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Abstract: We consider optimal control of linear continuous time systems subject to constrained
inputs based on output measurements that are subject to set-membership uncertainties. The
objective is to steer the system in a fixed finite-time to a given polyhedral set while minimizing
a linear terminal cost function. To achieve this objective a min-max optimal control strategy
is proposed, taking into account that at future time instants new measurement information is
available for feedback. The proposed strategy coincides with the (computationally intractable)
exact min-max dynamic programming solution if all future measurement times are considered.
Limiting the number of instants at which the new measurement information is considered we
achieve a compromise between the computational efforts for feedback construction and the
performance of the closed-loop. Copyright c©2008 IFAC.
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1. INTRODUCTION

Optimal control has received a significant revival over
the recent years. This is mainly driven by the need for
control mechanisms that can handle state and input con-
straints in a structured way. Furthermore, there have been
substantial advancements with respect to the available
computational power and efficient numerical on-line solu-
tion methods for optimal control problems. Also nowadays
optimal control based control methods such as model pre-
dictive control have been widely applied and significant
theoretical achievements with respect to these methods
have been made, see e.g. Mayne et al. (2000); Fontes
(2003); Camacho and Bordons (2007).

An inherent problem of most optimal control strategies is
that for the prediction the full knowledge of the state is
required. In practice, however, not all states are directly
measured. Various researchers have addressed the question
of output feedback optimal control, see e.g. Moitie et al.
(2002); Kurzhanski (2003); Findeisen and Allgöwer (2004);
Mayne et al. (2006); Goulart and Kerrigan (2007). Often,
however, these results are limited to discrete time systems.

In this note we consider the finite-time control problem
for continuous time linear systems subject to constrained
inputs and limited state information. The objective is
to steer the system from a known set of possible initial
states to a polyhedral set in finite-time while minimizing a

1 Partially supported by a research grant from the German Aca-
demic Exchange Service.

linear terminal cost. The exact initial state of the system
is assumed to be not known, rather only a bounded set
estimate is available. Additional output measurements
which are subject to unknown, but bounded measurement
errors are available at discrete sampling times for feedback.
They can be utilized to improve the estimate of the current
system state.

Different solution approaches for this problem are pos-
sible. In the simplest case one can calculate an open-
loop optimal control trajectory, minimizing the worst-case
performance of all possible initial state trajectories. This
leads, however, in general to a very conservative behavior,
since one control input has to steer all possible initial
states to the terminal set. On the other hand one can
consider that at every future measurement instant new
state estimates become available for control. While this
would lead to optimal performance, since the availability
of new state information is completely taken into account,
the numerical solution is often computationally intense
and requires approximations, see e.g. Moitie et al. (2002);
Kurzhanski (2003).

In this note we propose an intermediate, suboptimal but
computationally tractable approach. Basically we propose
to close the loop in the prediction of the optimal control
problem only at a limited number of future measurement
instants. This leads to a drastically reduced computational
demand. The resulting optimal control problem is then
resolved at the next sampling time, taking new measure-
ments into account. Based on this idea we outline a finite
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dimensional approximation and an efficient numerical so-
lution approach, to allow for real time application of the
proposed method.

The overall paper is structured as follows. In Section 2
we outline the mathematical problem formulation and
the control objective. Section 3 reviews results related
to open-loop optimal control, which are needed in the
following sections. Section 4 presents the idea of once-
closed optimal feedback control. In Section 4.2 we outline
a finite-dimensional formulation for the new strategy.
Section 4.3 discusses the existence of optimal solutions,
while in Section 5 an algorithm for the construction
of once-closed optimal control is presented. Section 6
provides some final conclusion.

