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Abstract: This paper demonstrates the possibility to detect suspension failures of railway
vehicles using a multiple-model approach from on-board measurement data. The railway vehicle
model used includes the lateral and yaw motions of the wheelsets and bogie, and the lateral
motion of the vehicle body, with sensors measuring the lateral acceleration and yaw rate of the
bogie, and lateral acceleration of the body. The detection algorithm is formulated based on the
Interacting Multiple-Model (IMM) algorithm. The IMM method has been applied for detecting
faults in vehicle suspension systems in a simulation study. The mode probabilities and states
of vehicle suspension systems are estimated based on a Kalman Filter (KF). This algorithm
is evaluated in simulation examples. Simulation results indicate that the algorithm effectively
detects on-board faults of railway vehicle suspension systems.

1. INTRODUCTION

Railway maintenance is important for ensuring safety
and avoiding accidents. An inspection to detect faults in
railway vehicles is especially important. Some faults could
cause serious accidents while the vehicle is travelling.

Condition monitoring is necessary in order to immediately
detect vehicle faults. For condition monitoring, it is neces-
sary to detect the fault from the signals of sensors attached
to the vehicles. Condition monitoring can be considered to
be a part of the well-established and well-developed area
of Fault Detection and Isolation (or Identification) (FDI).

Many research works on FDI are summarized in numer-
ous publications, Patton et al. [2000], Gustafsson. [2001].
Condition monitoring is mainly applicable to systems that
deteriorate with time and seeks to detect and identify de-
terioration before it causes a failure. This is a key element
of condition-based maintenance, Buruni et al. [2007].

Often, only output signals can be measured, in which
case signal-based methods can be applied. A measured
signal, essentially the response to a disturbance input(s), is
analyzed in the time domain, frequency domain, or time-
frequency domain. Band-pass filters, spectral analysis,
maximum-entropy estimation, and wavelet analysis can
all be used as signal-processing methods. If the relation
? This study was supported by the Program for Promoting Fun-
damental Transport Technology Research from the Japan Railway
Construction, Transport and Technology Agency (JRTT).

between the input signal and the output signal is known,
abrupt faults can be detected using the model-based fault
detection method, which can be defined as detection and
decision-making based on the evaluation of residuals.

A recent project has recognized the value of model-based
processing, examining both residual-based (i.e. using the
estimation errors) and direct parameter estimation for
identifying degradation in lateral dampers, yaw dampers
and the wheel profile, the three aspects industry has
identified as the most common causes of maintenance
activity. The parameter estimation technique in particular
has been investigated using data collected from a set of
inertial sensors fitted to a service vehicle, and it has been
possible to obtain good, representative values for both
lateral and secondary anti-yaw dampers, Li et al. [2007].

This study demonstrates the possibility to detect railway
vehicle suspension failures using the multiple-model ap-
proach. The railway vehicle model used includes the lateral
and yaw motions of the wheelsets and bogie, and the
lateral motion of the vehicle body, with sensors measuring
lateral acceleration and yaw rate of the bogie, and lateral
acceleration of the body. The IMM method, Bar-Shalom
et al. [1993], Bar-Shalom et al. [2001], has been applied for
detecting vehicle suspension faults in a simulation study.

2. VEHICLE MODEL

Figure 1 depicts the railway vehicle model Li et al. [2004].
Lateral and yaw motion of wheelsets and bogie are consid-
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ered. Lateral motion is considered for a vehicle body. The
equations of motion for a vehicle traveling on a straight
track can be written as follows:
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Fig. 1. Railway vehicle model

Here, yw1 and yw2 are the lateral displacements of the
leading and trailing wheelsets, yb is the lateral displace-
ment of the bogie, ybd is the lateral displacement of the
vehicle body, ψw1 is the yaw angle of leading wheelsets,
ψw2 is the yaw angle of the trailing wheelsets, and ψb is
the yaw angle of the bogie. yt1 represents the lateral track
displacement at the leading wheels, and yt2 represents the
lateral track displacement at the trailing wheels.

