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Abstract: Stability properties (uniform stability/uniform asymptotic stability) of nonlinear
time-varying systems are explored using positive semi-definite time-varying Lyapunov candi-
dates whose derivative along trajectories is either non-positive or negative semi-definite. Once
these positive semi-definite time-varying Lyapunov candidates are available, conditional stability
properties on some specific sets can be used to ensure stability properties ( unform stability and
unform asymptotic stability) of nonlinear time-varying systems.

1. INTRODUCTION

In practice, many nonlinear systems are time-varying.
For example, when a radar is tracking a missile, the dy-
namics of the missile is time-varying due to time-varying
wind. Many mechanical systems use time-varying (peri-
odic) excitation signals to obtain the desired performance,
for example, vibration control schemes (see Bellman et
al. (1986)) or extremum seeking control schemes (see
in Ariyur and Krstić (2003)), leading to nonlinear time-
varying closed-loop systems.

It is well known that uniform stability property (US) is one
of the most fundamental properties of dynamic systems,
whether they are linear or nonlinear. This is the reason
why US plays an important role in the control analysis and
design for dynamics systems. Lyapunov direct methods
have been widely used to show US properties of nonlinear
systems with/without controller (see Chapter 4, Khalil
(2002)). Positive definite time-invariant/time-varying Lya-
punov candidates whose derivatives are negative semi-
definite have been employed to verify US properties of
time-varying nonlinear systems (see Theorem 4.8 in Khalil
(2002)). To obtain a stronger stability property: uniform
asymptotic stability (UAS), which implies that the tra-
jectories of the system converge to the equilibrium uni-
formly in the initial condition, it is often required that the
derivatives of the time-invariant/time-varying Lyapunov
candidates along the trajectories are negative definite (see,
for instance, Theorem 4.9 in Khalil (2002)).

In general, it is hard to find a positive definite Lyapunov
candidate for many nonlinear systems. Other than posi-
tive definite Lyapunov candidates, positive semi-definite
functions can also be Lyapunov candidates. For example,
positive semi-definite storage functions have been widely
used in the analysis of the nonlinear time-invariant sys-
tems based on the concept of the passivity. Passivity comes
from passive systems that the energy of systems can be

increased only through the supply from an external source.
Obviously, many engineered systems are passive. Using
passive properties, the controller design has been explored
(Khalil , 2002, Chapter 6) for nonlinear time-invariant
systems. However, it is not straightforward to use the “pas-
sivity” concept to design a controller for nonlinear time-
varying systems as LaSalle’s invariance principle, which is
a basic tool to obtain stability properties from passivity,
is not valid for time-varying systems.

In 2004, Iggidr and Sallet showed stability properties
(US/UAS) of time-varying systems in Iggidr and Sallet
(2000) by using Lyapunov candidates, which are positive
semi-definite, but time-invariant. When nonlinear time-
varying systems are considered, it is very natural to use
time-varying Lyapunov candidates. On the other hand,
finding a time-invariant Lyapunov candidate for time-
varying systems is not always easy due to the limited
searching space. A question arises naturally, is it possible
to ensure the stability properties (US/UAS) of nonlinear
time-varying systems by using one positive semi-definite
time-varying Lyapunov candidate?

This paper aims at addressing the above question. That
is, stability properties of nonlinear time-varying systems
are guaranteed by finding one time-varying semi-positive
definite Lyapunov candidate with either non-positive or
negative semi-definite derivative. Once this Lyapunov can-
didate is available, with appropriate conditional stability
properties on some sets, Theorem 1 shows that US prop-
erties can be achieved for the time-varying system. This
result can be treated as an extension of the result in (Iggidr
and Sallet , 2000, Theorem 5) to a more general setting as
positive semi-definite time-varying Lyapunov candidates
are employed.

Next, we show this Lyapunov candidate along with appro-
priate conditional stability properties on some sets can also
be used to guarantee UAS properties of the time-varying
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system (Theorem 2). This result extends that in (Iggidr
and Sallet , 2000, Theorem 6) to the situation when the
Lyapunov candidate is time-varying.

This paper is organized as follows. Problem formulation
and preliminaries are provided in Section 2. The main
results are stated in Section 3 followed by an illustrative
example. A summary is given in Section 5. Proofs are
presented in the Appendix.