2. PROBLEM FORMULATION

We consider linear time-invariant systems of the form
ẋ = Ax+Bu, x(0) ∈ X0, (1)

where x ∈ Rn denotes the system state. The input u is
constrained to the set U , i.e. u ∈ U ⊆ Rr, where U is
a hyper-rectangle of the form U = {u ∈ Rr : |uj | ≤ 1,
j = 1, r}. The set X0, defined by the hyper-rectangle
X0 = {x ∈ Rn : xmin ≤ x ≤ xmax}, is the set of
possible initial states, i.e. x(0) is not exactly known and
not available for control purposes.

Control objective: The control objective is to steer sys-
tem (1) using sampled-data control, in a fixed finite-time
T ≥ 0 to a polytope S = {x ∈ Rn : hTi x ≤ gi, i = 1,m},
i.e. x(T ) ∈ S, while satisfying the input constraints and
minimizing a linear terminal penalty hT0 x(T ). Sampled-
data control refers here to the fact that the applied input
only changes at fixed sampling instants and that the input
is assumed to be constant in between. Sampling instants
are in the following denoted by s, where s ∈ π = {kδ,
k = 0, N − 1}. Here δ denotes the sampling time which
is, for simplicity assumed to be constant. It is defined in
terms of the discretization N ∈ N of the finite control time
T : δ = T/N . Thus, the input u in (1) is given by:

u(t) ≡ u(s), t ∈ [s, s+ δ[,
where u(s) depends on the current state of the system or
estimates of it.

It is assumed that at the sampling instants s, where s ∈
π̄ = {kδ, k = 1, N}, measurements y(s) ∈ Rq are available.
However, these are subject to bounded measurement errors
ξ(s) ∈ Ξ

y(s) = Cx(s) + ξ(s),
where the measurement error set Ξ is assumed to be a
hyper-rectangle: Ξ = {ξ ∈ Rq : ξmin ≤ ξ ≤ ξmax}.
2.1 Notation

In the following the set of all nonempty convex compact
subsets of Rn is denoted by X , its elements are denoted
by X.

The set of all sampled-data controls defined in a segment
[t′, t′′] with values in U is shortly denoted by U[t′,t′′].

In the following x(t′′; t′, z, u(·)) denotes the solution of (1)
at time t′′ if the initial state at time t′ is z and the
control is u(·) ∈ U[t′,t′′]; also note that x0(t′′; t′, u(·)) =
x(t′′; t′, 0, u(·)). Furthermore, let π̄[t′,t′′] =]t′, t′′]∩ π̄. A set

of all possible measurement trajectories y(·) = {y(s), s ∈
π̄[t′,t′′]} of the autonomous system (1) and an initial state
at time t′ from X, is denoted by Y[t′,t′′](X).

Since we have to distinguish between the variables used
in the optimal control problem for predictions and the
real system/plant variables, we will denote the latter by a
superscript p. Thus, up and yp denote the input and the
measurement trajectory which realize in a particular con-
trol process. Moreover, Xp(t) are all states x(t) consistent
with the initial condition x0 ∈ X0 and the measurements
yp(s), s ∈ π̄[0,t].
2.2 Approaches to Optimal Output-feedback Control
So far we did not go into details in which sense the final
terminal penalty term is minimized, how the availability of
future measurements is considered in the prediction, and
if and how often the input is recalculated based on new
measurements y(s). In principle different possibilities for
“optimally” controlling (1) exist:

One could only calculate one “optimal” input at the first
sampling instant s = 0 based solely on the information
of x(0) ∈ X0 and then apply this input open-loop to the
system until the final time T . In this case one would search
for an input u0(·; 0, X0) ∈ U[0,T ] that drives all possible
realizations of the initial state x(0) ∈ X0 to the terminal
set S, i.e. that x(T ; 0, x0, u

0(·; 0, X0)) ∈ S ∀x0 ∈ X0.
Furthermore, the input u0(·; 0, X0) should be such that
it minimizes hT0 x(T ) under the worst-case realization of
x0 ∈ X0. This approach is in general referred to as open-
loop (worst-case) optimal control. The main disadvantage
of this approach is that new measurement information
arising at the sampling instants s via y(s) is not taken
into account, which leads to a very conservative control
performance. Furthermore, the approach as formulated is
very conservative, since one open-loop input u0(·; 0, X0) is
supposed to steer all possible realizations of x0 ∈ X0 to
the terminal set. This might even lead to infeasibility, if
the set X0 is large.