3. MULTIPLE-MODEL APPROACH

The multiple-model approach is an adaptive-estimation
technique proposed in the field of target tracking. This
approach enables a wide variety of adaptive estimation to
be used while changing both parameters and the model
structure.

In the multiple-model approach, it is assumed that the
system obeys one of a finite number of models M ∈
{mj}j=1,···,m that include possible modes. Using Bayes’
formula, the mode probability, a posteriori probability that

the model j is correct, can be calculated by the following
equation.

p(mj

∣∣Y t ) =
p(yt

∣∣mj , Y
t−1 )p(mj

∣∣Y t−1 )∑
p(yt |mj , Y t−1 )p(mj |Y t−1 )

(8)

Here, p(yt

∣∣mj , Y
t−1 ) is the likelihood function of model j

at time t.

Assuming a Gaussian distribution, the likelihood function
can be evaluated by residual and covariance from mode-
matched filter j. An overall estimate can be obtained by
using the mode-conditioned state estimate obtained from
each filter and mode probability as

p(xt

∣∣Y t ) =
m∑

j=1

p(xt

∣∣mj , Y
t )p(mj

∣∣Y t ) (9)

Figure 2 illustrates the basic concept of the multiple-model
approach.
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Fig. 2. Concept of multiple-model approach

When the system mode (model) switches in time, it is
necessary to formulate the multiple-model approach dy-
namically. In the dynamic formulation, the mode-jump
process, which is considered the mode-transition proba-
bility, should be taken into account.

The possible model history through time t is denoted by
the mode history, M t = {M1,M2, · · ·,Mmt}.
The mode probability based on the mode history is

p(M t
∣∣Y t ) =

p(yt

∣∣M t, Y t−1 )p(mt

∣∣M t−1, Y t−1 )∑
p(yt |M t, Y t−1 )p(M t, Y t−1)

×p(M t−1
∣∣Y t−1 )

(10)

The overall estimate is obtained by the mode-conditioned
estimate and the mode probability as

p(xt

∣∣Y t ) =
mt∑

j=1

p(xt

∣∣M t, Y t )p(M t
∣∣Y t ) (11)

The number of the mode history M t increases exponen-
tially with time, which is a fatal problem for implementa-
tion. In order to avoid the exponentially increasing num-
ber of mode history, generalized pseudo-Bayesian of first
order(GPB1) and second order(GPB2) and Interacting
Multiple-Model(IMM) algorithm, Blom et al. [1988], Li
et al. [1993], are proposed.
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4. FAULT DETECTION OF VEHICLE SUSPENSION
USING IMM ESTIMATOR

Figure 3 illustrates the concept of fault detection of vehicle
components using the multiple-model approach.
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Fig. 3. Multiple-model approach for vehicle suspension
fault detection

Figure 4 depicts the algorithm of the IMM estimator.
Estimations were conducted using the Kalman filter (KF)
described below.
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Fig. 4. IMM estimator

m sets of models were considered as the system modes.
The (i, j) element of the mode transition matrix pij rep-
resenting mode transition probabilities among the modes
expresses the transition probability from Mode i to Mode
j.

The following sections describe the details of the IMM
estimator for railway vehicle suspension systems.

4.1 Mixing

Expressing the estimated value obtained by the KF for
Mode i(i = 1, · · · ,m) as x̂i

(t) and that obtained at time

t(t = 0, 1, 2, · · ·) as P i
(t), the mixed estimated value x̂0j

(t)

and the mixed estimated covariance matrix as P 0j
(t) can be

expressed by the following equations.

x̂0j
(t−1) =

m∑

i=1

x̂i
(t−1)ρi|j (t−1) j = 1, ..., m (12)

P 0j
(t−1) =

m∑

i=1

ρi|j( t−1)

{
P i

(t−1)

+
[
x̂i

(t−1) − x̂0j
(t−1)

] [
x̂i

(t−1) − x̂0j
(t−1)

]T } (13)

Here, ρi|j (t) is the mixed probability at time t, and is
expressed by

ρi|j (t−1) =
1
c̄j

pijρi (t−1) i, j = 1, ..., m (14)

where

c̄j =
m∑

i=1

pijρi (t−1) j = 1, ..., m (15)

4.2 Mode-Matched Filtering

In this study, the KF was designed based on the reduced-
order linear model, where the motions of wheelsets are
excluded.

