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Abstract: This paper proposes an integral Takagi-Sugeno (T–S) fuzzy controller to achieve the
output voltage regulation for an AC-DC isolated active high power factor correction (AHPFC)
converter. The converter can avoid high voltage stresses and decrease harmonic distortions under
discontinuous conduction mode (DCM). The dynamics of the converter are derived by the AM-
TTS-DS method. To ensure zero steady-state error, we add an extra integral error signal to the
dynamics. Translating coordinate to the DC operating points, the converter’s stabilization model
can be determined. Both feedback gains and system stability are inferred simultaneously. The
control gains can be obtained by solving linear matrix inequalities (LMIs) via Matlab’s toolbox.
A surprising property is that the obtained feedback gains are identical for every fuzzy control
rule. This condition greatly simplifies the realization using analog circuits. The simulations and
experimental results exhibit the satisfactory performance of the converter with the designed
integral T–S fuzzy regulator.

1. INTRODUCTION

Presently, AC/DC power factor correction (PFC) convert-
ers have two major categories: cascade two-stage topology
and integrated single-stage one. The two-stage bears from
high cost and complex circuit. On the other hand, the
single-stage is provided with effective cost and simpler
circuit, but it has some drawbacks such as high volt-
age spike and component stress. As a novel single-stage
topology, the isolated active-high-power-factor-correction
(AHPFC) converter, combined a PFC and a regulator
would actively force a line current to follow an applied
sinusoidal waveform voltage, see Lin et al. [2005]. Under
operating in discontinuous conduction mode (DCM), both
the PFC cell implemented by a buck-boost converter and
the regulator cell performed by a flyback converter can
provide the inherent power factor correction and resolve
the high voltage stress of the bulk capacitor, relatively. Due
to this AHPFC converter employs only one controller with
one switch, the control strategies become very important
for holding such essential properties.

In the past years, the linear control system was designed
for many power converters, including the above mentioned
AHPFC. However, the transfer functions from input volt-
age to output voltage and from duty ratio to output must
be calculated by very multifarious processes in classical
control fields. The proportional integral (PI) controller
provides only few feedback gains to regulate the PWM
signals, that difficultly govern the internal nonlinear states’
variations of the converters, see Kanaan et al. [2004]. Con-
sequently, the traditional Mamdani-type fuzzy approach
is suggested to control some converters for achieving nice-
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performance, see Viswanathan et al. [2005]. In addition,
the fuzzy logic controller (FLC) has been extensively de-
signed for the higher nonlinear PFC converters, but most
researches are limited on boost-type PFC, see Kirawanich
et al. [2004]. Moreover, the stability of the traditional fuzzy
system has not been analyzed theoretically in a specific
way.

Compared to the traditional fuzzy methods, the stability
of the Takagi–Sugeno (T–S) fuzzy model-based approach
can be rigorously proven by Lyapunov theorem. Signif-
icantly, the linear matrix inequality (LMI) formulation
can powerfully reduce both the stability analysis and the
control design issues for a T–S fuzzy modelling system, see
Tanaka et al. [2000]. Since the integral control is usually
used to achieve zero stead-state error for the constant
disturbances of physical dynamic systems, so that the
LMI-based integral T–S fuzzy schemes are proposed to
control the DC-DC buck converter, see Lian et al. [2006].
But it had never been used on the AC-DC isolated PFC
converters.

This paper proposes an integral T–S fuzzy model-based
controller to resolve the highly nonlinear character of AC-
DC AHPFC converter. First, for reflecting the system’s
fast and slow time variables, we derive the dynamics of
the converter by using the average method called two-
time-scale discontinuous system (AM-TTS-DS), see Sun
et al. [1992]. Next, we offer the integral T–S fuzzy method
to model the AHPFC converter with an emphasis on
addressing its nonlinear terms. The system’s exponential
stability is proven by Lyapunov theorem and the control
gains are obtained via Matlab’s toolbox. Since this con-
verter system has two nonlinear terms and three states
(including a integral error), there are twelve control gains
to act in responsibility to tune the duty ratio of the switch.
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Fig. 1. Closed-loop structure of isolated AHPFC converter.
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Fig. 2. Ideal waveforms on inductors and capacitors.

