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Abstract: This paper presents two case studies on the performance evaluation and model
validation of two industrial multivariate model predictive control (MPC) based controllers at
Suncor Energy Inc., Fort McMurray, Canada: (1) a 7 controlled variable (CV), 3 manipulated
variables (MV) kerosene hydrotreating unit (KHU) with three measured disturbance variables
that are used for feedforward control; and (2) an 8 CV, 4 MV naphtha hydrotreating unit
(NHU) with 5 measured disturbances. The NHU and KHU controllers are implemented on the
product stripping distillation towers. The first case study focuses on potential limits to control
performance due to constraints and limits set at the time of controller commissioning. The
root causes of sub-optimal performance of KHU are successfully isolated. Data from the NHU
unit with MPC on and with MPC off are analyzed to obtain and compare several different
measures of multivariate controller performance. Model quality assessment for the two MPCs
are performed. A new model index is proposed to have a measure of simulation ability and
prediction ability of a model. Open-loop identification of KHU and closed-loop identification of

NHU are conducted using the asymptotic method (ASYM).
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1. INTRODUCTION

Multivariate model predictive control (MPC) has been
widely applied in industry to control increasingly complex
processes. At each control interval, an MPC controller
attempts to optimize future plant behavior by comput-
ing a sequence of future moves of manipulated variables
(MVs). Only the first moves of the MVs are sent into the
plant and the entire calculation is repeated at the next
control interval. This is also known as receding horizon
control. There is a large volume of publications concerning
the theoretical and practical issues associated with MPC
technology. Rawlings (2000) has provided an excellent in-
troduction to MPC technology; Qin and Badgwell (2003)
have given a good survey of industrial MPC. Several books
on MPC have also been published recently (Kouvaritakis
and Cannon, 2001; Maciejowski, 2002).

Although there are many publications discussing the de-
sign of MPCs and the properties of MPCs, relatively few
of them talk about the performance monitoring of MPC
controllers which is also an important issue. MPC control
systems usually work well and deliver profit near the time
when they are commissioned, however their performance
deteriorates with time and the MPC controllers are often
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eventually turned off without proper maintenance. There
are many reasons for sub-optimal MPC performance:
process changes, unmeasured disturbances, inappropriate
limit settings and poor tuning of lower level PID loops.
How to effectively evaluate the performance of the MPC
is still an open question.

The kerosene hydrotreating unit (KHU) and the naphtha
hydrotreating unit (NHU) at Suncor Energy Inc., Fort
McMurray, Canada are controlled by commercial MPC
controllers. These two MPC controllers were commissioned
in May 2005 and have performed well until late 2006.
Both units have been able to deliver significant mone-
tary benefits each year. However, since late 2006, these’
MPC controllers have not performed as well as possible.
Sometimes, the MPC controller could not control the CVs
within their limits and therefore could not achieve optimal
performance.

In this paper, we discuss the performance issues of the
generic MPC controllers and then apply the developed
techniques for studying sub-optimal performance when
applied to the KHU and NHU MPC controllers. The
objectives of our work are: (1) to assess the performance
of the two MPC controllers; (2) to diagnose the root cause
of the deteriorated control performance; (3) to provide
remedial suggestions; (4) to validate the models in the
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MPC controllers; and (5) to re-identify the model using
routine operating data.

2. PERFORMANCE ANALYSIS OF THE KHU MPC

The kerosene hydrotreating unit (KHU) at Suncor Energy
Inc. is a standard hydrofining unit that desulphurizes the
coker intermediate kerosene streams through a catalytic
reaction with hydrogen. The KHU is controlled by an
MPC controller which has 3 manipulated variables (MVs),
7 controlled variables (CVs) and 3 feedforward variables
(FFs). The MPC controller recalculates and executes MV
moves every 1 minute. Our analysis is based on 2 days of
1 minute data when KHU MPC was turned on.
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Fig. 1. MVs moves when the MPC was on. The black lines
are the limits.

