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Abstract:
Plants instrumentation is a crucial issue due to the importance of sensors in allowing the observability
and in increasing the redundancy and the reliability. Designing a sensor network becomes complicated
when the complexity of the system increases. In this paper, a strategy is proposed to design a
minimal cost sensor network ensuring the observability of complex systems. The strategy is based
on the decomposition of complex systems into subsystems. This decomposition helps in treating each
subsystem separately and allows the use of reduced order observers rather than one observer for the
whole system.
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1. NOMENCLATURE

SS j A subsystem
IMi j Interconnection matrix: the influence of SSi on SS j

C j Minimal cost output matrix of SS j

J j Sensor set corresponding to C j

C̄ j Minimal cost output matrix verifying the local ob-
servability of SS j

J̄ j Sensor set corresponding to C̄ j
¯̄C j Minimal cost output matrix matching subsystem

interconnection
¯̄J j Sensor set corresponding to ¯̄C j

δ i
j Sensor measuring variable xi

j of SS j

cost(J j) Cost of sensor set J j

coi
j Cost of sensor δ i

j

2. INTRODUCTION AND PROBLEM STATEMENT

The problem of plants instrumentation has been studied over
the last thirty years: the criteria of observability (Luong et al.
(1994)), maximum estimation accuracy (Sen et al. (1998)) and
minimum cost (Madron and Veverka (1992)) were considered
in the design of sensor networks. Later, other criteria like
maximizing fault detectability and isolability (Carpentier et al.
(1997)), redundancy (Luong et al. (1994)) and reliability (Ali
and Narasimhan (1996)) were introduced in the design objec-
tives.

The focus was mainly on chemical plants (Ali and Narasimhan
(1996), Madron and Veverka (1992)). Other studies treated

⋆ This work carried out in LSIS laboratory, is supported by ST Microelectron-

ics, Rousset-France and the Conseil Général des Bouches-du-Rhône.

steady-state (Luong et al. (1994)), linear (Sen et al. (1998)),
bilinear processes (Ali and Narasimhan (1996)) and structured
systems (Commault et al. (2005b), Commault et al. (2005a)).

In (Staroswiecki et al. (2004)), Staroswiecki et al addressed
the sensor fault tolerant estimation and the associated sensor
network design problem for linear systems. Their objective
consists in designing a sensor network that ensures system’s
observability and at the same time verifies an a priori defined
criteria of reliability and redundancy degree. This strategy
requires testing system’s observability for a number of sensor
sets. Observability test is quite simple for linear systems and for
relatively small scale nonlinear systems.

However, for large scale nonlinear complex systems, testing
observability may not be feasible because of the large memory
space required for calculations. In addition, the design of an
observer for the overall system may be a hard task and the on
line estimation may impose heavy calculations.

In (Chamseddine et al. (2007)), the authors extend the work of
Staroswiecki et al (Staroswiecki et al. (2004)) to nonlinear large
scale complex systems. The complex system is decomposed
into interconnected subsystems. The decomposition enables the
use of reduced order observers for subsystems. This simpli-
fies observers design and reduces the calculation requirement.
For each subsystem, the minimum set of sensors allowing its
observability is determined while taking into consideration its
interconnection with the other subsystems.

In some cases, the cost is an important criterion of the design
objectives. The aim of this paper is to show how to design
a minimal cost sensor network ensuring the observability of
complex systems consisted of interconnected subsystems.
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The paper structure is as follows: in section 3, some prelimi-
naries for observability of systems subjected to external distur-
bances are given. Section 4 presents the system decomposition
which is the first step of the sensor network design strategy.
This strategy is detailed then in section 5 and an academic ex-
ample illustrating the proposed strategy is presented in section
6. Finally the conclusion and future works are given.

3. PRELIMINARIES

The preliminaries given in this section concern systems ob-
servability in the presence of unknown inputs. Consider the
following system affected by unknown inputs f̃ (t):

{

ẋ(t) = f (x(t),u(t))+ F̃ f̃ (t)
y(t) = Cx(t)

(1)

System (1) is locally weakly observable if rank(OM) = n where
OM is the observability matrix given by:

OM = (dL0
f h(x)T · · · dLn−2

f h(x)T dLn−1
f h(x)T )T (2)

where, for any vector V , dV =

(
∂V

∂x1
,

∂V

∂x2
, . . . ,

∂V

∂xn

)

, L f h(x) =

∑n
i=1 fi

∂h(x)

∂xi

is the Lie derivative of h(x) and Lk
f h(x) =

L f (L
k−1
f h(x)).