The proposed approach would further intensify the control
potency for other converters than using linear methods.
Finally, the performances of converter are confirmed by
numerical simulation and hardware experiments.

2. DYNAMICS OF ISOLATED AHPFC CONVERTER

Fig. 1 shows an AC-DC isolated AHPFC converter with
an integral T–S fuzzy controller, which is designed and
implemented by electronic circuits. Here, M denotes a
power switch MOSFET. The converter’s operating prin-
ciple is described with assumptions: (i) under steady-
state conditions; (ii) ideal switching components; and (iii)
CP and CS are large enough, hence a constant voltage
can be across it. Thus, the analytical procedure can be
divided into four stages relative to four subinterval (d1TS

∼ d4TS) in one switching period (TS) as follows. Stage
1 (M :on, D1:on, D2:off, D3:off); Stage 2 (M :off, D1:off,
D2:on, D3:on); Stage 3 (M :off, D1:off, D2:off, D3:on);
Stage 4 (M :off, D1:off, D2:off, D3:off). All ideal concerning
waveforms (vCP

, vCS
, iL, iLm

) are shown in Fig. 2.

Moreover, the dynamical model of AHPFC converter will
be constructed by using the AM-TTS-DS methodology.
Since the inductors L and Lm operating under DCM, it
implies that iL(0) = iL(TS) = 0 and iLm

(0) = iLm
(TS) =

0. Therefore, all states of the converter are obtained as





CP

d〈vCP
(t)〉TS

dt
= 〈iCP

(t)〉TS

CS

d〈vCS
(t)〉TS

dt
= 〈iCS

(t)〉TS
,

where the symbol 〈·〉TS
stands for the average function

during one switching period TS . From Fig. 2, the av-
erage function of all storage components are given as:
〈vL〉TS

= 1
TS

(d1TS〈Vg〉TS
− d2TS〈vCP

〉TS
), 〈vLm

〉TS
= 1

TS

(d1TS(〈Vg〉TS
+ 〈vCP

〉TS
)−n(d2 + d3)TS〈vCS

〉TS
), 〈iCP

〉TS

= 1
TS

(d2
1TS

〈Vg〉TS
+〈vCP

〉TS

2Lm
+ (d2TS)2

〈vCP
〉TS

2L
), 〈iCS

〉TS
=

1
TS

(−(d1 +d2+d3+d4)TS
〈vCS

〉TS

R
+(d2+d3)

2TS
n2〈vCS

〉TS

2Lm
).

Based on the voltage-seconds balance law, the average
voltage of inductors 〈vL〉TS

and 〈vLm
〉TS

are equal to zero.
Thus, the equations of vL and vLm

can be used to find the
relationship of duty d1 with d2, d3 and d4 as follows:

d2 =
〈Vg〉TS

〈vCP
〉TS

d1

d3 =

(
〈Vg〉TS

+ 〈vCP
〉TS

n〈vCS
〉TS

−
〈Vg〉TS

〈vCP
〉TS

)
d1

d4 =1−d1−d2−d3 =1 −

(
1+

〈Vg〉TS
+ 〈vCP

〉TS

n〈vCS
〉TS

)
d1. (1)

The state equations of the converter are expressed as

CP

d〈vCP
〉TS

dt
= d2

1

〈Vg〉TS
+ 〈vCP

〉TS

2Lm

+ (d2
2TS)

〈vCP
〉TS

2L

CS

d〈vCS
〉TS

dt
=−(d1 + d2 + d3 + d4)

〈vCS
〉TS

R

+(d2 + d3)
2 n2〈vCS

〉TS

2Lm

. (2)

