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Abstract: In this paper, an Electric Parking Brake (EPB) system is modelled as a state-dependent switched 
system. The model involves screw friction which varies depending on the operation region. A new 
nonlinear proportional (P) controller is proposed and its stability is analyzed via Lyapunov and LaSalle’s 
theory. It is shown that the equilibrium point is locally uniform and ultimately bounded.  

 

1. INTRODUCTION 

An Electric Parking Brake (EPB) system is a kind of X-by-
wire system. The system replaces the manual maneuvering 
force of the conventional lever parking system with motor 
torque. One performance requirement is that the EPB system 
maintains brake force without a power supply. To satisfy this 
condition, the system needs to use the friction of the screw, 
which changes according to the operation region.  

The controller of the EPB system should be designed to be 
robust and to provide uniform performance. First, it requires 
a wide range of operation due to the various weights of cars 
and the inclinations of roads. Second, it must tolerate large 
disturbance forces acting upon the parking cable due to 
friction on gears and screws as the pressure on the parking 
brake pads increases. For the EPB controller, on-off, linear 
proportional (P) and nonlinear P controllers were compared 
(Lee, et al., 2007). The nonlinear P controller provides good 
uniformity in performance and robustness.  

As the EPB system’s operation state varies, the screw’s 
friction also varies. An EPB system can be modelled as a 
state-dependent switched system with five operation regions. 
It is an input-affine nonlinear system which can be 
approximated as a linear time-invariant system within each 
operation region. The nonlinear P controller has a linear gain 
for small error and an exponential gain about the motor’s 
angle error for large error. Similar nonlinear PID control 
algorithms have been applied to a class of truck ABS 
problems (Jiang and Gao, 2001). 

The stability of the nonlinear P controller has not been 
reported yet. For a switching system, stability can be shown 
if its individual systems share a common Lyapunov function 
with a negative derivative of the Lyapunov function with 
respect to time (Narendra and Balakrishnan, 1994). To prove 

the stability of the switched EPB system with the proposed 
nonlinear P controller, a common Lyapunov function is 
constructed. Because of friction, there is a self-locking state. 
It can be proved that the equilibrium point is locally uniform 
and ultimately bounded using LaSalle’s theorem. 

This paper is organized as follows. In Section 2, structure and 
characteristics of the EPB system are presented. A state-
dependent switched system model is proposed. Section 3 
describes the controller’s specifications and its nonlinear P 
controller design is introduced. In Section 4, the stability 
analysis of the EPB system is presented. Section 5 
demonstrates the performance of the controllers by 
experiment.  

2. EPB SYSTEM MODEL 

2.1 EPB System Structure and Characteristics. 

The EPB is a system which controls the brake force by 
pulling the parking cable as in conventional existing parking 
brakes. The structure of the EPB system is shown in Fig. 1. It 
includes a DC motor, a gearbox, a screw, a nut, a current 
sensor, a Hall-effect force sensor, an acceleration sensor and 
an ECU.  

Generally, if a driver or a high level system operates the EPB 
system, the controller calculates a target force from the 
parking cable based on the car mass as well as the inclination 
of the road as measured by the acceleration sensor. The EPB 
increases the brake force by pulling the parking cable using 
the DC motor until the brake force reaches the target force. 
Brake force is measured by the Hall-effect force sensor.   

The EPB system has to maintain the brake force without 
power. To satisfy this requirement, it needs to use the friction 
of the screw. The direction and value of the friction may vary 
as the screw’s rotational direction is changed. The state of the 
screw’s friction determines the condition of the self-locking 
screw. 
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Fig. 1. Structure of the EPB system 
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Fig. 2. Motor angle, angular velocity and armature current 
states. (Applying brake force mode)  

 

Table 1.  Sign of the state variables 

State variable Apply Release 

Motor angle 0θ ≤  0θ ≥  

Motor angular velocity 0θ ≥
i

 0θ ≤
i

 

Armature current 0i ≥  0i ≤  

Fig. 2 shows typical simulation results for the EPB system 
with a nonlinear P controller which will be discussed in 
section 3. As the angular velocity approaches zero, the 
armature current demonstrates the Stribeck effect. Once the 
screw is self-locked, the angular velocity and the armature 
current are maintained due to screw friction. Table 1 shows 
signs of the states at each operation mode. Notice that the 
product of the motor angle and the armature current is always 
negative semi-definite regardless of the operation mode.  