However, due to the presence of unknown inputs f̃ (t), an
additional condition should be verified. This second condition
is known as matching condition. It is given by: rank(CF̃) =
rank(F̃) (Trinh and Ha (2000)).

The sensor set J to be used can then be viewed as the union
of two sets J̄ and ¯̄J (J = J̄ ∪ ¯̄J). The first set J̄ verifies the

first condition. The second set ¯̄J verifies the second condition.
There may be sensors common to the two sets. J̄ depends on

the dynamics f (x,u) of (1). ¯̄J depends on the structure of F̃ .

Set J (respectively J̄ and ¯̄J) is the sensor set correspondent to C

(respectively C̄ and ¯̄C).

Remark 1. In the rest of the paper, the first condition will be
referred to as ‘verifying the local observability’. The second
condition will be referred to as ‘matching the unknown inputs’
or ‘interconnection matching’. The two conditions will be
referred to as ‘verifying system’s observability’.

The preliminaries given in this section are important because, as
will be shown in the next section, the decomposition of systems
results in subsystems with external inputs.

4. DECOMPOSITION OF COMPLEX SYSTEMS

A common approach to solve the complexity of complex sys-
tems is system decomposition. In this work, object-oriented
decomposition (Fradkov et al. (1999)) is used. This decom-
position is based on the system physical structure. It implies
the separation of the system into simpler subsystems to be
considered individually. If the complex system is composed
of N subsystems, then the dynamics of subsystem SS j can be
written as:

SS j

{

ẋ j(t) = f j(x j(t),u(t))+ F̃j f̃ j(x̃ j(t),u(t))
y j(t) = h j(x j(t)) = C jx j(t)

(3)

where x j ∈ ℜn j (x j = (x1
j ,x

2
j , ...,x

n j

j )T , ∑N
j=1 n j = n) and y j ∈

ℜp j are respectively, the state vector and the output vector of

subsystem SS j. x̃ j is a subset of x, it represents all the variables
(other than x j) that affect SS j. f j is the subsystem SS j dynamics.

f̃ j is the unknown inputs vector. u is the control inputs vector.

F̃j and C j are constant matrices.

Remark 2. The representation considered in (3) is a special
case of:

SS j

{

ẋ j(t) = f j(x j(t),u(t))+ F̃j f̃ j(x(t),u(t))
y j(t) = h j(x j(t)) = C jx j(t)

(4)

where f̃ j is function of x and not only x̃ j. In this case, the ob-

servability of SS j depends of f j and f̃ j. This more complicated
case is not treated in this paper.

Remark 3. The unknown inputs f̃ j of (3) are supposed to be

upper bounded, i.e.
∣
∣ f̃ j(t)

∣
∣ < ρ j. This requires the stability

of interconnected subsystems. This problem is treated in the
literature and is not studied here.

Assumption 1. The output matrices C j ( j = {1, ...,N}) are
assumed to be diagonal matrices. They consist of zeros and
ones. If xi

j is measured then C j(i, i) = 1; else C j(i, i) = 0.

The objective is to find the structure of C j ( j = 1, ...,N) so that
subsystems are observable and the cost of sensors is minimal.

The interconnection between two subsystems SSi and SS j can
correspond to one of the four following cases: SSi is affected by
SS j (Fig. 1.a), SS j is affected by SSi (Fig. 1.b), SSi and SS j affect
each other (Fig. 1.c) and SSi and SS j are independent (Fig. 1.d).
The two cases (a) and (b) will be called simple interconnection,
case (c) will be called double interconnection.
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Fig. 1. Interconnection of two subsystems

In the next section the minimal cost sensor network design for
complex systems observability is presented and explained.

5. MINIMAL COST SENSOR NETWORK DESIGN

For the sake of simplification, the Sensor Network Design Strat-
egy (SNDS) will be explained for two doubly interconnected
subsystems SS1 and SS2. This strategy can be generalized eas-
ily for more than two interconnected subsystems. The simple
interconnection is a special case of the double interconnection
and thus it will not be treated here.