2. PROBLEM FORMULATION AND
PRELIMINARIES

In this paper, the set of real numbers is denoted as R

and the sets of integers is denoted as N. A function
α : R≥0 → R≥0 is of class-K if it is continuous, zero
at zero and strictly increasing. The following notations
will be used in this paper: Bε = {x ∈ R

n | ‖x‖ < ε},
B̄ε = {x ∈ R

n | ‖x‖ ≤ ε}. For any x ∈ R
n and any closed

set A ∈ R
n, dA(x) := inf

y∈A
‖x − y‖.

Consider the following time-varying system

ẋ = f(t,x), x(t0) = x0, (1)

where f : R≥0 × D → R
n, D ⊂ R

n is a domain with
x = 0 ∈ D and f(t,0) ≡ 0 for all t ≥ t0. The solution
of the system (1) at any time instant t is denoted as
φ(t; t0,x0). Sometimes, for simplicity, we also use x(t)
when no confusion is caused.

The following assumption is needed in the sequel.

Assumption 1. f(t,x) is continuous and locally Lipschitz
in x uniformly in t, i.e., for any compact set B ⊂ D, there
exists a constant LB > 0, independent of t, such that

‖f(t,x1) − f(t,x2)‖ ≤ LB‖x1 − x2‖,

for any x1,x2 ∈ B and t ∈ R.

Remark 1. Assumption 1 is exactly the same as Assump-
tion 1 in Iggidr and Sallet (2000), which is widely used to
ensure the existence and uniqueness of solutions of time-
varying dynamic systems.

The following definitions will be used in the sequel.

Definition 1. (Sepulchre et al. , 1996, Chapter 2)

The equilibrium point x = 0 of the system (1) is

• stable if for each ε > 0, there is δ = δ(ε, t0) > 0 such
that

‖x0‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0; (2)

• uniformly stable (US) if for each ε > 0, there is
δ = δ(ε) > 0, independent of t0, such that (2) is
satisfied;

• uniformly attractive (UA) if there is a positive con-
stant c, independent of t0, such that x(t) → 0 as
t → ∞ uniformly in t0, for all ‖x0‖ < c. That is, for
each η > 0, there is T = T (η) > 0 such that

‖x(t)‖ ≤ η, ∀t ≥ t0 + T, ∀t0 ≥ 0, ∀‖x0‖ < c; (3)

• uniformly asymptotically stable (UAS) if it is US and
UA.

Conditional stability properties have been employed in
Iggidr et al. (1996); Sepulchre et al. (1996) to show
stability properties of time-invariant systems by means of
positive semi-definite time-invariant Lyapunov candidates
(or storage functions). In this paper, conditional stability
property also plays an important role in showing stability
properties of the time-varying system (1).

Definition 2. Let Z ⊂ Rn contain x = 0. The point x = 0
of the system (1) is

• uniformly stable conditionally to Z (Z-US) if, for
each ε > 0, there exists δ = δ(ε) > 0, independent
of t0 such that

∀x0 ∈ Z and ‖x0‖ < δ ⇒ ‖x(t)‖ < ε, (4)

for all t ≥ t0 ≥ 0.
• uniformly attractive conditionally to Z (Z-UA) if, for

each η > 0, there is T = T (η) > 0 such that

‖x(t)‖ ≤ η, ∀t ≥ t0 + T, ∀t0 ≥ 0, (5)

for all ‖x0‖ < c and x0 ∈ Z.
• uniformly asymptotically stable conditionally to Z

(Z-UAS) if it is Z-US and Z-UA.

Remark 2. The conditional stability properties are much
weaker than the stability properties. A uniformly stable
equilibrium is Z-US for any Z ⊂ R

n. However, if 0 is Z-
US for some Z ⊂ R

n, this equilibrium may not US, as can
be seen in the following example:

ẋ1 = −x1 + x2; ẋ2 = x2, (6)

where Z =
{

x ∈ R
2 |x2 = 0

}

. It is obviously that this
system is Z-US, but it is not US. To ensure stability
properties of nonlinear systems from Z-US/Z-UAS, more
conditions are needed.

Definition 3. For system (1), a set A ⊂ D is called an
invariant set if any solution x(t) belongs to A at some
time t1 belongs to A for all future and past time:

x(t1) ∈ A ⇒ x(t) ∈ A, ∀t ∈ R. (7)

It is called a positively invariant if (7) holds true for all
future time t ≥ t1.