The MV moves of these 2 days that the MPC was on are
shown in Figure 1. The corresponding CV trajectories are
shown in Figure 2. In both figures, the blue lines are the
real measurement, the red lines are the LP-targets and
the black lines are the limits. The ‘LP-target’ is short
for ‘linear programming target’ which is calculated by the
MPC every minutes as the steady state target for the MVs
and CVs. Looking at the MVs and CVs, we can notice that:

e The MVs are at their limits most of the time.

e There is limit violation in CV3(low rank), CV4(medium
rank) and CV7(low rank). Especially CV4, which has
median rank, has large excursions from its limits.

e There are some wave pattern fluctuations in MV2 and
MV3. Very similar patterns of fluctuation also exist
in CVs, such as CV2-CV7.

e The MVs and CVs follow their LP-targets very well.

To understand and diagnose these observations, we per-
form limits and constraints analysis, PID loop diagnosis
and cause & effect analysis in the following sub-sections.

2.1 Analysis of Limits and Constraints

An important feature of the MPC method is its ability to
handle multiple constraints and limits. During each control
execution, the MPC controller will carry out LP or QP
optimization to find the feasible solution for CV and MV
moves. If there is no feasible solution that satisfies all of
the limits and constraints, the MPC controller will choose
to violate some of the constraints and limits according to
the weights of different CVs and MVs. MV limits are ‘hard
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Fig. 2. CVs trajectories when the MPC was on. The blue
lines are the real measurement, the red lines are the
LP-targets and the black lines are the limits.

constraints’ which means that they should be respected all
the time and not violated. CV limits are “soft constraint”
meaning they can be violated to some extent if there is no
feasible solution to satisfy all the limits and constraints.
For a well designed MPC application, one expects the
CVs to be at their designed limits to achieve maximum
profit and MVs to be between their limits to have enough
freedom for control. Consequently the analysis of limits
and constraints of a MPC controller can provide valuable
information about control performance.

Table 1. Constraints analysis of the MVs LP-

targets
Tags | Cost Action | High limit | Low limits
activation activation
MV1 Maximize 99.76% 0.14%
MV?2 Minimize 0% 98.16%
MV3 Minimize 0% 74.95%

Table 2. Limits activation analysis of the CVs

LP-targets

Tags | Control objective | High limit | Low limit

activation | activation
CV1 Between limits 0% 0%
CV2 Between limits 0% 0%
CV3 Between limits 0.07% 2.85%
CV4 Low limit 0.31% 30.08 %
CV5 Between limits 0% 0%
CV6 Between limits 0% 0%
CV7 Low limit 0.28% 1.11%

Limits and constraints analysis of 2 days of data from the
KHU MPC controller was performed using the Control
Performance Monitor (CPM) software from Matrikon Inc.
Table 1 shows the limit activation of the MVs. Here ‘limit
activation’ measures the percentage of time one MV LP-
target is at its high or low limit. The ‘cost action’ of
a MV indicates the desired move direction of that MV
in order to achieve the control objectives of the CVs.
This information can be easily obtained through the gain
matrix of the process model. An ideal scenario is that
the MVs move in the desired move directions until the
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CVs achieve their control objective and some of the CVs
stay at their desired limits. We can see in Table 1 that
the MVs do move in the desired directions, but they
hit their constraints most of the time and are therefore
unable to move anymore. At the same time, we can see
from Table 2 that the CVs actually have not achieved
their control objectives, especially CV4 and CV7 whose
control objective is to operate at the low limit settings.
Therefore, we can say that the MVs are moving in the right
direction to achieve the control objectives; but they hit
their constraints before they can fully achieve the control
objectives. Consulting with Suncor engineers, we know
that the limits may be overly restrictive, however they
may be set for safety or other considerations and cannot
be extended. This situation is not rare in practice where
people try to maximize production and always tend to hit
the process or equipment related MV limits.

Another obvious problem with the current system is that
the MVs stay at their limits for long periods and therefore
do not have enough freedom for control. In this situation,
any unmeasured disturbance can easily affect the system
and the MPC controller may not be able to do much about
such disturbances. This could explain why the operators
sometimes see unsatisfactory control performance and
decide to turn the MPC off.

2.2 Diagnosis of the Limit Violation

As we have seen in Figure 2, CV3, CV4 and CV7 encounter
limit violations. Table 3 shows the average violation and
peak violation of each CV. Peak violation of a CV is a ratio
between the maximum violation and the CV’s operation
range. Average violation of a CV is a ratio between its
averaged violation magnitude and the CV’s operation
range. It is clear that CV4 has significant amount of
limit violations. A detailed diagnosis of CV4 is apparently
needed.