The dynamics of SS1 and SS2 are given by:

SS1

{

ẋ1(t) = f1(x1(t),u1(t))+ F̃1 f̃1(x̃1(t),u1(t))
y1(t) = C1x1(t)

(5)

and

SS2

{

ẋ2(t) = f2(x2(t),u2(t))+ F̃2 f̃2(x̃2(t),u2(t))
y2(t) = C2x2(t)

(6)
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As noted before, x̃ j represents all the variables (other than x j)
that affect the subsystem SS j ( j = 1,2). Since SS1 and SS2 are
doubly interconnected, then x̃1 is a subset of x2 (x̃1 ⊆ x2) and
x̃2 is a subset of x1 (x̃2 ⊆ x1).

5.1 Interconnection matrix representation

Before explaining the SNDS, the Interconnection Matrix (IM)
is presented. The IM is used to represent in a matrix form the
affected and the affecting variables. For SS1 and SS2, IM12 ∈
ℜn2×n1 represents the influence of SS1 on SS2. Matrix IM21 ∈
ℜn1×n2 represents the influence of SS2 on SS1. The elements of
IM12 and IM21 consist of ‘0’ and ‘1’. These two matrices can
be constructed as follows:

If
∂ ẋi

2

∂x
j
1

6= 0 then IM12(i, j) = 1, else IM12(i, j) = 0 (i =

1, ...,n2; j = 1, ...,n1).

If
∂ ẋi

1

∂x
j
2

6= 0 then IM21(i, j) = 1, else IM21(i, j) = 0 (i =

1, ...,n1; j = 1, ...,n2).

5.2 Minimal cost SNDS: local observability

The local observability of SS j depends on the dynamics f j. It

is independent of the interconnection f̃ j between subsystems.

Thus, J̄ j can be determined for each subsystem SS j indepen-
dently of the other subsystem ( j = 1,2) (see section 3). The
problem of determining J̄ j can be formulated as:

Pr

{

Minimize cost(J̄ j)
Subject to rank(OM j) = n j

(7)

with OM j is the observability matrix of SS j. The observability
test is easier to perform for each subsystem separately, rather
than testing overall system’s observability. Problem (7) may
have multiple solutions so j for each subsystem SS j. Thus, it

is necessary to determine set J̄ j to be considered among the

possible solutions J̄
l j

j ( j = 1,2 and l j = 1, ...,so j).

5.3 Minimal cost SNDS: interconnection matching

The next step of the SNDS is to determine ¯̄J1 and ¯̄J2 that match
subsystem interconnections (see section 3). In this particular
case, two paths can be followed. This is shown in Fig. 2. One
can start on SS1 and end on SS2 (solid line), or start on SS2

and end on SS1 (dashed line). In the first path P1, ¯̄C1 and
¯̄C2 are determined to match the unknown inputs of SS1, i.e.

to match IM21. Once the observability of SS1 is ensured, the
external inputs affecting SS2 will become known as they will
be measured/estimated in SS1. Same logic for path P2.

 

SS
1

SS
2

1
P

2
P

SS
1

SS
2

1
P

2
P

 

Fig. 2. Possible paths to sensor network design

In the general case, if nD is the number of the double inter-
connections between subsystems then the total number nP of
possible paths is nP = 2nD . The SNDS is explained in the sequel
for both paths P1 and P2.

Path P1 This path consists in starting by SS1 and in finding
¯̄C1 and ¯̄C2 so that to match the elements of matrix IM21 (the

influence of SS2 on SS1).

For a given ¯̄C1, a matrix ¯IM21 is defined as:

¯IM21 = IM21 −
¯̄C1IM21 (8)

Matrix ¯̄C1IM21 represents the elements of IM21 matched by ¯̄C1.
Matrix ¯IM21 represents the elements of IM21 which are not

matched by ¯̄C1.

A matrix ¯̄IM21 is defined as:

¯̄IM21 = ¯IM21 − ¯IM21
¯̄C2 (9)

Matrix ¯IM21
¯̄C2 represents the elements of ¯IM21 matched by

¯̄C2. Matrix ¯̄IM21 represents the elements of ¯IM21 that are not

matched by ¯̄C2.

