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Abstract: In this paper, a system identification method for hybrid systems switched by the
magnitude of velocity is proposed. First, it is shown that the regression vector space of a
mechanical system switched by the magnitude of velocity cannot be separated by a hyperplane.
Then a method based on support vector machines with a polynomial kernel is proposed. The
effectiveness of the proposed method is shown by simulations.
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1. INTRODUCTION

In positioning control, the characteristics of the plant
might change for long span motion and short span mo-
tion. It is considered that the phenomenon is caused by
nonlinear friction and/or hysteresis (Futami et al., 1990).
However, in general, it is difficult to model these charac-
teristics by a physical interpretation. Therefore, it will be
useful, if the nonlinear model can be identified from input-
output data.

Recently, modeling and design of hybrid systems have
received more attention both academia and industry. It
provides a unified framework to the mixed system with
continuous dynamics and discrete events. Ferrari-Trecate
et al. (2003) proposed an identification method of hybrid
systems. The method can identify a hybrid system de-
scribed by a piecewise affine (PWA) system from input-
output data and estimate the switching rules at the same
time.

A class of system with nonlinear friction can be approx-
imated by a hybrid system (Noguchi et al., 2005). For
example, a system in which the friction force is changed
for higher speed and lower speed can be modeled as a
hybrid system with two sub-models that are switched by
the magnitude of velocity. However, in the case that the
switching condition depends on the magnitude of velocity,
it is difficult to apply the methods proposed by Ferrari-
Trecate et al. (2003).

In this paper, a new identification method for a mechanical
hybrid system switched by the magnitude of velocity is
proposed. First, it is shown that the regression vector space
of the hybrid system cannot be separated by a hyperplane.
Then a method based on support vector machines with
a polynomial kernel is proposed. The effectiveness of the
proposed method is shown by simulations.

2. IDENTIFICATION OF HYBRID SYSTEMS

In this section, the identification method proposed by
Ferrari-Trecate et al. (2003) is summarized. The plant is
assumed to be described by a piecewise ARX (PWARX)
model with s sub-modes:

y[k] =











θT
1
ϕ[k] + w[k], if ϕ[k] ∈ C1

...

θT
s ϕ[k] + w[k], if ϕ[k] ∈ Cs

(1)

θi := [ai1, . . . , ain, bi1, . . . , bin]T

ϕ[k] := [−y[k − 1], . . . ,−y[k − n],

u[k − 1], . . . , u[k − n] ]T

where w[k] is white noise, θi (i = 1, . . . , s) are parameter
vectors, ϕ[k] is a regression vector. n is an order of the
PWARX model, and it is assumed that the order for each
sub-model is the same. u[k] and y[k] are input and output
respectively. {C}s

i=1
are polytopic and they satisfy well-

posedness condition

∪s
i=1

Ci = C, Ci ∩ Cj = ∅, ∀i �= j

2.1 Clustering of data points

A given input-output data (u[k], y[k])N
k=1

are clustered
according to the following procedure.

Step 1 Data points (ϕ[k], y[k])N
i=1

are classified into
clusters Cj including Nc data points. Cj is built by col-
lecting Nc − 1 neighboring data points of (ϕ[j], y[j]).
Euclidean norm is used to evaluate the distance be-
tween data points as

‖ϕ[j] − ϕ[i]‖.
Step 2 For each cluster Cj , a parameter vector θLS,j is

obtained using the least squares method:

θLS,j = (ΦT
j Φj)

−1ΦT
j yCj

, j = 1, · · · , N
Φj = [ϕ

1
, · · · ,ϕNc

]T ,
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Fig. 1. Training data and hyperplane

yCj
= [y1, · · · , yNc

]T

where (ϕi, yi)
Nc

i=1
are data points that belong to the

cluster Cj .

Step 3 Cluster the parameter vectors θLS,j into s dis-
joint subsets Di using K-means algorithm which is
well-known clustering algorithm, and it updates the
parameter vector in the cluster Di, (i = 1, . . . , s) and
the centers µi of clusters in such a way to minimize
the clustering function:

J =
s

∑

i=1

∑

θLS,j
∈Di

‖θLS,j − µi‖2

Step 4 Classify the original data points (ϕ[k], y[k])N
i=1

into s classes by using the bijective maps between
parameter vectors θLS,j and clusters Cj and between
clusters Cj and data points (ϕ[k], y[k])N

i=1
.