One approach to reduce this conservatism is to repeatedly
solve the open-loop optimal control problem at every
sampling instant τ ∈ π subject to a shrinking horizon of
length T − τ and a new set of possible states Xp(τ), or its
estimate X̂p(τ). In this case the input applied to the plant
is given by up(t) ≡ u0(τ ; τ,Xp(τ)), t ∈ [τ, τ + δ[, τ ∈ π.
While this does not counteract the fact that the initial
optimal control problem is not feasible if the set X0 is
large, it can lead to significant performance improvements,
since the set-based state estimate might improve from time
step to time step. This control strategy for a finite-time
problem is usually referred to as open-loop (worst-case)
optimal feedback control.

One way to overcome the feasibility problem and the
conservatism due to the assumption that one input has
to cope with all possible initial states is to fuse repeated
open-loop control with an output-feedback closed-loop
control. In the frame of predictive control of continuous
time systems without finite-time this has for example been
proposed in Findeisen and Allgöwer (2004).

While this approach leads to reduced conservatism in
general, it still does not take into account, that at future
time instants new output measurements, and thus a new
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(optimal) set-based state estimate will be available. In
principle one can formulate this as a dynamic program-
ming problem, which is, however, in general intractable.
In the following we will refer to the optimal dynamic
programming solution as the full solution or shortly “the
optimal solution” with respect to the control objective.
Possible solutions to overcome this problem are the use
of fixed observer dynamics, e.g. possibly non optimal ob-
servers, and fixed local controller dynamics. For discrete
time linear systems this has been for example considered
in Mayne et al. (2006).

In the frame of this work we consider an intermediate
approach between the dynamic programming solution and
the open-loop optimal feedback. We propose that in the
optimal control formulation the loop is only closed at a
finite number of time instants, e.g. not at all sampling
instants. In the case of only one closing we will refer to
this as once-closed control, e.g. in the optimal control
problem it is assumed that at one single future time
instant new measurement information is available. This
leads to a trade-off between the computational demand
and the conservatism. In case of robust state feedback this
approach has been addressed in Balashevich et al. (2004);
Kostyukova and Kostina (2006).

In the following section we review some results related
to open-loop optimal control subject to uncertain initial
states. Section 4 introduces the concept of once-closed
optimal feedback control and discusses the existence of
solution as well as finite-dimensional formulations. The
construction of the once-closed solution is discussed in
Section 5.

3. OPEN-LOOP OPTIMAL CONTROL

In the following we review some results about open-loop
optimal control subject to uncertain initial states which
are needed in the later sections. Further details can be
found in Gabasov et al. (2007).

The general open-loop optimal control problem is denoted
by P0(τ,X), where the arguments (τ,X) stress that the
control process starts at the current instant τ ∈ π from an
unknown state x(τ) which lays in an arbitrary initial set
X ∈ X . The solution of P0(τ,X) is an input u0(·; τ,X) ∈
U[τ,T ] steering every realization of the initial state x(τ) ∈
X into the terminal set S. Furthermore, it minimizes the
worst-case cost maxx∈X hT0 x(T ; τ, x, u(·)).
In Gabasov et al. (2007) it is shown that the optimal open-
loop control u0(·; τ,X) can be obtained by the solution of
the following optimal control problem

min
u(·)∈U[τ,T ]

hT0 x(T ), (2)

subject to
ẋ = Ax+Bu, x(τ) = 0,

hTi x(T ) ≤ gi − χ̂i(τ,X), i = 1,m.

The resulting cost of problem P0(τ,X) is given by

J0(τ,X) = χ̂0(τ,X) + hT0 x0(T ; τ, u0(·)).
Note that if problem (2) is not feasible we use the conven-
tion that J0(τ,X) = +∞.