3. MAIN RESULTS

Our first result is an extension of (Iggidr and Sallet , 2000,
Theorem 5) when the Lyapunov candidate is time-varying
instead of time-invariant.

Theorem 1. Suppose Assumption 1 holds. If there exists a
function V (t,x) ∈ C1(R≥t0 ×D, R≥0) such that

W1(x) ≤ V (t,x) ≤ W2(x), (8)

∂V

∂t
+

(

∂V

∂x

)T

f(t,x) ≤ 0, (9)

for all t ≥ 0 and x ∈ D, where Wj(x) ≥ 0 is a
positive semi-definite function for any j = 1, 2. Then the
equilibrium x = 0 of (1) is US if it is Ω-UAS, where

Ω
4
= {x ∈ D|W1(x) = 0}.

Proof: see Appendix. ◦
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Remark 3. For a general time-varying system (1), a time-
varying Lyapunov candidate satisfying (8) and (9) is not
sufficient to show US properties. Ω-UAS is also needed in
order to guarantee uniform stability properties of the sys-
tem (1). It will show in the example later that by choosing
W1 carefully and taking advantages of the knowledge of
the dynamics (1), it may not hard to check Ω-UAS under
some cases.

Remark 4. Ω-UAS plays an important role to show US
properties of the time-varying systems. When the system
is only Ω-UA, it is well-known that the convergence of
trajectories of the system (1) does not imply US of the
equilibrium. Therefore, Ω-US is necessary to ensure the
US of the equilibrium of the system (1). On the other
hand, the following example illustrates that Ω-AS is also
necessary to ensure the US of the system.

ẋ1 = 2(1 + e−t)x2
2, ẋ2 = −(1 + e−t)x3

2. (10)

By computation, the trajectories of (10) can be repre-
sented as

[

x1(t)
x2(t)

]

=





ln
(

1 + 2x2
20(t − t0 − e−t + e−t0

)

+ x10
x20

√

1 + 2x2
20(t − t0 − e−t + e−t0)



 ,

which implies that (0, 0) is not US since the solution
depends on initial time t0.

Let a time-varying Lyapunov candidate be chosen as
V (t,x) = (1 + e−t)x2

2 with W1(x) = x2
2 and Ω =

{

x ∈ R
2 |x2,0 = 0

}

. For any x0 = [ x10 0 ]
T
∈ Ω, it is not

difficult to check that the system (10) is Ω-US, however,
the system (10) is not Ω-AS as x1(t) does not converge to
0. This example illustrates that Ω-US only is not sufficient
to ensure US properties. In other words, even though Ω-
UAS is not a necessary condition, it is a tight sufficient
condition.

Remark 5. Note that the set Ω may not be positively
invariant (see Definition 3 ) for the system (1). That is,
when the initial condition is in Ω, the trajectories of the
system may leave Ω at some time instants. In fact, Ω-UAS
characterizes all trajectories of the system (1) starting
from the set Ω ∈ D that are uniformly bounded and
uniformly attractive.

Remark 6. When the Lyapunov candidate is time-invariant,
it is clear that

0 ≤ W1(x) ≤ V (x) ⇒ A = Ω,

where A = {x ∈ D |V (x) = 0}. Theorem 1 becomes The-
orem 5 in Iggidr and Sallet (2000).

Remark 7. Let W1(x) in (8) be positive definite, instead

of positive semi-definite. By calculation, Ω
4
= {0}, Ω-UAS

holds true for system (1). We then can conclude that the
system (1) is US. This becomes Theorem 4.8 in Khalil
(2002).

Remark 8. Consider a time-invariant system

ẋ = f(x), x(0) = x0, (11)

and let V (x) ∈ C1(D, R≥0) is a positive semi-definite

function such that V̇ ≤ 0. By applying Theorem 1, the
system (11) is US if it is A-UAS where A is defined in

Remark 6. This result is exactly the same as (Sepulchre et
al. , 1996, Theorem 2.24).