Table 3. Constraints violation analysis of the

CVs
| Tags | Average violation | Peak violation |
CV1 0% 0%
CV2 0% 0%
CV3 4.6% 14.53%
Cv4 20.88% 116.64%
CV5 0% 0%
CV6 0% 0%
Cv7 5.08% 12.92%

CV4 is the position of an accumulator level valve which
is directly controlled by a PID level controller (denoted
as LIC1). This level controller regulates the level in the
accumulator by manipulating the valve opening. Therefore
the performance of this PID loop has great effect on CV4.
A plot of SP and PV of the level is shown in Figure 3(a).
Before we judge whether this PID controller is performing
well or not, two important issues should be taken into
account:

(1) This is a level controller for an accumulator. It is quite
often that a level controller is tuned loosely to have
buffer effect to absorb or filter upstream disturbances
in the process.

(2) The level is not only affected by the valve opening.
The MVs of the MPC controller also have an effect
on the level.
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(a) SP and PV of PID loop LIC1 (b) SP and PV of PID loop LIC2
Fig. 3. PID loop LIC1 and LIC2

To clarify whether LIC1 actually is tuned to be sluggish
as shown in Figure 3(a), we compare it with another PID
level controller LIC2. PID LIC2 controls the level of the
feed flash drum and the valve opening (LIC2.0P) is also a
CV in KHU MPC controller. Consulting with the Suncor
engineers, we know that PID LIC1 and LIC2 have very
similar control strategy and control objectives. Figure 3(b)
shows the SP and PV of PID controller LIC2 which is very
different from Figure 3(a). Apparently, LIC2 is performing
very well but LIC1 is not.

An additional point to clarify is how can we be sure the
sub-optimal performance was not because of the effect
of the MV moves of the MPC controller? To answer
this question, examine the two highlighted areas with red
dashed box in Figure 3(a). During these two highlighted
periods (1000th-1500th & 2000th-2700th data points),
there are almost no MV moves as can be seen in Figure
1. Therefore, during these two periods, only the PID
controller LIC1 controlled the level and the performance
is not good.

From the above analysis and experience from Suncor en-
gineers, we have confirmed that this level PID loop was
not performing well. There is a severe known nonlinear-
ity /backlash in the LIC1 control valve that causes the sub-
optimal level control (Suncor engineers try to control this
valve output at a very low opening). Then some obvious
questions arise: how does the limit violation occur? Why
are there similar wave pattern fluctuations in MV2-MV3
and CV2-CV7? What is the root cause?

A simple way to answer these questions is to plot all the
MYV and CV Lp-targets in one figure and to see which LP-
target changes first just before a limit violation occurs.
Our cause & effect analysis has shown that

e The sub-optimal performance of the PID controller
LIC1 is the root cause of limit violation.

e Every time, when CV4 (LIC1.0P) hits its lower limit,
the MPC makes MVs move and tries to bring CV4
back to its limits. These MV moves make the other
CVs move, such as CV2, CV3, CV6, CV7 and CV8
(see Figure 2).

e The limit violation of CV3 and CV7 is due to the
MYV moves which are used to bring CV4 back to its
limits. This is because CV3 and CV7 have lower rank
than CV4 and the MPC will try to bring CV4 back
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to limits even at the cost of sacrificing performance
of CV3 and CVT.

e Once CV4 goes back to its limits, MVs will be
optimized to move in their desired directions which
is towards their limits in this MPC. The MVs will
not move until CV4 reaches its limit again next time.

e The above procedure explains why we see the wave
pattern in MV2-MV3 and CV2-CV7.

2.8 Summary of KHU MPC Performance

As we can see in Figures 1 and 2, MVs and CVs follow
their LP-targets very well. This is an indication of good
performance of the lower layer of the MPC system, such as
sensors, valves and actuators. Valve stiction analysis did
not show any valve problem in the KHU.

Limits and constraints analysis in Section 2.1 reveals that
the limit settings for some CVs and MVs have limited the
optimal performance of the MPC controller. The MPC
controller did try to move the MVs to achieve the control
objectives for CVs. However, the MVs hit their limits
before they can achieve the optimal performance. This
makes the MVs stay at their limits and lose certain degree
of freedom of control.