2.2 State Dependent Switched Model of EPB 

The EPB system is a highly nonlinear system due to friction. 
The friction of the screw varies depending on the operation 
region. Therefore, the EPB system can be modelled as a 

state-dependent switched system. The general friction model 
can be described as in (1) (Olsson, et al., 1998). Fe describes 
the external force. The maximum static friction force Fs is 
assumed to be larger than zero. 

 
( )

( )

( )

,

0
0 | |

sgn 0 | |

r e

e e s

s e e s

F v F

F v if v
F if v and F F
F F if v and F F

≠⎧
⎪

= = <⎨
⎪ = ≥⎩

      (1) 

 
When the velocity, v, is not zero, the friction model includes 
the Coulomb friction Fc, the maximum static friction Fs, the 
coefficient of viscous friction Fv and the Stribeck friction 
with Stribeck velocity vs.       

 

( ) ( ) / s
sv v

c s c vF v F F F e F v
δ−= + − +          (2) 

 
The screw of the EPB system has a lower magnitude of 
viscous and Stribeck friction than static friction and Coulomb 
friction in the range of interest. The friction model can be 
simplified for stability analysis as follows:  
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Here, external force Fe and Coulomb friction Fc can be 
described as in (4) and (5). T is the torque whose direction is 
perpendicular to the screw plane, Q is the force applied in the 
screw axial direction, d is the screw diameter, λ is the screw 
lead angle and µs is the friction coefficient of the screw.  
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The relation between input torque T and output force Q is 
modelled as linear in each screw’s operation state. Each state 
is as follows. (6-a) and (6-b) show acceleration and 
deceleration modes, respectively. (6-c) is the case of the self-
locking state, α3≡0 is maintained. (6-d) is the case where the 
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screw begins to rotate forward to apply force for pulling the 
parking cables. (6-e) is the case where the screw begins to 
rotate backward to release the parking cables. αn is the screw 
gain corresponding to each case. 

These conditions result in a state-dependent switched EPB 
system (7). The system is an input-affine nonlinear system.  

 

( )x A x x Bu= +
i

                  (7) 
 

The system matrix A(x) varies depending on the system 
switch-states and it can be redefined as in (8)  

 
( ) , , 1, , 5n nA x A x n= ∀ ∈ Ω = "          (8) 

 
where the operating region, Ωn, is defined at each switching 
condition. At each Ωn, (7) is a linear time-invariant system.  

The set S consists of 5 ordered pairs, system matrices and 
operating regions. It can be defined as 

 
             ( ) ( ){ }1 1 5 5, , , ,S A A= Ω Ω"               (9) 

 
where An and Ωn satisfy the conditions of (10).  
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Fig. 3. State diagram of EPB system 

The state switches occur in restricted directions. These 
relations can be described in Fig. 3. When the screw is in a 
self-locking state (Ω3), if the magnitude of the external force 
is larger than the maximum static friction force of the screw, 
it begins to rotate either backward (Ω5) or forward (Ω4). It 
then accelerates (Ω1). Generally, it maintains its acceleration 
state (Ω1) for some time. After some period of time, it 

decelerates (Ω2). Depending on its velocity, the deceleration 
state is switched to either acceleration or self-locking states. 

State space equations can be classified into two groups. 
When a mechanical system is moving or starting to move, 
(11-a) is used. When a mechanical system is locked by 
friction, (11-b) is used. The state variables are the motor 
angle,θ, the motor angular velocity, ω and the armature 
current, i. La is the armature inductance, Ra is the armature 
resistor, J is the inertia at the armature, Kb is the back emf 
constant and Kt is the motor torque constant.  
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In equation (11-a), variable βn is related to the screw gain, αn, 
which varies with the screw’s operating condition. It models 
the relation between the load of the parking cable and the 
motor’s angle as linear. Cw is the spring constant of the 
parking cable. Cfs is the spring constant of the force sensing 
spring. NGR is the gear box’s gear ratio and p is the screw 
pitch.   
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3. CONTROL SYSTEM DESIGN 

3.1 Performance Requirement 

The following performance specifications are required for the 
EPB system in general (Jaume, et al., 2004): 

-The system must brake the car without a power supply. 