Since the original data points are now classified, the final
s ARX sub-models can be identified by applying the least
squares method to the data points in each cluster Dj .

2.2 Estimation of a hyperplane that separates sub-models
using SVM

A hyperplane that separates sub-models on the regres-
sion space is estimated by using Support Vector Machine
(SVM) that is one of powerful tools for classification (Cris-
tianini and Shawe-Taylor, 2000; Adachi, 2004). The modes
are estimated by a discriminant function with respect to
the regression vector ϕ[k].

For given training data points (xi, yi) composed of input
data xi ∈ Rn and class label yi ∈ {−1, 1}, the problem
is to find a linear discriminant function that separates the
data points xi into two classes:

f(xi) = 〈w,xi〉 + b (2)

where 〈·, ·〉 is an inner-product, w is a normal vector of
the hyperplane, and b is a bias term. As shown in Fig. 1
SVM separates data points by the hyperplane so that the
distance from the hyperplane to the nearest data point is
maximized. The data points nearest to the hyperplane are
called the support vectors.

The problem that maximizes the margin between the
hyperplane and the nearest data point can be formulated

linear non-separable linear separable

input space feature space

map

x )(xφ

φ

Fig. 2. Mapping to higher dimensional feature space

as a quadratic programming optimization problem (primal
problem):

min
w,b

J (w) =
1

2
〈w,w〉 (3)

subject to (〈w,xi〉 + b)yi ≥ 1, i = 1, · · · , N (4)

where the maximum margin is γ = 1/‖w‖. The dual
problem is given as follows:

max
α

Q(α) =

N
∑

i=1

αi −
1

2

N
∑

i,j=1

yiyjαiαj〈xi,xj〉

subject to

N
∑

i=1

yiαi = 0 (5)

αi ≥ 0, i = 1, · · · , N

When the data points are not linearly separable, they
might be linearly separable by mapping them into higher-
dimensional space using a nonlinear function φ(·) as shown
in Fig. 2. It is equivalent to use a nonlinear discriminant
function

f(xi) = 〈w,φ(xi)〉 + b (6)

instead of Eq.(2). In general, the dimension of φ(xi) tends
to be very high, and the optimization might be difficult.

However, in the dual problem Eq.(5), higher dimensional
space does not appear explicitly as:

max
α

Q(α) =
N

∑

i=1

αi −
1

2

N
∑

i,j=1

yiyjαiαj〈φ(xi), φ(xj)〉.

It just requires to calculate the inner product of φ(·), and

K(xi,xj) = 〈φ(xi), φ(xj)〉
is called kernel function (Cristianini and Shawe-Taylor,
2000). This technique is well known as the kernel trick.
A polynomial kernel, a Gaussian kernel, and a Sigmoid
kernel are commonly used. For example, the polynomial
kernel is defined as

K(xi,xj) = 〈xi,xj〉d (7)

or

K(xi,xj) = (〈xi,xj〉 + 1)d. (8)
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Fig. 3. Spring-mass-damper system

3. IDENTIFICATION OF A MECHANICAL HYBRID
SYSTEM SWITCHED BY THE MAGNITUDE OF

VELOCITY

3.1 A system switched by the magnitude of velocity

Let us consider a spring-mass-damper system as shown in
Fig. 3, in which m [kg] is a mass, k [N/m] is a spring
constant, and c [Ns/m] is a damping coefficient. The
output y(t) is a displacement [m] from the equilibrium
position, and the input u(t) is a force [N] applied to the
mass. The equation of motion is described by

mÿ(t) + cẏ(t) + ky(t) = u(t). (9)

Now, it is assumed that the damping coefficient c is
switched between c1 and c2, and the discrete-time model
of Eq.(9) with a sampling period Ts is obtained:

y[k] = θT
i ϕ[k], i = 1, 2

ϕ[k] := [−y[k − 1],−y[k − 2], u[k − 1], u[k − 2]]T (10)

where θ1 and θ2 are parameter vectors for c = c1 and c2

respectively, ϕ[k] is a regression vector, y[k] := y(Tsk),
and u[k] := u(Tsk).

