;;JZ—;{+ Py (4, +AA, _Ln‘er)]e(t) }
+2.2

N,
r=1i=1 j=1

N (v, (RO (2(O) p,y (2(O)E (0)(A4,, —ABK )" Pre(?)
{+ e’ (t)P,(A4,, — AB, K, )X(1)] }
(20)
According to Lemma 2 and Assumption I, the first term on
the right hand side of (20) is
(Ari + AAri - Lricyj)sz + PZ(Ari + AAn‘ - Ln'er)

=(4, _Lrier)T})Z +Py(4, _Lrier)
+P,DF.()E,,+E.F!(t)DP,

ritori 1ri 1ri® ri

<(4,~L,C,) P, +P(4,~L,C,)+PD,DLP, + E

ri ri 1 ri*"ri
ij=12,--N, (1)

According to Lemma land Assumption 1, the second term on
the right hand side of (20) is

T-E

1ri™=1ri

3 (6)(Ad,, — AB,K

ritrrj

) Pe(t) +e' () P(A4, — AB, K, )3 (t)

. (22)
< e’ ()PD,DLPelt)+ 3" (DT1,,3(0)
where IT,; = (E,,, _E2riKrj)T(Elri —E,,K,;)
Substituting (21) and (22) into (20), results in
e | (RO 1, (20, (2(1))e" (D(A,,
V(e)< Y>> 4-L,C,) P, +P(4,-L,C,)
r=l i=l j=I (23)

+ETE

1ri = 1ri

+2P,D, DLP,le(t)

ri"ri

g

r=1

i M?

>3, (RO, (O, (ZO)F (O30

In view of (19), (23) and (13), we have

L [peOmEOm, e @
V<2334, - B,K,) P +P(4, - B,K,)
=1 i 1 +PRL,C,CILL P +T1,,]5(¢)

i i

L (v, RO, (2(0) p, (2(0))e” (DA, — L,C)) P,
+ ZZZ{""Pz(An' -L.CHY+1+ E1TriE +2PD DTPZ]Q(I)}

r=li=l j=1 i 1) 1ri ritri

24
From (14) and (15), we know that under the switching law
(16), for arbitrary x(t)#0 and e(r)=0 , ie., x(t)=0 ,
V(f)<0 holds. Therefore, the closed-loop system is
stable, the e(t)
asymptotically converges to zero.

asymptotically and observer error

From Theorem 1, after an appropriate analysis, the stability
conditions for the uncertain switching fuzzy control system
are transformed into the following matrix inequalities:

(4,-B,K,)' B+P(A4,-B.K,)+PL,C,C/L.F+TIl, <0

(25)

(Ari _Lrier)T})Z + })Z(Ari - Lrier) + [
+E!E, +2P,D.D-P, <0

1ri ™ 1ri

(26)

Observe closely matrix inequalities (25) and (26). It should
be noted, we may first compute inequality (26) to obtain the

common Lyapunov function P, and the observer gain L,
and then to substitute L, into (25) to get the single Lyapunov
function A and the feedback gain K . Furthermore, the

inequalities (25) and (26) can be transformed into LMIs.

To this end, let it be defined

Tr{/ =(4, _Ln'C;/)TPZ + P (4, _Lrier) +1+ ElTn'Eln'
= A»Tsz +PA, - C§N£ - Nrier +1+ Ely;iElri

where N, =PL,

Now, using Schur’s complement, we obtain the following
LMI

PZDri
<0 27

s

(R,D,)" —-0.5I
Via substituting the result L, of the LMI (27) into inequality
(25) and by lettingQ = B~',M s = K0, upon multiplication
of both sides of inequality (25) by O =P, we obtain the
following LMI