The limits violation analysis in Section 2.2 shows that the
PID loop LIC1 is the root cause of limit violation. The PID
controller could not control the accumulator level well and
made CV4 (LIC1.0OP) out of its limit from time to time. In
order to bring CV4 back to its limits, the MPC controller
moved the MVs and even sacrificed the performance of
two lower rank CVs (CV3 and CV7). The main reason
for the sub-optimal performance of PID controller LIC1 is
because of the valve nonlinearity that has developed over
two years of operation since commissioning. The problem
is the backlash nonlinearity in the control valve and the
valve is likely oversized but can not be replaced until
turnaround.

3. PERFORMANCE ANALYSIS OF THE NHU MPC

The naphtha hydrotreating unit (NHU) at Suncor Energy
Inc. is a standard hydrofining unit that desulphurizes the
coker intermediate naphtha streams through a catalytic
reaction with hydrogen. The NHU is controlled by a MPC
controller which has 4 manipulated variables (MVs), 8
controlled variables (CVs) and 5 feedforward variables
(FFs). The MPC controller recalculates and executes MV
moves every 1 minute.

The analysis is based on 8 days when the controller was
off, followed by 7 days when the controller was on. Our
purpose is to assess the performance of MPC controller
and compare the plant performance when MPC was on
and off. Figures 4 and 5 show the MV and CV activities
during the selected 15 days period. The portion that is
highlighted by dashed line box in each figure corresponds
to the period that the MPC was on.

In Figure 5, it is quite clear that most of the CVs are
better regulated with reduced variance after the MPC
was turned on. Variances of each CV when MPC was on
and when MPC was off are calculated and compared. For
each CV, the percentage of variance reduced after MPC

30
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Fig. 4. MVs moves for the selected 15 days. The black lines
are the limits.

turned on is shown in Table 4. It is obvious that most
of the CVs have reduced variance after the MPC was
turned on. The only variable with increased variance is
CV7 (TI25.PV). This CV is the bottom temperature of
the naphtha depropanizer which has a low rank (weight) in
the MPC. The MPC controller transferred the variability
of other CVs to CV7 where the process can afford to
have increased variance. This is an indication of good
performance of the NHU MPC.

MPC off
5

02 04 06 08 1

(a) CV1 - CV4 (b) CV5 - CV8

Fig. 5. CVs moves when the MPC was on. The blue lines
are the real measurement, the red lines are the LP-
targets and the black lines are the limits.

Table 4. Percentage of variance reduced after
MPC turned on

Tags CV1 CVv2 CV3 CV4
Variance reduced | 6.12% | 61.11% 47.88% 94.11%

Tags CV5 CV6 CvV7 CV8
Variance reduced | 90.55% | 64.40% | -199.89% | 59.20%

8.1 Analysis of Limits and Constraints

Within the selected 15 day period, the NHU MPC was on
over the last 7 days. Limits and constraints analysis of the
last 7 days data was performed using the CPM software
from Matrikon Inc. Table 5 shows the limit activation of
the MVs. Among 4 MVs, only MV3 stays at its limit most
of the time. This means that the MPC controller has at
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least the remaining 3 MVs with room to move most of the
time. At the same time, we can see in Figure 5 that CV4,
CV5 and CV8 are very close to their limit while other CVs
are within their limits. Such CV activities indicate that the
MPC controller was performing well to push some CVs to
their limits and control other CVs to remain within their

limits.

Table 5. Constraints analysis of the MVs LP-

targets
Tags | Cost Action | High limit | Low limits
activation activation
MV1 Minimize 39.05% 41.05%
MV2 Maximize 55.75% 20.23%
MV3 Maximize 99.21% 0%
MV4 Minimize 3.08% 0%

Table 6. Limits activation analysis of the CVs

LP-targets

Tags | Control objective | High limit | Low limit

activation activation
CV1 High limit 0% 0%
Cv2 High limit 5.25% 0%
CV3 Between limits 8.5% 1.11%
CV4 Between limits 0% 98.99 %
CV5 Between limits 0% 0%
CV6 High limit 0% 0.2%
CcvV7 Between limits 0% 4.18%
CVs8 Between limits 0% 25.49%