AS is very appealing in applications due to its advan-
tages in terms of robustness as discussed in Loria et
al. (2005). To show the uniform attractivity for time-
invariant nonlinear systems, the well-known LaSalle in-
variance principle (see results in LaSalle (1960); LaSalle
and Lefschetz (1961) and references herein) as well as
Krasovskii-LaSalle theorem (see, Vidyasagar (1993)) can
be used to show the UAS properties. A lot of work has
been done to show uniform attractive (UA) properties
of nonlinear time-varying systems. For example, limiting
equations (see work in Artstein (1976, 1978b); Lee and
Jiang (2005)), which describes the limiting behavior of
the original systems as initial time instants approach to
infinity, was used to extend the LaSalle’s invariance prin-
ciple to a class of nonlinear time-varying systems. Observ-
ability or detectability have been employed in the work
of Artstein (1978a); Aeyels and Peuteman (1998); Lee
et al. (2001); Lee and Chen (2002); Khalil (2002) to
show attractivity of nonlinear time-varying systems. The
attractivity of the systems can be also verified by means
of Matrosov’ theorem (see, Matrosov (1962); Rouche and
Mawhin (1980)) and its generalizations (see, Loria et al.
(2005)) as well as persistent excitation condition in the
work of Loria et al. (2001, 2002). Although many results
are available to check AS properties, there are few results
to verify the AS property on basis of positive semi-definite
time-varying Lyapunov candidates.

The second result shows that conditional stability property
on some set also provides a sufficient condition to ensure
UAS of time-varying systems provided that positive semi-
definite time-varying Lyapunov candidate has a negative
semi-definite derivative along the trajectories (see Theo-
rem 2). In other words, we can check UAS properties of
a time-varying system by using one positive semi-definite
time-varying Lyapunov candidate and condition stability
property on some set. This result (Theorem 2) provides
an alternative ways to show AS properties of time-varying
systems.

In the proof procedure of Theorem 2, UA properties are
first showed followed by UA properties. The proof tech-
nique is similar to results listed in Teel et al. (2002) which
showed UA of the time-varying system once US is ob-
tained. However, Theorem 1 and Theorem 2 provide a way
to show stability properties of the time-varying system (1)
by using one positive semi-definite time-varying Lyapunov
candidate and the conditional stability property.

The following proposition will be needed in the proof of
Theorem 2.

Proposition 1. Let A ⊂ R
n be a set containing the origin.

Let W (x) : R → R≥0 be a continuous function satisfying
W (x)|

x∈A = 0 and W (x) > 0 for all x /∈ A. Assume that
the equilibrium 0 of the system (1) is UA. If there exists
a positive constant CW such that the following inequality
holds

∫ t

t0

W (φ(s; t0,x0))ds ≤ CW , ∀t ≥ t0, ∀x0 ∈ Bδ, (12)
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where δ is from (2), then for any ε > 0, there exists
TM > 0, independent of t0, such that trajectories of the
system (1) satisfy

x0 ∈ Bδ ⇒ dA(φ(t; t0,x0)) < ε, ∀t ≥ t0 + TM . (13)

Proof: see Appendix. ◦

Remark 9. (13) implies that W (φ(t; t0,x0)) converges to
the equilibrium 0 uniformly as t → ∞. Furthermore, if W
is a positive semi-definite. Then A = {0}. If (12) holds,
using Proposition 1, it yields

x0 ∈ Bδ ⇒ |φ(t; t0,x0)| < ε, ∀t ≥ t0 + TM , (14)

which means φ(t; t0,x0) is UA. It is apparent that Propo-
sition 1 is an extension of famous Barbalat Lemma Khalil
(2002), in which the uniform attractivity not provided.
Therefore, Proposition 1 provides a very useful to show
UA of the time-varying system (1).

Remark 10. Proposition 1 is quite similar to (Teel et al.
, 2002, Theorem 1), in which UAS was showed with inte-
gral characterizations. However the result in Proposition
1 alone cannot ensure UAS of time-varying system with-
out A-UAS (see Theorem 2). Proposition 1 only ensures
that trajectories of the time-varying system (1) uniformly
converges to a set A, instead of the equilibrium 0. If the
equilibrium of system is A-UAS, then trajectories of this
system will converge to equilibrium uniformly.

With the help of Proposition 1, here comes the second
main result of this paper.