Above the cost and the new terminal constraints are de-
fined in terms of χ̂i(τ,X), i = 0,m, which correspond to

the worst-case realizations of the uncertain initial condi-
tion of the following problem:

χ̂i(τ,X) = maxψTi (τ)x, x ∈ X.
Here ψi(t) ∈ Rn, t ∈ [0, T ], denotes the solution of the
adjoint equation ψ̇i = −ATψi with ψi(T ) = hi.

Problem (2) is significantly easier to solve in comparison
the original min-max formulation of P0(τ,X) (which is
not stated here due to limited space), since all χ̂i are inde-
pendent of the input. The vector χ̂(τ,X) = (χ̂i(τ,X), i =
0,m) defines a polyhedral set-valued estimate for X of
the form X̂(τ,X) = {x ∈ Rn : Ψ(τ)x ≤ χ̂(τ,X)},
where Ψ(τ) = (ψi(τ), i = 0,m). Note that u0(·; τ,X) =
u0(·; τ, X̂(τ,X)). Hence, the estimate χ̂ contains all “state
information” that is sufficient for solving problem (2) and
consequently P0(τ,X). For this reason we call χ̂(τ,X) a
sufficient estimate of the set of possible states X.

So basically instead of the set-valued (infinite-dimensional)
“state” X ∈ X we can use the not set-valued (finite-
dimensional) estimate χ̂ ∈ Rm+1. This reformulation is
also the core idea for the finite-dimensional formulation of
our approach, as presented in Section 4.2.

3.1 Obtaining State Estimates Efficiently

At the sampling times τ ∈ π one has to solve problem
P0(τ,Xp(τ)) for the current set of possible states Xp(τ),
depending on the actual input up(t), t ∈ [0, τ ], and
measurements yp(s), s ∈ π̄[0,τ ]. As outlined, the vector
χ̂p(τ) = χ̂(τ,Xp(τ)) contains all informations required to
solve (2). So if one could obtain the estimate χ̂p(τ) in an
efficient way, it would not be necessary to calculate Xp(τ).

As shown in Gabasov et al. (2007), this goal can be
achieved on the base of “purified measurements” yp0(s) =
yp(s)−Cx0(s; 0, up(·)), s ∈ π̄[0,τ ], by the solution of m+ 1
optimization problems

γ̂i(τ ;X0, y
p
0(·)) = max

z
ψTi (τ)x̂(τ), ˙̂x = Ax̂, x̂(0) = z,

yp0(s)− Cx̂(s) ∈ Ξ, s ∈ π̄[0,τ ], z ∈ X0. (3)
Then χ̂p(τ) = Ψ(τ)x0(τ ; 0, up(·)) + γ̂(τ ;X0, y

p
0(·)).

4. ONCE-CLOSED OPTIMAL FEEDBACK

The open-loop optimal feedback does not take into account
that at future time instants new measurements become
available that can be used for feedback. This leads to
rather conservative results. On the other extreme, the
optimal solution by dynamic programming considers that
at every future sampling instant all new measurement
information is used for control. This does in general lead to
a problem which is computationally not tractable. In this
section we consider an intermediate case and formulate
an optimal control problem that takes into account that
at a small number of fixed future instants, called closing
instants, new measurements are used for feedback. This
allows to balance the computational efforts for the optimal
feedback construction with respect to the performance of
the overall closed-loop.