In other words, matrix ¯̄IM21 represents the elements of IM21

which are not matched by ¯̄C1 and ¯̄C2. From (8) and (9), ¯̄IM21

can be written as:
¯̄IM21 = IM21 −

¯̄C1IM21 − IM21
¯̄C2 + ¯̄C1IM21

¯̄C2 (10)

The objective is to find the structure of ¯̄C1 and ¯̄C2 such that IM21

is matched and cost( ¯̄J1 ∪
¯̄J2) is minimal. This problem can be

interpreted as being an optimization problem Pr1:

Pr1







Minimize cost( ¯̄J1)+ cost( ¯̄J2)
Subject to

IM21 −
¯̄C1IM21 − IM21

¯̄C2 + ¯̄C1IM21
¯̄C2 ≡ 0

(11)

An example is given here to clarify the matrices ¯IM21 and ¯̄IM21

defined in this section. Consider two subsystems SS1 and SS2

doubly interconnected with n1 = 3 and n2 = 2. Suppose that
matrix IM21 is given by :

IM21 =

(
1 1
0 1
0 0

)

Matrix IM21 means that variable x1
1 is affected by x1

2 and x2
2 and

that variable x2
1 is affected by x2

2.

If the variable x1
1 is measured, matrices ¯̄C1 and ¯̄C1IM21 will then

have the following structure:

¯̄C1 =

(
1 0 0
0 0 0
0 0 0

)

and ¯̄C1IM21 =

(
1 1
0 0
0 0

)

;

Remark 4. The zero lines in matrix ¯̄C1 have no physical mean-
ing. However, they are kept to facilitate matrix manipulation.

Matrix ¯̄C1IM21 represents the affecting variables which lie in
the channel of the measured variable x1

1. Matrix ¯IM21 will then
be:

¯IM21 = IM21 −
¯̄C1IM21 =

(
0 0
0 1
0 0

)

;

This matrix represents the variables affecting SS1 which do not
lie in the channel of the measured variable x1

1. In other words,
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¯IM21 represents the elements of IM21 which are not matched by

the output matrix ¯̄C1.

Furthermore, if the variable x2
2 is measured, then matrix ¯̄C2 will

be given by:

¯̄C2 =

(
0 0
0 1

)

;

and ¯IM21
¯̄C2 will be:

¯IM21
¯̄C2 =

(
0 0
0 1
0 0

)

;

Matrix ¯IM21
¯̄C2 represents the measured variables among the

variables which are not matched by ¯̄C1. Since x2
2 is measured, it

is no longer unknown. Thus, it is eliminated from ¯IM21. Matrix
¯̄IM21 is given by:

¯̄IM21 = ¯IM21 − ¯IM21
¯̄C2 =

(
0 0
0 0
0 0

)

;

¯̄IM21 represents the elements of IM21 that are not matched by
¯̄C1 and ¯̄C2. ¯̄IM21 ≡ 0 because measuring x1

1 and x2
2 matches the

interconnection matrix IM21.

Matrix ¯̄IM21 can be directly expressed as:

¯̄IM21 = IM21 −
¯̄C1IM21 − IM21

¯̄C2 + ¯̄C1IM21
¯̄C2

but the steps are detailed here for explanation.

Path P2 Similarly to path P1, the objective is to find ¯̄C1 and
¯̄C2 such that IM12 is matched and cost( ¯̄J1 ∪

¯̄J2) is minimal. The
optimization problem Pr2 is:

Pr2







Minimize cost( ¯̄J1)+ cost( ¯̄J2)
Subject to

IM12 −
¯̄C2IM12 − IM12

¯̄C1 + ¯̄C2IM12
¯̄C1 ≡ 0

(12)

The solutions ( ¯̄C1,
¯̄C2) obtained for each problem may be dif-

ferent. In addition, each problem may have multiple solutions.
Suppose that problem Pri has si solutions. Thus, it is necessary
to find which path P among the paths Pi (i = 1,2) and which

solution ( ¯̄C1,
¯̄C2) among the solutions ( ¯̄C1,

¯̄C2)
k (k = 1, ...,si)

should be considered.
Problems (11) and (12) are known as binary or zero-one non-
linear optimization problem. This is because the variables can
only be zeros or ones. Many software programs are available for
solving such problems. One may cite for example: MATLABr,
MAPLEr, GAMSr and LINDOr. It should be noted that
none of these programs is able to solve (11) and (12) in their
matrix form. However, it is easy to transform them to a scalar
optimization. This is shown in the example.