3.2 Summary of NHU MPC Performance

Considering the variance reduction and the limit tracking
of some CVs, we would consider the NHU MPC controller
performance was acceptable during the 7 day period.
However, it is not the most optimal performance that the
MPC controller can achieve and there still appears to be
some room for improvement, such as

o Ideally, we want MVs to stay within their limits and
not activate any limits. This could provide maximum
degree of freedom for the MPC controller to handle
disturbances and operating condition changes. How-
ever, this is not the case for NHU. One of the MVs
stayed at its limit most of the time. Therefore the
MPC controller lost one degree of freedom for control.

e Limit violations existed in CV8(see Figure 5(b)).
Calculations show that 56.01% of the time, its LP-
target is out of limit. This indicates that the MPC
controller has to sacrifice this low rank CV to ensure
performance of other CVs.

e Table 6 shows the control objective of each CV.
Actually the plant is designed to operate CV1, CV2
and CV6 at their upper limits. But in reality, these
three CVs are not at limits while some other CVs are
at limits.

e The MPC controller could not perform as well as
possible.

There are many reasons that can cause the problems
mentioned above, such as a deficient model, lower layer
PID tuning, operating condition changes and so on. This
MPC has been running over 2 years, but the service factor
could be improved.

4. MODEL QUALITY ANALYSIS
4.1 Initial Model Quality Assessment

The initial step test data of the KHU and NHU was
provided by the process engineers at Suncor Energy Inc.
The step tests were completed in 2005. In order to evaluate
the initial model quality, we first evaluate the simulation
and 1l-step ahead prediction (Ljung, 1998) performance
using the model and the step test data. In order to quantify
the model fit, we used the equation (which is also used in
MATLAB function ‘compare’)

n ; 2
model fit— 1 - | iyt £ B) it T ROP
2 ly(t) — g2

where y(t) is the measured output, §(t + k|t) is k-step-
ahead prediction and g(¢) is the mean value of the mea-
sured output. This model fit measures the percentage of
variation that is explained by the model in terms of k-
step-ahead prediction. If we choose k = 1 and substitute
g(t + 1|t) into the equation, then we have a 1-step-ahead
prediction fit which evaluates the 1-step-ahead prediction
ability of a model. If we choose £ = oo and substitute
§(t) into the equation, then we have a simulation fit which
evaluates the simulation ability of a model.

Figure 6(a) shows a comparison of the 1-step-ahead pre-
diction fit and simulation fit of KHU and NHU models.
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Fig. 6. Initial model fit

The 1-step-ahead prediction fits of the CVs are around
80% to 90% and the difference is not significant; however
the simulation fits of the CVs are relatively low and are
quite different from each other. For example, the average
1-step-ahead prediction fit of the 7 CVs of KHU is 87.4%
while the average simulation fit of the 7 CVs is 33.64%.
It is clear that the simulation fit is much lower than the
1-step-ahead prediction fit.

4.2 Recent Model Quality Assessment

In 2007, 5 weeks data of KHU and NHU were collected. We
calculated the 1-step-ahead prediction and simulation fit
based on this recent data. The results are shown in Figure
7 along with initial model fits.

Figures 7(a) and 7(c) show that the 1-step prediction
ability of the models is still very good. Some of the CVs
even have better 1-step prediction ability than before (e.g.
CV1, CV2, CV4 and CV6 in Figure 7(a)). Figures 7(b)
and 7(d) show significant degradation of simulation fit for
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Fig. 7. Model fit comparison of KHU and NHU

most of the CVs. Especially CV4 of both KHU and NHU
show negative simulation fit.

Our experience with 1-step-ahead prediction fit and sim-
ulation fit of industrial data leads us to the following
remarks:

e l-step-ahead prediction is not sensitive to either
model changes or disturbances. It is actually one step
extrapolation which is very easy to achieve even with
a bad model.

e Simulation on the other hand, is sensitive to both
model changes and disturbance. Good simulation fit is
only achieved by a good model. However, even a good
simulation model will give poor fit in the presence of
disturbances.

e Even when MPC performance is satisfactory, simu-
lation fits are often relatively poor in multivariate
industrial data sets because of the presence of dis-
turbances.

e Simulation fit is sensitive to disturbances and there-
fore it can give false alarm about model quality. For
example, CV4 of NHU also has a negative simulation;
however our other analysis does not indicate any
significant problem with this CV at all. In next sub-
section and also in Section 5, we will present that the
low simulation fit of CV4 of NHU is mainly because
of the effect of disturbances and it is a false alarm.