The velocity is defined by the backward difference of y[k]
as

v[k − 1] :=
y[k − 1] − y[k − 2]

Ts

, (11)

and consider a hybrid system switched by the magnitude
of velocity as:

y[k] =

{

θT
1
ϕ[k] if |v[k − 1]| < Vsw

θT
2
ϕ[k] if |v[k − 1]| ≥ Vsw

. (12)

This system has two modes: mode 1 for |v[k − 1]| < Vsw

and mode 2 for |v[k − 1]| ≥ Vsw

For simplicity, u[k] = 0,∀k is assumed, and let us con-
sider the relation between the trajectory of y[k] and the
corresponding modes on y[k − 2]—y[k − 1] plane, i.e., in
regression space. Fig. 4 is obtained from Eqs.(11) and (12),
and it shows that the trajectory of y[k] is on Cb in mode
1 and on Ca or Cc in mode 2. Therefore, it is impossible
to separate these modes by one hyperplane.

Let us divide mode 2 into two modes; mode 2a and mode2c
that are corresponding to Ca and Cc respectively, then
between Ca and Cb and between Cb and Cc are separated
by a hyperplance. However, the method proposed by
Ferrari-Trecate et al. (2003) can not apply to this case
because the both of mode 2a and mode 2c have same
parameter vector θ2 and it is impossible to distinguish
mode 2a and mode 2c in the parameter space.

O
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sswTV−

sswTV

sswTVkyky +−=− ]2[]1[
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]1[ −ky
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Fig. 4. Regression vector space

3.2 Identification of hybrid system using polynomial kernel

As explained in section 3.1, the regression space cannot be
separated into mode 1 and mode 2 if the system is switched
by the magnitude of velocity. Thus we consider to separate
the regression space by a nonlinear discriminant function.
From Fig. 4, it is easy to confirm that Cb and Ca ∪Cc can
be represented by:

Cb =
{

y | yT My < (VswTs)
2
}

, (13)

Ca ∪ Cc =
{

y | yT My ≥ (VswTs)
2
}

(14)

where

y :=

[

y[k − 1]
y[k − 2]

]

, M :=

[

1 −1
−1 1

]

. (15)

This means that it is possible to decide the mode to which
the trajectory of y[k] belongs by the sign of

yT My − (VswTs)
2

= y2[k − 1] − 2y[k − 1]y[k − 2]

+y2[k − 2] − (VswTs)
2. (16)

Therefore, by a quadratic function with respect to the
regression vector as shown below, the regression space can
be separated into mode 1 and mode 2:

f(ϕ[k]) = ϕT [k]Mϕ[k] + b, (17)

where ϕ[k] is a regression vector, and M = [mij ] is a
symmetric matrix.

Eq.(17) can be formulated by a polynomial kernel. As
an example, ϕ = [ϕ1, ϕ2]

T is assumed, and a nonlinear
function to the higher dimensional feature space is defined
as:

φ(ϕ) =
[

ϕ2

1

√
2ϕ1ϕ2 ϕ2

2

]T
.

It is easy to show that Eq.(17) is equivalent to Eq.(6) by
defining

w = [m11,
√

2m12,m22]

The inner product of φ(·) is
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Table 1. Plant parameters

parameter value unit
m 2.5 [kg]
k 1 [N/m]
c1 1.2 [Ns/m]
c2 1.2 × 10−3 [Ns/m]
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Fig. 5. Input-output data (upper: output, lower: input)

〈φ(z), φ(x)〉= (z1x1)
2 + 2z1z2x1x2 + (z2x2)

2

= 〈z,x〉2, (18)

and it corresponds to Eq.(7) for d = 2. Therefore, the
nonlinear discriminant function of Eq.(17) is achieved by
SVM using a 2nd order polynomial kernel.