For simplicity of presentation we only describe the case
of one closing instant, denoted by t1. The generalization
for several closing instants πcl = {t1, t2, ..., tκ} is merely
technical. Note that the scheme results in the optimal
solution as obtained by dynamic programming if πcl = π̄.
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4.1 Closure Sets and t1-closed Controls

Consider the current sampling instant τ ∈ π, an arbitrary
initial set X ∈ X and a fixed closing instant t1 ∈ π \ {0}.
We will distinguish between the cases that τ is bigger
then the closing instant and that it is smaller. For this
we define the vectors of sampling instants π1 = [0, t1[∩π
and π0 = [t1, T ] ∩ π.
Case τ ∈ π0 :
In this case the optimal input is given by the optimal
open-loop control u0(·; τ,X) as defined by the solution of
P0(τ,X), see Section 3.
Case τ ∈ π1 :
We need in the following the closure set X 1 for the time
t1:

X 1 = {X1 ∈ X : J0(t1, X1) < +∞}.
Basically X 1 consists of all sets X1 ∈ X such that there
exists an optimal open-loop control u0(·; t1, X1) of problem
P0(t1, X1). Note that X 1 6= ∅.
We furthermore need a set that bounds the worst-
case value for the open-loop optimal cost of problem
P0(t1, X1). To this end we define a so called α-closure
set at time t1:

X 1
α = {X1 ∈ X 1 : J0(t1, X1) ≤ α},

where α ∈ [αmin, αmax], αmin = minx∈S hT0 x; αmax =
maxx∈S hT0 x. This implies that for every X1 ∈ X 1

α the
optimal open-loop control guarantees the cost to be at
most α.
Remark 1. The set X 1 can be equivalently defined as
consisting of all compact sets X1 ∈ X such that there
exists an admissible, not necessarily optimal, open-loop
control of problem P0(t1, X1). For the sets X1 ∈ X 1

α this
control must guarantee the cost to be at most α. These
equivalent definitions are easier to use for constructing the
closure sets, since not necessarily the optimal open-loop
control must be obtained.

Now let u(·) ∈ U[τ,t1] be a given, fixed input and
X 1(u(·); τ,X) denote the collection of all sets of possible
states X1, that can be obtained at time t1 if the process
starts at the instant τ from x(τ) ∈ X under the input u(·).
Suppose that for some α ∈ [αmin, αmax] there exists an
input u1

α(·; τ,X) ∈ U[τ,t1], such that the following inclusion
holds

X 1(u1
α(·); τ,X) ⊆ X 1

α. (4)
Construct the following control strategy: use u1

α(·; τ,X)
on the interval [τ, t1], then at time t1 switch to the
optimal open-loop control u0(·; t1, X(t1)), where X(t1) ∈
X 1(u1

α(·); τ,X) is the set of possible states which realized
at t1. Due to (4), this control strategy guarantees that the
cost related to the optimal control problem is at most α.

The function u1
α(·; τ,X) and {u0(·; t1, X1), X1 ∈ X 1(u1

α(·);
τ,X)} define a feasible control strategy. We will refer
to this as an admissible t1-closed or once-closed control.
Consequently the optimal t1-closed control is defined by
the minimum achievable α: α0(τ,X) = minα.

The optimal control problem related to the optimal t1-
closed control is denoted by P1(τ,X). Its optimal cost (if
it exists) is given by:

J1(τ,X) = α0(τ,X).

If no t1-closed solution exists J1(τ,X) = +∞.

Summarizing, the corresponding optimal input on π1 is
given by

u1(·; τ,X) = u1
α0(·; τ,X),

and the overall applied once-closed optimal feedback be-
comes

up(t) ≡
{
u1(τ ; τ,Xp(τ)), τ ∈ π1,
u0(τ ; τ,Xp(τ)), τ ∈ π0,

(5)

t ∈ [τ, τ + δ[, τ ∈ π.

Given this feedback we can derive :
Proposition 1. Assume that a solution to P1(0, X0) exists.
Then P1(τ,Xp(τ)) is feasible for all τ ∈ π1, P0(τ,Xp(τ))
is feasible for all τ ∈ π0, and J1(τ,Xp(τ)), τ ∈ π1,
J0(τ,Xp(τ)), τ ∈ π0, are non-increasing.

This proposition implies that if the optimal once-closed
control exists for t = 0 then it exists for all times and
thus (5) can indeed be implemented for feedback control.
Note that the proof is trivial due to Bellman’s principle of
optimality.