-The system must generate the demanded braking force 
within a specified time.  

-The mechanical design has to be durable and robust. 

-It is advisable that the EPB system be silent. 

To satisfy the first specification, the EPB system uses the 
self-locking principle of the screw-nut structure. Therefore, it 
is essential to limit the direction of the controller output when 
applying the EPB. This limitation prevents the interrupt of 
the screw self-locking mechanism by reverse rotation of the 
motor.  

The required parking cable tension is determined by the 
weight of the car and the inclination of the road. Because 
electronic components are added to the EPB system, the 
robustness and safety issues become more important than in 
conventional parking brake systems. Performance of three 
controllers (on-off, linear P and nonlinear P) was compared 
by Lee, et al., (2007). The nonlinear P controller shows good 
robustness performance compared with other control methods.  

 

3.2 Nonlinear P Controller Design 

The nonlinear P controller (13) uses the nonlinear function  
f(e, Kp_nl, α, δ). It applies high gain for small error and small 
gain for large error. To avoid excessive high gain and 
unwanted vibrating response in the neighbourhood of the 
equilibrium point, it uses a linear gain for small error (Jiang 
and Gao, 2001) as shown in Fig. 4. The output direction of 
the controller should be maintained in the same direction as 
the motor’s movement to prevent the motor from rotating in 
reverse. In a real system, due to physical limitations, the 
control output is bounded. The control output is defined by 

 
( )_, , ,p nlu f e K α δ=            (13) 

 
where e is the motor angle error and Kp_nl, α and δ are user 
design parameters. The nonlinear function is given by 
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Assumption 1. Within the operation range where the control 
output is an exponential function of the angle error, the 
magnitude of the motor’s angular velocity is larger than or 
equal to 1[rad/s]. In other words,  

[ ]| | 1 /rad sθ ≥
i

               (15) 

for |r| ≥ |e| > δ. 

 

Remark 1. For our system, r is about 800[rad], δ is around 
20[rad] and EPB should be locked within 1[sec]. It is clear 
that assumption 1 is physically reasonable and the condition 
in (15) is satisfied once the power is applied. 

Assumption 1 is needed to satisfy the stability of this system. 
Details on stability will be explained in section 4.  

e

u

δ

_p lu K e=
( ), ,u f e α δ=
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Fig. 4. The functions of the Linear P and the Nonlinear P 
controller.  

 

4. STABILITY ANALYSIS 

4.1 Stability of the Nonlinear P Controller EPB System 

The output of the controller is a nonlinear function dependent 
on the state variable x1=θ. Input voltage becomes (16) and 
function f is described in (14). The origin of 3\  is taken as 
the equilibrium point without loss of generality (Khalil, 
2003). 

 
( )_, , ,in p nlV f e K α δ=            (16) 

 
The state-space model of the EPB system with a nonlinear 
controller can be described as a combination of linear and 
nonlinear elements described by 
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From the root locus analysis, we can easily show that there 
exist Kp,min and Kp,max , such that 
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where σ(Ac,n) is the spectrum of the system matrix Ac,n.  A 
common Lyapunov function is shown in (21) 
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Let ( ),mnp P m n=  

Assumption 2. The (3, 1), (3, 2) and (3, 3) components of the 
P matrix must be greater than zero. 

31 32 330, 0, 0p p p> > >  

Remark 2. Given the set of Ac,n, as long as we are able to find 
P, which is the solution of the common Lyapunov function,  
p31, p32 and p33 are positive.  
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Ac,n

TP+PAc,n= -Qn, ∀x∈Ωn , n=1,2,4,5. Because sgn(x1)x1
3 > 0. 

It is clear that V(x) is locally positive definite and 
continuously differentiable.  

Then the derivative of V(x) is given by  
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When 0≤|e|≤δ, it is clear that ( )V x
i

is negative definite since 
we have x1x2≤0 from Table 1.  