4. SIMULATIONS

4.1 A simulation model and a input-output data

In order to show the effectiveness of the proposed method,
simulation results are shown for a simple spring-mass-
damper system as shown in Fig. 3. The parameters are
shown in Table 1. An input-output data was collected by
the discrete-time model of Fig. 3 with a sampling period
Ts = 1 [s], and it is shown in Fig. 5. The number of data
is N = 1000 and the first half of the data is used for
the estimation of model, and the second half is used for
model validation. A 2nd order ARX model is used for an
identification model:

y[k] =

{

θT
1
ϕ[k] + w[k] (mode 1)

θT
2
ϕ[k] + w[k] (mode 2)

.

where w[k] is white noise, ϕ[k] is the regression vector
defined by Eq.(10), and θi ∈ R4, i = 1, 2 are parameter
vectors of mode 1 and mode 2.

4.2 Data clustering and identification of sub-models

The data points (ϕ[k], y[k]) are classified into two classes
corresponding to mode 1 and mode 2 by using the method
described in section 2.1. The result is shown in the upper
figure of Fig. 6. The true clustering result is also shown
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Fig. 6. Clustering result (upper: clustered output, lower:
true output; dots: mode 1, squares: mode 2)
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Fig. 7. Frequency responses of identified sub-models (solid
line: true models of mode 1 and mode 2, dotted line:
mode 1, dashed line: mode 2, dashdot line: single ARX
model)

below in Fig. 6 for comparison, and the estimated result
has a good agreement with the true result.

The parameter vectors θi for mode 1 and mode 2 are
estimated by using the least squares method. The fre-
quency responses of the estimated ARX models are shown
in Fig. 7. In this figure, the frequency responses of mode
1 and mode 2 are shown by dotted line and dashed line
respectively. For comparison, the frequency responses of
the true modes are also shown by solid line. The identified
sub-models of mode 1 and mode 2 have a good agreements
with the true sub-models. The identification result using
a single ARX model is also shown by dashdot line, and it
identifies mode 2 only.

4.3 Estimation of a nonlinear discriminant function

The regression space is separated by using a 2nd order
polynomial kernel. In order to allow a small amount of
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Fig. 8. Regression space (dots: mode 1, squares: mode 2,
solid line: estimated boundary between mode 1 and
mode 2)

mislabeled data points, a soft margin SVM is used. As the
solver for soft margin SVM with polynomial kernel, “SVM
and Kernel Methods Matlab Toolbox” is used (Canu et al.,
2005).

The result is shown in Fig. 8 in which the trajectory of

[−y[k − 1],−y[k − 2], u[k − 1]]T

is shown from different view points because the regression
vector is four dimensions and it is difficult to visualize
directly. From this figure, it is confirmed that a nonlinear
boundary that separates mode 1 and mode 2 is estimated
correctly.

Fig. 9 shows a time response of y[k] when the second half of
the input data shown in Fig. 5 is applied to the identified
model. The time response of the single ARX model and the
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Fig. 9. Time responses of identified models (solid line: true
model, dashed line: single ARX model, dashdot line:
hybrid model)

hybrid model are shown by dashed line and the dashdot
line respectively. The time response of the hybrid model
has a good agreement with that of the true model. The fit
ratio of the identified hybrid model was 89%, while that of
the single ARX model was 68.2%. From these results, the
effectiveness of the proposed method based on SVM with
polynomial kernel is confirmed.

5. CONCLUSION

In this paper, a system identification problem for the
hybrid system switched by the magnitude of velocity has
been considered. First, it was shown that the conventional
method cannot be applied directly to the system. Then
the identification method based on SVM with polynomial
kernel has been proposed. The proposed method separates
the regression space by a nonlinear discriminant function.

From the simulation results, it was shown that the ob-
tained parameters of sub-models have good agreement
with that of the true systems. The time responses were
also compared with that of the true system, and it was
confirmed that the fit ratio of the proposed method is
improved compared with that of the conventional method
based on the single ARX model.

Future investigations will focus on the implementation of
the proposed method to the actual systems such as a head
positioning control system of hard disk drives (HDDs).
The head actuator of HDDs has a nonlinearity such as a
pivot friction, and the identification of the nonlinearity is
required in order to improve the positioning performance.
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