The definitions of the closure sets and the t1-closed con-
trols introduced in this section are set-based. This makes
the task of deriving conditions for existence, as well as
the development of suitable algorithms a demanding, non-
trivial task. To avoid this we will replace the sets X1

with their estimates X̂1, characterized by the sufficient
estimates χ̂1 = χ̂(t1, X1) (see Section 3). This allows us to
derive finite-dimensional counterparts for the closure sets,
and the admissible and optimal t1-closed controls. On the
basis of these finite-dimensional counterparts it is possible
to derive simple conditions for the existence of the optimal
t1-closed control and to derive an algorithm for solving the
resulting optimal control problem P1(τ,X).
4.2 Finite-dimensional Formulation
In this section we derive finite-dimensional, not set-valued
counterparts for the closure sets, and the admissible and
the optimal t1-closed controls.

To this end we consider the optimal control problem
P0(t1, χ̂1), which is equivalent to P0(t1, X1), using the
concept of sufficient estimates as introduced in Section 3:

min
u(·)∈U[t1,T ]

hT0 x(T ),

subject to the constraints
ẋ = Ax+Bu, x(t1) = 0,

hTi x(T ) ≤ gi − χ̂1
i , i = 1,m.

The resulting optimal open-loop control is denoted by
u0(·; t1, χ̂1) and the optimal cost of problem P0(t1, χ̂1) is
given by

J0(t1, χ̂1) = χ̂1
0 + hT0 x0(T ; τ, u0(·)).

Similar to the definition of the closure sets in the previous
section we define their corresponding counterparts on the
basis of open-loop solutions of problem P0(t1, χ̂1):

X̂1 = {χ̂1 ∈ Rm+1 : J0(t1, χ̂1) < +∞},
X̂1
α = {χ̂1 ∈ Rm+1 : J0(t1, χ̂1) ≤ α}.

Remark 2. The sets X̂1, X̂1
α may include elements χ̂1 that

define empty sets X1. These estimates, however, will not
be encountered in the real processes.
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To derive a counterpart of inclusion (4) the elements X1

of the set X 1(u(·); τ,X) are also characterized by their
sufficient estimates χ̂1. To achieve this we introduce the
set of all possible estimates of the form (3) that can be
obtained at time t1:

Γ̂1(τ,X) = {γ̂1 ∈ Rm+1 :
γ̂1 = γ̂(t1;X, y(·)), y(·) ∈ Y[τ,t1](X)}.

This allows to define the finite-dimensional counterpart of
the set X 1(u(·); τ,X):

X̂1(u(·); τ,X) = {χ̂1 ∈ Rm+1 :

χ̂1 = Ψ(t1)x0(t1; τ, u(·)) + γ̂1, γ̂1 ∈ Γ̂1(τ,X)}.
Thus the control objective on the time interval [τ, t1] is
now reformulated as follows: For a given α ∈ [αmin, αmax]
find a control u1

α(·; τ,X) ∈ U[τ,t1], such that

X̂1(u1
α(·); τ,X) ⊆ X̂1

α (6)
or, equivalently,

Ψ(t1)x0(t1; τ, u1
α(·)) + γ̂1 ∈ X̂1

α for all γ̂1 ∈ Γ̂1(τ,X).
If now for a given α there exists a control u1

α(·; τ,X),
satisfying (6), then the admissible t1-closed control takes
the form {u1

α(·; τ,X); u0(·; t1, χ̂1), χ̂1 ∈ X̂1(u1
α(·); τ,X)}.