The discrete system is expressed by

x(t+1) = Fx(t) + Gu(t) + w(t) (16)

y(t) = Hx(t) + Lu(t) + v(t) (17)

where

x(t) =
[
ẏb yb ψ̇b ψb ẏbd ybd

]T
, u(t) =

[
u′1 u′2

]T
,

w(t) = [ w1 w2 w3 w4 w5 w6 ]T , y(t) =
[
ÿb ψ̇b ÿbd

]T
,

v(t) = [ v1 v2 v3 ]T

The following KF algorithms are then obtained.

Filter equations

x̂j
(t|t−1) = F j(x̂0j

(t−1|t−1)) + Dju(t−1) (18)

x̂j
(t|t) = x̂j

(t|t−1)

+Kj
(t)

[
y(t) −

(
Hj(x̂j

(t|t−1)) + Lju(t)

)] (19)

Kalman gain

Kj
(t) = P j

(t|t−1)H
j
(t−1)

T
Sj

(t)

−1
(20)

Sj
(t) = Hj

(t−1)P
j
(t|t−1)H

j
(t−1)

T
+ Rj

(t−1) (21)

Covariance equations

P j
(t|t−1) = F j

(t−1)P
0j
(t|t−1)F

j
(t−1)

T

+Gj
(t−1)Q

j
(t−1)G

j
(t−1)

T (22)

P j
(t|t) = P j

(t|t−1) −Kj
(t)S

j
(t)K

j
(t)

T
(23)

Here, x̂j
(t) is the estimated state obtained by using the

KF. The system noise w(t) and measurement noise v(t)

are assumed to be white Gaussian with a zero mean and
covariance of Q(w(t)) and R(v(t)).
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4.3 Calculation of Mode Probability

The likelihood function for the each mode is expressed as

Λj (t) =
∣∣∣2πSj

(t)

∣∣∣
− 1

2
exp[−1

2
e(t)

T Sj
(t)

−1
e(t)]

e(t) = y(t) − (Hj x̂j
(t|t−1) + Lju(t))

(24)

Therefore, the mode probability for Mode j at time t is
given by

ρj (t) =
Λj (t)c̄j∑m
i=1 Λi (t)c̄i

(25)

The mode probabilities obtained vary with time and are
smoothed by using a moving-average window.

4.4 Estimate and Covariance Combination

The estimated state x̂(t) and combination of covariance
P(t) are finally obtained by weighting the estimated state
x̂j

(t) and the mixed covariance P j
(t) for each mode with the

mode probabilities.

x̂(t) =
m∑

j=1

x̂j
(t)ρj (t) (26)

P(t) =
m∑

j=1

ρj (t)

[
P j

(t) + [x̂j
(t) − x̂(t)] · [x̂j

(t) − x̂(t)]T
]

(27)

5. SIMULATION EXAMPLE

5.1 Simulation Condition

We verified the validity of the proposed method for two
cases: (1) a secondary lateral damper failure (the damping
coefficient reduced from its nominal value) occurs while the
train is running; (2) a lateral accelerometer failure occurs
when the train is running. In this simulation, the vehicle
response is generated when passing along a track with an
irregularity. We created a track irregularity by using white
Gaussian noise passed through a shaping filter.

In case 1, the damping coefficient changes as shown in Fig.
5.

Fig. 5. Normalized damping coefficient

In case 2, we modeled a sensor failure for increasing
covariance of the measurement noise. Figure 6 depicts the
measurement noise used in the simulation.

IMM estimator is designed based on following models.

Mode 1 No malfunction in vehicle

Fig. 6. Measurement noise

Mode 2 A secondary lateral spring failure (100% reduction
in spring rate)

Mode 3 A secondary lateral damper failure (20% reduc-
tion)

Mode 4 A secondary lateral damper failure (40% reduc-
tion)

Mode 5 A secondary lateral damper failure (60% reduc-
tion)

Mode 6 Failure of lateral accelerometer of bogie.