5.4 Minimal cost SNDS: observability

After the determination of J̄ j and ¯̄J j, the last step is to determine
J1 and J2. Sets J1 and J2 that verify the observability of SS1

and SS2 and minimize the network cost are the sets that, for all

possible solutions J̄
l j

j (l j = 1, ...,so j) and all possible solutions

( ¯̄J1, ¯̄J2)
k (k = 1, ...,si) of all possible paths Pi (i = 1,2), mini-

mize the following:

cost(J̄ l1
1 ∪ ¯̄J k

1 )+ cost(J̄ l2
2 ∪ ¯̄J k

2 ) (13)

with (i = 1,2; j = 1,2; k = 1, ...,si and l j = 1, ...,so j).

6. EXAMPLE

In this section, an academic example is given to clear up the
proposed SNDS. Two doubly interconnected subsystems SS1

and SS2 are supposed to have the following state representation:

SS1







ẋ1
︷ ︸︸ ︷





ẋ1
1

ẋ2
1

ẋ3
1




=

f1(x1,u1)
︷ ︸︸ ︷





f 1
1 (x1)

f 2
1 (x1)

f 3
1 (x1)




+

F̃1
︷ ︸︸ ︷
(

1 0 0
0 1 0
0 0 1

)

f̃1(x̃1,u1)
︷ ︸︸ ︷





f̃ 1
1 (x1

2,x
2
2)

f̃ 2
1 (x1

2,x
2
2)

f̃ 3
1 (x1

2)






y1 = C1x1

(14)

SS2







ẋ2
︷ ︸︸ ︷





ẋ1
2

ẋ2
2

ẋ3
2




=

f2(x2,u2)
︷ ︸︸ ︷





f 1
2 (x2)

f 2
2 (x2)

f 3
2 (x2)




+

F̃2
︷ ︸︸ ︷
(

1 0
0 0
0 1

)

f̃2(x̃2,u2)
︷ ︸︸ ︷
(

f̃ 1
2 (x1

1)

f̃ 3
2 (x1

1,x
2
1)

)

y2 = C2x2

(15)

Staroswiecki et al (Staroswiecki et al. (2004)) proposed an
automaton in order to quantify system redundancy. The au-
tomaton for SS1 is supposed to be given in Fig. 3. It represents
all possible sensor network configurations for the subsystem.
Three sensors δ 1

1 , δ 2
1 and δ 3

1 can be used.

 

Ø

1

1
δδδδ 2

1
δδδδ

3

1δδδδ

2

1

1

1 δδδδδδδδ , 3

1

1

1 δδδδδδδδ ,
3

1

2

1 δδδδδδδδ ,

Level 0

Level 2

Level 1

3

1

2

1

1

1

δδδδ

δδδδδδδδ ,

Level 3

Ø

1

1
δδδδ 2

1
δδδδ

3

1δδδδ

2

1

1

1 δδδδδδδδ , 3

1

1

1 δδδδδδδδ ,
3

1

2

1 δδδδδδδδ ,

Level 0

Level 2

Level 1

3

1

2

1

1

1

δδδδ

δδδδδδδδ ,

Level 3

 

Fig. 3. Automaton of SS1

A circle (or a node) represents a sensors network’s state and
an arrow represents the transition from a state to another. The
transition occurs when a sensor breaks down. For example, if
the initial sensor network state is {δ 1

1 ,δ 2
1 } and sensor δ 1

1 breaks

down, sensors network passes from state {δ 1
1 ,δ 2

1 } to state {δ 2
1 }.

A node is gray if the corresponding sensor set verifies the
system local observability. It is white if it does not. As example,
for node {δ 1

1 ,δ 3
1 }, the system is locally observable. For node

{ /0} (no sensors), the system is not observable.

The automaton for SS2 is supposed to be given in Fig. 4. Three
sensors δ 1

2 , δ 2
2 and δ 3

2 can be used.