Similar to the set-based formulation the minimal value
α0(τ,X), for which inclusion (6) holds, defines the opti-
mal value of the problem and thus the t1-closed solution.
However, this is now based on a finite-dimensional refor-
mulation.
4.3 Existence of Optimal Once-closed Controls
In this section we derive conditions for the existence
of optimal t1-closed controls. Basically this is based on
establishing a connection between the t1-closed solution
of P1(τ,X), τ ∈ π1, and the solution of the following
auxiliary optimal control problem

ρ(α) = min
u(·)

ρ, (7)

subject to
ẋ = Ax+Bu, x(τ) = 0,

Ψ(t1)x(t1) + γ̂1 ∈ X̂1
α, γ̂1 ∈ Γ̂1(τ,X),

|uj(t)| ≤ ρ, j = 1, r, t ∈ [τ, t1[.
The resulting optimal open-loop input is denoted by
u0
ρ(t; τ,X), t ∈ [τ, t1].

In the following we assume:
Assumption 1. Problem (7) is feasible for α = αmax and
ρ(αmax) < 1.

Basically this assumption implies that problem P1(τ,X)
has an admissible t1-closed control.
Proposition 2. Under Assumption 1 problem P1(τ,X),
τ ∈ π1, has the t1-closed solution and the optimal value
α0 of its cost function is given by:

(i) ρ(α0) = 1, or
(ii) α0 = α′ if ρ(α′) < 1 and problem (7) is infeasible for

all α < α′.

Furthermore, u1(·; τ,X) = u0
ρ(α0)(·; τ,X).

Proof 1. Consider two cases: problem (7) is infeasible for
α < αmax, and problem (7) has a solution for all α ∈
[α′, αmax]. In the former case the assertion of the theorem
follows immediately.

In the second case if ρ(α) > 1 it is impossible to find
an input u1

α(·) ∈ U[τ,t1] such that inclusion (6) holds. If
ρ(α) ≤ 1 then, obviously, one can take u1

α(·) = u0
ρ(·).

Therefore, the minimal cost is defined by the optimization
problem

α0 = minα, ρ(α) ≤ 1, α ∈ [α′, αmax]. (8)
Here the function ρ : [α′, αmax] → R is a non-increasing
function of α. Moreover, problem (7) can be reduced to a
parametric linear program depending on the parameter α.
Its cost then is a convex function of α. As a result problem
(8) has a unique solution as stated in the proposition. 2

5. CONSTRUCTION OF OPTIMAL ONCE-CLOSED
CONTROLS

In this section we describe an algorithm for constructing
the t1-closed solution of problem P1(τ,X), τ ∈ π1. To
shorten notations we drop the pair of parameters (τ,X)
at the according functions.

Assume that α ∈ [αmin, αmax] is fixed. Since the α-
closure set X̂1

α has a very complex structure, we use
an outer polytopic approximation X̃1

α ⊃ X̂1
α with faces

corresponding to a given system of vectors pk ∈ Rm+1,
‖pk‖ = 1, k = 1,K. Accordingly, instead of u1

α(·) we
will search for a function ũ1

α(·) satisfying the approximate
inclusion

X̂1(ũ1
α(·)) ⊆ X̃1

α. (9)
Certainly the quality of the solution depends on the choice
of the vectors pk, k = 1,K. This issue was investigated in
Balashevich et al. (2004), hence, it is not discussed here.

In what follows it is assumed that in the neighborhood
of the set X̂1(ũ1

α(·)) the closure set X̂1
α is sufficiently well

approximated by X̃1
α.

On the basis of Remark 1 one can conclude that the
approximating polytope for the closure set X̂1

α has the
form

X̃1
α = {χ̂1 ∈ Rm+1 : pTk χ̂

1 ≤ fk(α), k = 1,K},
where

fk(α) = max
χ̂1,u(·)∈U[t1,T ]

pTk χ̂
1, (10)

subject to
ẋ = Ax+Bu, x(t1) = 0,

χ̂1
0 + hT0 x(T ) ≤ α, χ̂1

i + hTi x(T ) ≤ gi, i = 1,m,
where the decision variables are both the control u(·) and
the vector χ̂1 ∈ Rm+1. Note, that pk ≥ 0, k = 1,K,
otherwise the cost function of (10) is unbounded.