) E, O-E, M.)"
|: rij ( lr[Q 2ri ;j/) :| < O (28)
ElriQ_EZriM)j -1

_ T T pT T T
where @, =04, +A4,0-M B, -B.M, +L,C,C.L,

Thus, the stability conditions of the uncertain switching fuzzy
control system are transformed into the LMIs (27) and (28),
which are tractable by LMI Toolbox of the Mathlab.
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4. SIMULATION EXAMPLE
Consider the following switching fuzzy system:
R :if z,(t) is M/,, then
x(¢) = (4, + A4 )x(@) + (B, + AB u, (1)
y(0) = Cx(0)
R} :if z,(t) is M/, then
x(t) = (A, + AA,)x() + (B, + ABy)u, (t)
y(1) = Cpx(2)
R} :if z,(t) is M), then
X(2) = (4, + A4y )x(t) + (B, + AB, u, (1)
Y1) = Cyyx(1)
R; :if z,(t) is M3, then
X(1) = (Ay + Ady)x(t) + (B, + ABy, )u, (t)

29
¥(8) = Cyyx(1) @)

where,
4, = 1 _9.3j|> By, :|:1j|a C,=[0 1}
10.01 -1 0
Ay, = ; o1 }» B, :{ 1 } C,=[0 1}
-32 —-45 0.1
4, = 1010 } By, =[2:|, G, =[0 1}
0.1 -0.1 1
Ay :|: 008 jl’ By, :|:1.2j|a Cy, =[0 1
-8 -09 1

-02 1 0.01 1
D, =D, = 1 O;D21:D22: 1 0;

1 02 05 1
E, =E,,= 0 0 s By =Epy = 0 O;

0 0
E, =k, = 06 s By =Ep, = 08;

sint 0
F“(t)=F12(t):F21(t):F22(t):|: 0 COSt:|.

The membership functions chosen are as follows:

—4x, )
5

My (x)) = 1, () =1-1/(1+e
Ho (x) = My (x)=1/(1+e™),
By carrying out computations for LMI (27), we obtain

_[02511 0.1240
27101240 0.3287

L, =[-23.6903 14.7707]"; L, =[8.2002 5.1755]";
L, =[-53.7228 22.6392]"; L,, =[-14.1609 13.0788]";
Upon choosing 4, =0.2,4, =0.8 , computing LMI (28) yields

b

i

[0.0199 0.0223
"10.0223 0.0303

K, =[-374.9297 —602.5408];
K,, =[-374.9297 —602.5408];
K, =[70.1912 112.8234}
K, =[70.1912 112.8234];

let
ir (t)[(Au - BliKlj )TPI

Q= x()eR" +B (All. —Bh.Klj) ,Vi()#0
+P1L1iC1jC1§L1TfPl + Hlij 1x(#) <0
& (t)[(AZi - BZiKZj )TPI

Q, =15(1) € R" [+ B (4 — B, K) V(D) # 0
+PIL21.C21.C,’2T].L;P1 + HZij 1X(@) <0

Then

Q,1JQ, = R*\{0} . we design a switching law as follows:

Li(t) eQ,

o(x(?)) =
() {2,)2(0 e, \Q,.

In Matlab-Simulink carried computer simulation the initial
condition x(0)=[1,-2]" has been adopted. This way the

simulation results depicted in Figures 1 to 3 have been
obtained. Figure 1 and Figure 2 show the system state and the
observer state trajectories respectively, i.e. these represent the
respective evolution time histories. The state observer error
trajectories are depicted in Figure 3. These trajectories
indicate that uncertain switching fuzzy system (29) is
asymptotically stable via switching law (16), and also the
observer error e(¢) asymptotically converges to zero at the

same time.

15

1T tis 15 2

Fig. 1. The trajectory of state x,(¢) and observer state x,(¢)

L0
u_--\é;-,-,.i
%'1 ":}\ ------ i’ -------- Fress===== geess=====29
ol x(0)
R S PR
3 i i :
0 0.5 1 t/s 15 2

Fig. 2. The trajectory of state x,(¢) and observer state x,(¢)
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oheenver emror

0 0.5 1 ths 158 2

Fig. 3. The observer error trajectory

6. CONCLUSIONS

The problems of simultaneous output-feedback control and
observer design for a class of uncertain switching fuzzy
control systems has been investigated and a novel solution
derived. Observers for subsystem states and a switching law
are designed. A sufficient condition for asymptotic stability
of the overall system in the closed-loop is derived. The
simulation results demonstrate the feasibility of this design
method, its effectiveness, and the achievable control
performance of the designed system, which is superior to
many results reported in the literature.
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