Sensors prices are given in Table 1. The objective is to find the
structure of C1 and C2 so that the two subsystems SS1 and SS2

are observable and that cost(J1)+ cost(J2) is minimal.
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Ø
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2
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2

1
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2
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2

2
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Ø
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2δδδδ 2

2δδδδ
3

2
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2

2

1

2 δδδδδδδδ , 3

2

1

2 δδδδδδδδ ,
3

2

2

2
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Level 1

3
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2
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1

2
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Fig. 4. Automaton of SS2

Table 1. Sensors prices

Sensor δ 1
1 δ 2

1 δ 3
1 δ 1

2 δ 2
2 δ 3

2

Price 70 C 40 C 60 C 30 C 50 C 90 C

6.1 Interconnection Matrices IM

The interconnection matrices IM21 and IM12 are given by:

IM21 =

(
1 1 0
1 1 0
1 0 0

)

and IM12 =

(
1 0 0
0 0 0
1 1 0

)

6.2 Local observability: determination of C̄ j

This step tends to resolve the problem given by (7). By inves-
tigating the automaton of SS1 and SS2 (respectively Fig. 3 and
Fig. 4), one can notice that the sensor sets J̄1 and J̄2 verifying
the local observability of SS1 and SS2 and minimizing sensors
cost are J̄1 = {δ 3

1 } and J̄2 = {δ 1
2 ,δ 2

2 } respectively. Thus :

C̄1 =

(
0 0 0
0 0 0
0 0 1

)

and C̄2 =

(
1 0 0
0 1 0
0 0 0

)

6.3 Interconnection matching: determination of ¯̄C j

After the determination of C̄1 and C̄2, the next step toward

designing C1 and C2 is finding ¯̄C1 and ¯̄C2. This can be obtained
by solving the two problems (11) and (12). This point is
addressed in the sequel.

Optimization problem resolution method In this section, the
method to solve the optimization problems given by (11) and
(12) is explained.

Consider first the problem Pr1 given by (11). It is quite inter-

esting to investigate the structure of ¯̄IM21 = IM21 −
¯̄C1IM21 −

IM21
¯̄C2 + ¯̄C1IM21

¯̄C2. Supposing that ¯̄C1 and ¯̄C2 are given by:

¯̄C1 =





δ 1
1 0 0

0 δ 2
1 0

0 0 δ 3
1



; ¯̄C2 =





δ 1
2 0 0

0 δ 2
2 0

0 0 δ 3
2





with δ i
1 and δ

j
2 ∈ {0,1} (i, j = 1,2,3).

Matrix ¯̄IM21 will then be given by:

¯̄IM21 =





1−δ 1
1 −δ 1

2 +δ 1
1 δ 1

2 1−δ 1
1 −δ 2

2 +δ 1
1 δ 2

2 0

1−δ 2
1 −δ 1

2 +δ 2
1 δ 1

2 1−δ 2
1 −δ 2

2 +δ 2
1 δ 2

2 0

1−δ 3
1 −δ 1

2 +δ 3
1 δ 1

2 0 0





It is clear that ¯̄IM21 has the same structure as IM21 and the
nonzero elements of this matrix have the following form: 1−

δ i
1 − δ

j
2 + δ i

1δ
j

2 . The index j of δ
j

2 is the same as the affecting

variables of SS2 whereas the index i of δ i
1 is the same as the

affected variables of SS1 (i, j = 1,2,3).

Furthermore, because the elements δ i
1 and δ

j
2 of ¯̄C1 and ¯̄C2 are

binary (i.e. δ i
1 and δ

j
2 ∈ {0,1}), one can say that:

cost( ¯̄J1)+ cost( ¯̄J2) =
3

∑
i=1

coi
1δ i

1 +
3

∑
j=1

co
j
2δ

j
2

with coi
1 and co

j
2 are the costs of δ i

1 and δ
j

2 respectively. Thus,
problem (11) can be reformulated as following:

Pr1







Minimize
3

∑
i=1

coi
1δ i

1 +
3

∑
j=1

co
j
2δ

j
2

Subject to

1−δ 1
1 −δ 1

2 +δ 1
1 δ 1

2 = 0

1−δ 2
1 −δ 1

2 +δ 2
1 δ 1

2 = 0

1−δ 3
1 −δ 1

2 +δ 3
1 δ 1

2 = 0

1−δ 1
1 −δ 2

2 +δ 1
1 δ 2

2 = 0

1−δ 2
1 −δ 2

2 +δ 2
1 δ 2

2 = 0

δ i
1 ∈ {0,1},(i = 1,2,3)

δ
j

2 ∈ {0,1},( j = 1,2,3)

(16)

Similarly, the problem (12) can be reformulated as:

Pr2







Minimize
3

∑
i=1

coi
1δ i

1 +
3

∑
j=1

co
j
2δ

j
2

Subject to

1−δ 1
2 −δ 1

1 +δ 1
2 δ 1

1 = 0

1−δ 3
2 −δ 1

1 +δ 3
2 δ 1

1 = 0

1−δ 3
2 −δ 2

1 +δ 3
2 δ 2

1 = 0

δ i
1 ∈ {0,1},(i = 1,2,3)

δ
j

2 ∈ {0,1},( j = 1,2,3)

(17)

Problem resolution Using LINDOr, the two problems (16)
and (17) are solved.

Problem Pr1 has one solution (s1 = 1). The matrices ¯̄C1 and ¯̄C2,
are:

¯̄C1 =

(
0 0 0
0 0 0
0 0 0

)

; ¯̄C2 =

(
1 0 0
0 1 0
0 0 0

)

This solution means that the interconnection matrix IM21

can be compensated by measuring the affecting variables x1
2

and x2
2 of SS2. The cost of this sensor set: cost( ¯̄J1 ∪

¯̄J2) =

cost({δ 1
2 ,δ 2

2 }) = 80 C.

Problem Pr2 has one solution (s2 = 1) which is:

¯̄C1 =

(
1 0 0
0 1 0
0 0 0

)

; ¯̄C2 =

(
0 0 0
0 0 0
0 0 0

)
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This solution means that the affecting variables x1
1 and x2

1 of

SS1 are measured. The cost of this sensor set: cost( ¯̄J1 ∪
¯̄J2) =

cost({δ 1
1 ,δ 2

1 }) = 110 C.

6.4 Subsystems observability: determination of C j

The last step of the SNDS consists in determining path P, sets

(J̄1, J̄2) and ( ¯̄J1,
¯̄J2) that minimize the following criteria:

cost(J1)+ cost(J2) = cost(J̄1 ∪
¯̄J1) + cost(J̄2 ∪

¯̄J2)

Path P1 For the first path P1: J1 = J̄1∪
¯̄J1 = {δ 3

1 } and J2 = J̄2∪
¯̄J2 = {δ 1

2 ,δ 2
2 }.

The correspondent output matrices are:

C1 =

(
0 0 0
0 0 0
0 0 1

)

and C2 =

(
1 0 0
0 1 0
0 0 0

)

For path P1, the sensor network cost is: cost(J1) + cost(J2) =
140 C.

Path P2 For the second path P2: J1 = J̄1 ∪
¯̄J1 = {δ 1

1 ,δ 2
1 ,δ 3

1 }

and J2 = J̄2 ∪
¯̄J2 = {δ 1

2 ,δ 2
2 }.

The correspondent output matrices are:

C1 =

(
1 0 0
0 1 0
0 0 1

)

and C2 =

(
1 0 0
0 1 0
0 0 0

)

For this path, the sensor network cost is: cost(J1)+ cost(J2) =
250 C.

By comparing the solutions obtained for each path, it can be
found that the minimal cost sensor network is obtained by
following path P1. Hence using three sensors that measure the
variables x3

1, x1
2 and x2

2.

7. CONCLUSION

In this paper, a SNDS for complex systems is presented. The
sensor network is minimal cost and verifies the system observ-
ability. As an illustration, an academic example of a system
consisted of two subsystems is used. As shown, two possible
paths exist for the sensor network design. As the number of
the subsystems increases, the number of the possible paths
increases. Due to the numerous feasible paths and the possible
solutions for each one, the strategy should be programmed to
make easier the determination of the solution.

The designed sensor network depends on the subsystems and
their interconnections. In this work, a complex system is de-
composed into subsystems by using a physical decomposition

method. This technique consists in splitting the system into
subsystems while respecting its physical structure. However,
other decomposition techniques may be used. This problem is
not considered in this paper.

The minimal cost sensor network is determined by using two
separate optimization problems: the first for local observability
and the second for interconnection matching. The solution
obtained for each problem is optimal. However, there is no
guarantee that the combination of the two solutions is optimal.
Thus, it is necessary to encapsulate the two problems in a
unique optimization problem to guarantee the optimality of the
network cost. This problem will be considered in future works.
In addition, other criteria such as sensor network reliability of
complex systems should be investigated.
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