4.8 A New Model Index for Assessment of Model Quality

As discussed in the previous sub-section, the use of predic-
tion or simulation fit alone to evaluate model quality has
its pros and cons. In this sub-section, we will explore issues
of k-step-ahead predictions and propose a new model index
which considers both prediction and simulation ability of
a model at the same time.

An important concept in MPC control is the prediction
horizon which defines how far in the future the algorithm

has to predict at each control execution. The prediction
horizon is an integer number of sampling intervals and
the MPC controller will predict the future CV trajectory
within the prediction horizon. For example, if the sam-
pling interval is 1 minute and the prediction horizon is 15
minutes, then at each control execution, the MPC con-
troller needs to predict the CV trajectory over the next 15
minutes. Therefore for this example, the MPC controller
has to do k-step-ahead prediction with £ = 1,2,3,...,15
that is from 1 upto the prediction horizon. The accuracy
of the future CV trajectory not only depends on 1-step-
ahead prediction fit, but also depends on the k-step-ahead
prediction fit. Therefore it is meaningful to compute k-
step-ahead prediction fit and compare it with the 1-step
ahead prediction fit and the (infinite-horizon) simulation
fit.

N
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(d) Weekly model fit of CV4

1 2 3 4 5 - 2 3 4 5

(g) Weekly model fit of CV7 (h) Weekly model fit of CV8
Fig. 8. Recent model fit of NHU model (the y-axis is in
unit of %)

Five weeks data of NHU was collected between May to
June 2007. We calculated the prediction and simulation fit
based on weekly data. The model fits of the CVs are shown
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in the plots in Figure 8 where the blue lines represent
k-step-ahead prediction fits and the red lines represent
simulation fits. Here k£ = 1,2, ..., 15 because the prediction
horizon of the NHU MPC is 15 minutes.

One interesting observation from Figure 8(a) and Figure
8(b) is that the k-step-ahead prediction fits of some weeks
are even lower than the simulation fit. The k-step ahead
prediction fit of CV1 in week 3 (Figure 8(a)) is as low as
7.3% while its 1-step-ahead prediction fit is 72.58% and
the simulation fit is 17.62%. This observation once again
supports our claim that the prediction ability of a model
should not be measured only by 1-step-ahead prediction
fit.

From the plots of model fit, we arrive at the following
observations based on the NHU process data:

e A good model will have good 1-step-ahead prediction
and its k-step-ahead prediction will degrade slowly,
such as the case in Figures 8(g) and 8(h). But a
bad model with good 1-step-ahead prediction will not
have good k-step-ahead prediction. The fit will drop
quickly as k increases, such as the case in Figure 8(b).

e If the k-step-ahead fits of a model drop quickly and
its simulation is also low, then it is a signature of bad
model.

e If the k-step-ahead fits of a model are good, but the
simulation is low, we probably still do not need to
worry about it because it is quite possible that the
low simulation fit is due to the effect of disturbances.

e The simulation fit of CV4 in Figure 7(d) indicates a
bad model. However, our experience with simulation
fit and prediction fit does not indicate a bad model
for CV4. This is because the k-step-ahead predictions
of CV4 are consistently good over the weeks and
are the best among all 8 CVs. While its simulation
fits fluctuate from close to 20% to close to -60%.
It is quite possible that the low simulation fit is
because of the effect of disturbances. If CV4 had a bad
model, we would expect its k-step-ahead predictions
to deteriorates quickly as k increases which is not the
case here.

Therefore, we can see that the prediction ability of a model
may not be as good as the 1-step-ahead prediction fit
shows. We should also take the k-step-ahead prediction
fit into account to have a complete evaluation of the
prediction ability. Our new idea of model index is to
include information of 1-step-ahead prediction fit, k-step-
ahead prediction fit and simulation fit. The new model
index we propose is defined as

averaged prediction fit 4+ simulation fit
2

model index =

where the ‘averaged prediction fit’ means the average value
of k-step-ahead prediction fits (k = 1,2, ..., p, where p is the
prediction horizon value).