Theorem 2. Suppose Assumption 1 holds. Assume that
there exists a function V (t,x) ∈ C1(R≥t0 × D, R≥0) with
positive semi-definite functions Wj(x), j = 1, 2, such that

W1(x) ≤ V (t,x) ≤ W2(x) (15)

∂V

∂t
+

(

∂V

∂x

)T

f(t,x) ≤ −α(W1(x)), (16)

are satisfied for all t ≥ 0 and x ∈ D and α ∈ K. Then
the equilibrium x = 0 of (1) is UAS if it is Ω-UAS, where

Ω
4
= {x ∈ D|W1(x) = 0}.

Remark 11. Although the major proof techniques are
quite similar to those in (Iggidr and Sallet , 2000, The-
orem 6), neither LaSalle invariant principle nor Barbalat
lemma is employed to show the uniform attractivity of
the equilibrium. It is worthwhile to note that LaSalle in-
variant principle is not applicable to time-varying systems
in general. On the other hand, Barbalat lemma cannot
provide enough information about uniformly attractivity
with respect to the initial time instant t0. Proposition 1
helps to ensure uniform attractivity with respect to the
initial time.

After obtaining uniformly attractivity with respect to the
initial time instant, using the similar proof techniques as
in (Iggidr and Sallet , 2000, Theorem 6) (see the proof
of Theorem 2 in Appendix), the UAS properties of the
system (1) are thus obtained.

Combining Theorem 1 with Theorem 2 yields the following
corollary.

Corollary 1. Suppose Assumption 1 holds. If there exists a
function V (t,x) ∈ C1(R≥t0 ×D, R≥0) such that inequality
(8) holds; moreover, there exists α ∈ K such that

∂V

∂t
+

(

∂V

∂x

)T

f(t,x) ≤ −α(V (t,x)). (17)

Then the equilibrium x = 0 of (1) is UAS if it is Ω-UAS,

where Ω
4
= {x ∈ D|W1(x) = 0}.

Remark 12. Corollary 1 is an extension of (Iggidr and
Sallet , 2000, Theorem 6) to a more general setting in the
sense that the Lyapunov candidate becomes time-varying.
When V becomes time-invariant, the result in Corollary 1
is the same as that in (Iggidr and Sallet , 2000, Theorem
6).

The following corollary is an extension of (Khalil , 2002,
Theorem 4.9)

Corollary 2. Suppose Assumption 1 holds. Assume that
there exists a function V (t,x) ∈ C1(R≥t0 × D, R≥0) such
that inequality (8) holds with positive definite Wj(x), j =
1, 2. Moreover, the inequality (16) holds. If the equilibrium

x = 0 is Ω-US, where Ω
4
= {x ∈ D|W1(x) = 0}, it is UAS

for the time-varying system (1).

4. AN ILLUSTRATIVE EXAMPLE

The following nonholonomic system discussed in (Loria et
al. , 2005, Example 2) is used to illustrate main results of
this paper.

ẋ1 = −x1 + h(t, x2,3) (18a)

ẋ2 = u(t, x)x3 (18b)

ẋ3 = −x3 − u(t, x)x2, (18c)

where u(t, x) = −x1 + h(t, x2,3), h(t, 0) ≡ 0 and x2,3 =
col[x2, x3].

Uniform Stability Property

Let a time-invariant Lyapunov candidate is chosen to be
V1(x) = 1

2
x2

2 + 1

2
x2

3 and W1(x) = 1

2
(x2

2 + x2
3), leading to

Ω :=
{

x ∈ R
3|x2 = 0, x3 = 0

}

. By calculation, its deriva-
tive along trajectories of the system (18) is

V̇ (t, x) ≤ −x2
3 ≤ 0. (19)

Next is to check Ω-UAS. Let x0 = [x10, 0, 0]
T

∈ Ω, as
V (x(t; t0, x0)) ≤ V (x0) = 0, it is easy to show x2(t) =
x3(t) ≡ 0, ∀t ≥ 0. Using the assumption as in (Loria et
al. , 2005, Example 2) that h(t, 0) ≡ 0, lim

t→∞
x1(t) = 0,

uniformly in t0. Thus, Ω-UAS is obtained, showing US
property of the system (18) by using Theorem 1.

Uniform Asymptotic Stability Property

Let W1(x) = 1

2
x2

3, the same Lyapunov candidate V1(x) is

used. By computation, it follows that Ω1 :=
{

x ∈ R
3|x3 = 0

}

.
The initial condition of the system (18) is chosen to be

x̄0 := [ x10 x20 0 ]
T
∈ Ω1 ⊂ Ω.