To construct the function ũ1
α(·), we change condition (6)

in problem (7) considering the approximate inclusion (9).
Since X̃1

α is a polytope, inclusion (9) can be represented
by K inequalities

pTk Ψ(t1)x(t1) ≤ fk(α)− µk, k = 1,K,
where

µk = max
γ̂1∈Γ̂1

pTk γ̂
1. (11)

The latter is a special optimization problem of the form

µk = max
y(·);zi,i=0,m

m∑
i=0

pkiψ
T
i (t1)x̂i(t1),

˙̂xi = Ax̂i, x̂i(τ) = zi, y(s)− Cx̂i(s) ∈ Ξ, s ∈ π̄[τ,t1],
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zi ∈ X, i = 0,m, y(·) ∈ Y[τ,t1](X).
The solution of this problem, denoted by yk(·), gives a
predicted worst-case (with respect to the projection of the
set Γ1 on a given vector pk) measurement trajectory.

Thus, in order to find ũ1
α(·) one has to solve the following

optimal control problem
ρ̃(α) = min

u(·)
ρ, (12)

subject to
ẋ = Ax+Bu, x(τ) = 0,

pTk Ψ(t1)x(t1) ≤ fk(α)− µk, k = 1,K,
|uj(t)| ≤ ρ, j = 1, r, t ∈ [τ, t1].

On the basis of Proposition 2 and the approximations in-
troduced we propose the following algorithm for construct-
ing the suboptimal input ũ1(·) of P(τ,X) is proposed.

Algorithm for computing suboptimal t1-closed controls:

Given the system of vectors pk, k = 1,K, iterate the
following steps:

(1) Choose α ∈ [αmin, αmax] and small parameters ε,
εα ≥ 0.

(2) Solve K optimal control problems (10).
(3) If X̃1

α = ∅ increase α and return to step 2.
(4) Solve K optimization problems (11).
(5) Find the solution ρ̃(α), ũ0

ρ(·) of problem (12).
(6) If (12) is infeasible increase α and return to step 2.
(7) If α < αmax and ρ̃(α) > 1, increase α. If ρ̃(α) < 1− ε

and α > αmin, decrease α. Return to step 2.
(8) For (i) 1 − ε ≤ ρ̃(α) ≤ 1, or (ii) ρ̃(α) ≤ 1 and

X̃1
α−εα = ∅, set α̃0 := α, ũ1(·) := ũ0

ρ̃(α)(·).
Remark 3. In Balashevich et al. (2004) the algorithm is
expanded by an additional loop, which enhances the accu-
racy of the approximation X̃1

α in the neighborhood of the
set X̂1(ũ1

α(·)), and relaxes it outside this neighborhood.

6. CONCLUSIONS

This paper presents a finite-time optimal measurement
feedback control strategy for continuous time systems.
The objective is to steer the system in finite-time to a
given polyhedral terminal set while minimizing a linear
terminal cost. For feedback only a set-based estimate of the
initial state and sampled-data output measurements that
are subject to set-membership uncertainties are available.
The proposed scheme overcomes the conservatism often
related to optimal control strategies that do not take into
account that new state information arrives at future time
instants. Specifically a min-max optimal control strategy is
proposed, taking into account that at future time instants
new measurement information is available. In the case that
all future measurements are considered in the prediction,
the scheme coincides with the full dynamic programming
solution of the measurement feedback problem. Besides
the conceptual formulation we present a finite-dimensional
formulation of the resulting min-max problem based on
so called sufficient estimates. This formulation allows to
derive existence conditions for the resulting optimal con-
trol problem. Furthermore, we sketch a computational
algorithm that allows to calculate the feedback control
efficiently.

Summarizing, by limiting the number of instants at which
the new measurement information is considered in the
prediction, we achieve a compromise between the com-
putational effort required to calculate the feedback, the
conservatism, and the performance of the closed-loop.

Future work will investigate the application of the derived
method to example systems, as well as the expansion to
other system classes such as time-varying linear systems,
and special classes of nonlinear systems.
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