When δ<|e|≤r, the second term of ( )V x
i

, 2xTB(x)TPx, is 
equal to (23).   
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(23) is always negative if the Kp_nlp31x1

2(δα-1-|e|α-1)/La term is 
eliminated as shown in (24) since x1x2 ≤ 0 and x1x3 ≤ 0  in 
the operation range without loss generality . 
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We see that (25) holds, since –sgn(x1)x2 ≥1 from Assumption 
1.  
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From (24) and (25), we see that 
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Because 3( ) ,T
nV x x Q x x≤ − ∀ ∉ Ω

i
, the states converge to Ω3 

exponentially. 

 

4.2 Self-locking State Stability 

In section 4.1, we showed that, if x starts in 3
3/ Ω\ , x 

approaches Ω3 as t →∞. Since 
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In the self-locking state, the operating region is defined as 
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( )

1 3 13 3 3 33

1 3 1 13 3 33

13 332 233 13
1 3 1 3

( ) 2

2

2

p a

a a

p pa a

a a a a

V x x x p x x p

K R
x x x p x p

L L

K p K pR p R p
x x x x

L L L L

⎛ ⎞= +⎜ ⎟
⎝ ⎠
⎛ ⎞

= − + +⎜ ⎟
⎝ ⎠
⎧ ⎫⎛ ⎞⎪ ⎪= − + + +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

i i i

  (29) 

 
where Kp=Kp_nlδα-1. Define the set M, such that 

 
( ){ }2 2

13 1 33 3 1 3 13 33 0p a a pM x K p x R p x x x R p K p= + + + >   (30) 

 
The closure of the set M is on the x1-x3 plane in R3.  

Then it is clear that   

( ) 0,V x x M< ∀ ∈
i

 

and  

( ) 30,V x x M N≡ ∀ ∈ Ω ∂
i

∩ ∩  

where 

{ }1 3 13 1 33 30 or 0p aN x K x R x p x p x= + = + =     (31) 

 
The motor current is maintained after the screw is self-locked 
as in Fig. 2. So the derivative of the motor current becomes 
zero. 

In the self-locking state, the largest invariant set becomes  

 
3 M NΩ ∂∩ ∩                    (32) 

 
The largest invariant set is the intersection of the closure of 
the set M (30) and the set N (31) on the x1-x3 plane. Therefore, 
the largest invariant set becomes a set of the two intersection 
points. 

Using LaSalle’s theorem, we can show that the equilibrium 
point is locally uniform and ultimately bounded. 

Fig. 5 shows the value of the Lyapunov function. It is 
positive within the operation range and its derivative with 
respect to time is negative.  
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Fig. 5. Lyapunov Function Value 

 

5. EXPERIMENTAL RESULT 

Fig. 6 shows the experimental result of cable force and 
nonlinear control signal at each operation mode. It is 
controlled by a PWM method, so maximum value of control 
signal 100 [%]. (a) shows the cable force and (b) shows the 
control signal when the EPB system applies brake force. (c) 
and (d) show when the brake force is released. The target 
force of apply mode is assumed to be 980[N] and the one of 
release mode is assumed to be 0[N].  

In the applied mode, although the control signal exists, once 
the state enters the self-locking region, Ω3, the cable force is 
maintained due to the screw’s friction. In the release mode, 
because the screw friction is small, the response time is faster 
than the applied mode. The cable force is decreased after the 
control signal becomes zero due to large inertia. 
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(a) Parking cable force (apply mode) 
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(b) Control signal (apply mode) 
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(c) Parking cable force (release mode) 
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(d) Control signal (release mode) 

Fig. 6. Experimental result: Target forces for (a) and (c) are 
980[N] and 0[N], respectively. 

6. CONCLUSIONS 

This paper introduced an EPB system and described its 
characteristics. The EPB system was modelled as a state-
dependent arbitrary switched system. The control 
requirements were explained and the nonlinear P controller 
was proposed. The stability of the closed-loop system was 
investigated by applying Lyapunov and LaSalle’s theory. The 
states converge to a self-locking state exponentially and the 
equilibrium point is locally uniform and ultimately bounded. 
Through experimental results, the performance of the 
nonlinear P controller was shown.  
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