The remaining is to check Ω1-UAS to conclude UAS. The
following facts are obvious.

Fact 1 x3(t) converges zero uniformly in t0.
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Using the inequality (19) yields
∫ t

t0

x2
3(s)ds ≤ V (x̄0).

Fact 1 holds by applying Proposition 1. Moreover,
Fact 1 also indicates that x3(t), ∀t ∈ [t0,∞) is uni-
formly bounded in t0.

Fact 2 u(t,x(t))x2(t) converges zero uniformly in t0.
Using (18c) leads to

∫ t

t0

|x3(s) − u(s,x(s))x2(s)| ds ≤ |x3(t)| ,

which implies that x3(t)−u(t, x(t))x2(t) converges to
zero uniformly in t0 (Proposition 1). Fact 2 holds true
by using Fact 1.

Fact 3 x2(t) converges to a constant C uniformly in t0.
This is true by using dynamics of x2 (18b).

Assume that C 6= 0, using equation (18c) yields that
lim

t→∞
u(t,x(t)) = 0. Moreover lim

t→∞
x1(t) = lim

t→∞
h(t, C, 0) is

obtained from (18c). In other words, we cannot conclude
that the equilibrium of system (18a-18c) is Ω1-UAS for
any uniformly bounded h(t, ·) since it is hard to confirm
that the constant C is zero. ◦

Remark 13. In order to shown the system (18a-18c) is
UAS, h(t, x2,3) needs to have a nice property: Uδ-PE
property ( see more detail in Loria et al. (2005)). We may
also use a nested Matrosov theorem to check the UGAS
for the example 2. The details can be found in (Loria et
al. , 2005, Proposition 1).

Remark 14. As we can see the example that the way of
showing UAS is not unique. For a general time-varying
system, it is hard to compare which method is easier to
use in real applications. In some situations, Ω -UAS may
be easy to check while in other situations, constructing
Matrosov functions to check UAS may be easy. It is
an interesting research topic to clarify the link between
Matrosov functions and Ω -UAS. We will explore such a
link in our future research work.

5. CONCLUSION

In this paper, stability properties for nonlinear time-
varying systems are investigated by using time-varying
positive semi-definite Lyapunov candidates whose deriva-
tive along with the trajectories of the system is non-
positive or negative semi-definite. Conditional stability
properties on some sets, together with the available time-
varying positive semi-definite Lyapunov candidates are
used to show the US/ UAS of the time-varying systems. An
illustrative example shows that main results of this paper
provide useful and alternative ways in showing stability
properties of time-varying systems.
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APPENDIX

Proof of Theorem 1

The proof procedure is similar to that in (Iggidr and Sallet
, 2000, Theorem 5) in which contradiction was employed,
though some necessary modifications are made.

Suppose that the origin is not uniformly stable. Then there
exists ε > 0 for which we can construct a sequence of initial
conditions x0

n ∈ Bε and lim
n→∞

x0
n = 0 such that for each

n ∈ N, there exists an initial time t0n ≥ 0 in such a way
that the solution of (1) φ(t; t0n,x0

n) does not stay with Bε

for all time t ≥ t0n. That is, ∃tn > 0 such that

‖φ(t; t0n,x0
n)‖

{

< ε for all 0 ≤ t < tn
= ε t = tn

.

The proof is completed by the following steps.

Step 1 . Since x = 0 is Ω-UAS. Then for any given ε
2

> 0,
there exists δ > 0 and T > 0 such that the following
holds.

∀x0 ∈ Ω ∩ Bδ ⇒ ‖φ(t; t0,x0)‖ ≤
ε

2
. (20)

for all t ≥ t0 + T .
Step 2 . Let n0 ∈ N such that ‖x0

n‖ ≤ η for all n ≥ n0. Define
a sequence {u}n≥n0

by un = φ(t0n+tn−T ; t0n,x0
n) that

converges to z ∈ B̄ε as n → ∞. Using the inequality
(8), it follows that

0 ≤ W1(z) = lim
n→∞

W1(un) ≤ V (t;x) ≤ W2(z)

W2(z) = lim
n→∞

W2(un) = 0,

which implies that z ∈ B̄ε ∩ Ω.
Step 3 Following the same steps in (Iggidr and Sallet , 2000,

Theorem 5), we can show that there exists p ≥ n0

such that ‖φ(t0p + tp; t
0
p,x

0
p)‖ ≤ ε.