This model index serves as a measure of both prediction
ability and simulation ability of a model. It not only
has the advantage of the prediction fit that reduces the
effect of disturbances by using the feedback of the CV
measurement, but also has the advantage of simulation fit

which is sensitive to model change. The green lines in plots
of Figure 8 are the values of this new model index.

Our new model quality index for NHU MPC controller
is calculated based on initial step test data and recent
process data. The comparison between the initial model
quality and recent model quality is shown in Figure 9.
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Fig. 9. New model index value of NHU model

The new model index values show that most of the models
have degraded except the model for CV5. The worst model
is the one for CV2. This makes sense because the model for
CV2 not only has low 1-step ahead prediction fit (around
70%) and low simulation fit, its k-step-ahead prediction
fits also deteriorate quickly as k increases. The new index
does not indicate any problem for CV4 which matches our
expectation. Overall, we did not find any particular model
that has a significant problem.

Results for KHU model are omitted due to lack of space.

5. MODEL IDENTIFICATION USING ROUTINE
OPERATING DATA

Zhu (1998) has introduced the asymptotic method (ASYM)
for identification of multivariable processes. The ASYM
method is especially efficient in identifying models for
MPC controllers. Besides identification, the ASYM method
also validates models. The identified models are graded A
(very good), B (good), C (marginal) and D (poor, or, no
model exists). In this section, we use the ASYM method
to re-identify the models of KHU and NHU using routine
operating data. The software used is the Tai-Ji Module
of the CPM product from Matrikon Inc. (Matrikon Inc.,
Tai-Ji Multivariable Identification Package, 2007)

The KHU MPC controller was turned off for 1 week in
November 2006. During that period, operators at Suncor
manually changed the MVs from time to time in order to
keep the process within the safe operating range. This week
of data was used to identify the model of KHU using the
ASYM method. The results are shown in Figure 10. The
blue lines represent the original model used in the MPC
and the red lines represent the newly identified model with
A or B grade. The models with C or D grade are not shown.
If there is no model between a CV and a MV, we omit
that plot. In Figure 10, we observe significant changes in
the models for CV2 & MV3, and CV4 & MV2 where the
model gain has changed from negative to positive. Gain
mismatch is also observed in models for CV1 & MV1, CV3
& MV3 and CV5 & MV2. Overall, the model of KHU has
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changed considerably and re-identification of the process
is recommended.
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Fig. 10. KHU model

For NHU, we performed closed-loop identification using
the routine operating data with MPC on. The results
are shown in Figure 11. In Figure 11, we see some gain
mismatches, but the overall dynamics of the models are
close to their original ones. We do not see significant
mismatches for the NHU models. Especially for CV4, the
newly identified models are close to the original ones. This
again indicate that the negative simulation fit of CV4 in
Figure 7(d) is a false alarm.
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Fig. 11. NHU model
6. CONCLUDING REMARKS

This paper has assessed the performance and the model
quality of two industrial MPC controllers. Analysis shows
that the performance of the KHU MPC controller was
less than optimal. There are two main reasons why the
KHU MPC performance was less than optimal. The first
reason is because the limit settings for the MVs and CVs
are overly restrictive, but possibly for valid reasons. The
MPC computations have the MVs reach the limits set by
the designers before it can achieve the control objective
for each CV. The second reason is that one of the PID

controllers in the unit could not perform well. Because of
this the CV related to this PID controller was out of limit
from time to time.

The performance of the NHU MPC controller was ac-
ceptable. Compared to manual control, the MPC greatly
reduced the variance in most of the CVs and transferred
the variability to a temperature loop where the plant can
afford to have it. During the period that MPC was on,
the MVs and CVs were within their limits most of the
time. Some of the CVs were operating at their limits and
this indicates that the MPC controller was performing
optimization to achieve the performance it could. There is
also some room for improvement and we have suggestions
for improving this level of control.

A new model index based on k-step-ahead prediction
and simulation was introduced. Its advantage over 1-step-
ahead prediction fit and simulation fit were also discussed.
Identification of KHU and NHU using routine operation
data were performed using the ASYM method.
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