Mode 7 Failure of yaw rate sensor of bogie.

Mode 8 Failure of lateral accelerometer of body.

In Modes 6, 7 and 8, we provide a different covariance
model of the measurement noise.

First, we assumed that the bogie lateral damper and
lateral accelerometer were normal. In case 1, the estimated
value of the damping coefficient at time t, was obtained by
equation (28) by weighting the damping coefficient Cj

ylb for
each mode with the mode probabilities.

Ĉylb(t) =
m∑

j=1

Cj
ylbρj t (28)

5.2 Simulation Result

Detection of a Secondary Lateral Damper Failure

Figures 7,8 and 9 present the measurement data of this
case used for the suspension fault detection.

Fig. 7. Lateral acceleration of bogie

Figures 10 and 11 depict the calculation results of mode
probabilities; the modes where the probability was almost
zero are excluded.

It is difficult to directly detect a lateral damper failure
from these measurement data. However, mode probabili-
ties indicate that a lateral damper failure can be detected
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Fig. 8. Lateral acceleration of body

Fig. 9. Yaw rate of bogie

Fig. 10. Mode probabilities for modes 1 and 2

Fig. 11. Mode probabilities for modes 3, 4 and 5

in 3s with an estimation delay of 1s. This can be supported
by the fact that Modes 3, 4 and 5 (lateral damper failure
mode) exhibited higher mode probabilities after 3s, and
Mode 1 (no malfunction mode) indicated a lower mode
probability after 3s.

It should be noted that the type of failure (lateral spring
failure or lateral damper failure) can be detected because
Mode 2 (lateral spring failure) exhibited lower mode prob-
abilities.

The reason for the delay in mode probabilities is that the
weight of the p11 element (transition probabilities from

Mode 1 to Mode 1) of the transition matrix is much higher
than that of other modes.

The estimation delay can be improved by changing the
transition matrix, but there is a trade-off between delay
and estimation accuracy.

Figure 12 presents the estimated value of the lateral
damper coefficient. It can be seen that the proposed
method exhibited good estimation performance. In addi-
tion, we estimated the parameter using EKF for compari-
son.

Fig. 12. Estimation of damping coefficient

EKF is the most widely applied state-estimation algorithm
for nonlinear systems. EKF can be used to estimate
unknown parameters in dynamic systems. When using
EKF for parameter estimation, it should be noted that
selecting the state vector and initial values of parameters
is important as partial linearization is employed and that
the convergence of estimated parameters is not always
guaranteed, Ljung. [1979]. It should be noted that the
estimation using EKF failed in this simulation example.

Detecting a Lateral Accelerometer Failure

Figure 13 illustrates the lateral acceleration of bogie data
of this case used for the sensor fault detection as an
example. Figures 14 and 15 present the calculation results
of mode probabilities; modes where the probability was
almost zero are excluded.

Fig. 13. Lateral acceleration of bogie data for case 2

We can see that mode probabilities indicate a lateral
acceleration sensor failure after 2s.

6. CONCLUSIONS

We studied methods of detecting malfunctions in vehicle
suspension systems using on-board measurement data. We
adapted the IMM method, which is a multiple-model based
estimation method, for detecting faults in railway vehicles.
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Fig. 14. Mode probabilities for modes 1 and 2

Fig. 15. Mode probabilities for modes 6, 7 and 8

We described the interacting multiple-model(IMM) method
for detecting faults in railway vehicles from the mea-
sured lateral acceleration of the bogie and body and from
the yaw rate of the bogie. A parameter-estimation tech-
nique using EKF was also compared with the IMM-based
method.

We examined the validity of the proposed approach by
performing two simulations, a secondary lateral damper
failure (the damping coefficient reduced from its nominal
value) and a lateral accelerometer failure (covariance of
the measurement noise is increase) in railway vehicle
suspension systems.

Simulation results indicate that the IMM-based method is
an effective on-board fault detection technique for railway
vehicle suspension systems.
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