This is a contradiction and completes the proof. 2

Proof of Proposition 1.

We prove it by contradiction. Assume that there exists
ε0 > 0 for which we can construct a sequence of initial
conditions x0

n ∈ Bδ and lim
n→∞

x0
n = 0 such that for each

n there exists an initial time t0n ≥ t0 in such a way that
the solution of (1) φ(t; t0n,x0

n) stays with Bε for all time
t ≥ t0n. That is, ∃Tn ≥ n > 0 such that

dA(φ(t0n + Tn; t0n,x0
n)) ≥ ε0. (21)

Noting the following facts

Fact 1 The origin is uniformly stable. For above ε0, there
exists δ0 ∈ (0, ε0), such that

‖x0‖ < δ0 ⇒ ‖φ(t; t0,x0)‖ < ε0, ∀t ≥ t0 ≥ 0.

Fact 2 dA(x) ≤ ‖x‖ since 0 ∈ M . It follows that

dA(x0) ≤ ‖x0‖ < δ0

⇒ dA(φ(t; t0,x0)) ≤ ‖φ(t; t0,x0)‖ < ε0. (22)

Fact 3 There exists δ1 > 0 such that

dA(φ(t0n + Tn; t0n,x0
n)) ≥ δ1, (23)

for all t ∈ [t0n, t0n + Tn] and each n ∈ N.

Proof: We prove it by contradiction. Assume that(23) does
not hold, for any δ > 0, we have

dA(φ(t0n + Tn; t0n,x0
n)) < δ,

for all t ∈ [t0n, t0n +Tn] and each n ∈ N. By Fact 2, we have
a contradiction if δ ≤ ε0.

Let Θ := {x ∈ Bδ |dA(x) ≥ δ0 > 0}. Θ ⊂ Bδ is not
an empty set (see (23)) and is compact. Since W (x) is
continuous with respect to x, Mmin = min

x∈Θ
W (x) is well-

defined.

Since (12) holds true, it follows that

Mn ≤ MminTn ≤

∫ t0
n
+Tn

t0
n

W (φ(s; t0n,x0
n))ds ≤ CW ,

holds for all n ∈ N and x0 ∈ Bδ∩Θ. This is a contradiction
and completes the proof. 2

The proof of Theorem 2.

By using Theorem 1, the equilibrium of system (1) is US.
Next step is to show that the equilibrium is UA. Since
the equilibrium of system (1) is both US as Ω-UAS and
satisfying (16), the following facts are obvious.

Fact 1 (US): For each ε > 0, there exists δ > 0 and δ < ε
(independent of t0) such that

‖x0‖ ≤ δ ⇒ ‖φ(t; t0,x0)‖ ≤ ε, ∀t ≥ t0 ≥ 0. (24)

Fact 2 (Ω-UA). Let γ > 0. For each δ obtained from Fact 1,
there exists T (δ) > 0, such that

x0 ∈ Ω ∩ Bγ ⇒ ‖φ(t; t0,x0)‖ ≤ δ, (25)

for all t ≥ t0 + T (δ).
Fact 3 : Let γ > 0 is from Fact 2, generating η in Fact 1. It

is apparent that

x0 ∈ Bη ⇒ φ(t; t0,x0) ∈ Bγ . (26)

Fact 4 : Since the inequality (16) holds true, let CW :=
maxx0∈Bη

W2(x), it follows that
∫ t

t0

α(W1(φ(s; t0,x0))ds ≤ V (t0,x0) ≤ W2(x0) ≤ CW .

Applying Proposition 1, it yields that for each α > 0,
there exists Tα > 0 such that dΩ(φ(t; t0,x0)) < α, for
any x0 ∈ Bγ and t ≥ t0 + Tα. This implies that

∃Tα > 0, ∀x0 ∈ Bγ , ∃z ∈ Bη ∩ Ω

‖φ(t0 + Tα; t0,x0) − z‖ ≤ α, (27)

which is exactly the same as (Iggidr and Sallet , 2000,
Equation (12)).

The proof is completed by following similar steps in the
proof of (Iggidr and Sallet , 2000, Theorem 6) 2
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