Due to the switching frequency, 100 kHz is faster than
the haversine frequency, 120 Hz. The input voltage Vg

can be assumed as a constant value (〈Vg〉TS
= Vg) during

switching period TS . Furthermore, we substitute (1) into
(2) and consider the Vg(t) = |Vmsin(wt)| during haversine
period TL. After combing the faster variable’s affection on
the slower variable, the average dynamics of the isolated
AHPFC converter are derived as follows:

dvCP

dt
=

d2
1(t)TS

2CP

(
V 2

m

2LvCP

−
2Vm

πLm

−
vCP

Lm

)

dvCS

dt
=

d2
1(t)TS

2LmCSvCS

(
V 2

m

2
+

4VmvCP

π
+vCP

2

)
−

vCS

R
,

(3)

where vCP
= 〈〈vCP

〉TS
〉TL

, vCS
= 〈〈vCS

〉TS
〉TL

and the
duty ratio d1(t) is a control input. The equation (3) is
a nonlinear system since the control-input vector is two
state-dependent, e.g., the terms of multiplying d2

1(t) by
vCP

(t) and dividing it by vCS
(t), etc.
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Fig. 3. Sketched diagram of integral T–S fuzzy control.

3. INTEGRAL T–S FUZZY REGULATOR

In this section, the proposed integral T–S fuzzy controller
for the isolated AHPFC converter is described as the
following five steps.

3.1 Integral-Type Control Design

Consider a general nonlinear system for the dynamic
model (3) as follows:

ẋp(t) = f(xp(t)) + g(xp(t))u(t) + η

y(t) = h(xp(t)) + l(xp(t))u(t), (4)

where xp ∈ Rn, u ∈ Rc, y ∈ Rm are the state, the
input, and the output vectors, respectively; and η is a
constant term. The conceptual diagram of the integral T–
S fuzzy control is depicted in Fig. 3. Here, control input
u(t) represents the duty cycle d1(t); Vref is a constant
reference; and y(t) denotes the output voltage vCS

(t) for
AHPFC converter system. We want to design an integral
T–S fuzzy controller such that y(t) → Vref as t → ∞.

For achieving zero steady-state regulation error, the
integral-type controller is robust to unmodelled uncer-
tainty and exogenous disturbance. To account for the inte-
gral of output tracking error, we add a new state variable
as xe =

∫
(Vref−y(t))dt, which results in the error dynamic

equation ẋe = Vref − y(t). Therefore, from the model (3),
the augmented dynamics of the isolated AHPFC converter
is formed as follows:

dx1

dt
=

1

CS

(
d2
1TS

2Lmx1

(
V 2

m

2
+

4Vmx2

π
+ x2

2

)
−

x1

R

)

dx2

dt
=

1

CP

(
d2
1TS

2

(
V 2

m

2Lx2
−

2Vm

πLm

−
x2

Lm

))

dx3

dt
= Vref − x1, (5)

where x1 = vCS
, x2 = vCP

, and x3 = xe.

3.2 Coordinate Translation to Operation Point

The output regulation objective will be realized by stabi-
lizing the system at an equilibrium state, which produces
vCS

(t) = Vref . First, we must find x̄p and ū that are
equilibrium points of the state xp and control input u,
respectively. For this purpose, let the right-hand side of
the system (5) to be zero, we can obtain the equilibrium
points as follows:

x̄1 = Vref

x̄2 =

(√
1

π2
+

Lm

2L
−

1

π

)
Vm

d̄1 =
Vref(√

RTS

2Lm

(
1
2

(
1+ Lm

L

)
+ 2

π

(√
1

π2 + Lm

2L
− 1

π

)))
Vm

.

(6)

Second, let x1 = x̃1 + x̄1, x2 = x̃2 + x̄2, x3 = x̃3 + x̄3

and d1 = d̃1 + d̄1. As a designed parameter introduced by
the integral control, the equilibrium point x̄3 = x̄e will be
determined later. After substituting (6) into (5), we obtain
the following small signal model.

˙̃x1=
1

CS

(
(d̃1 + d̄1)

2TS

2Lm(x̃1 + x̄1)

(
V 2

m

2
+

4Vmx2

π
+(x̃2+x̄2)

2

)
−

x1

R

)

˙̃x2=
1

CP

(
(d̃1 + d̄1)

2TS

2

(
V 2

m

2L(x̃2 + x̄2)
−

2Vm

πLm

−
x2

Lm

))

˙̃x3=Vref − (x̃1 + x̄1)

Note that in order to simplify the above dynamical equa-
tions, we neglect some higher-order terms (very small
value). Therefore, the simplified model of the AHPFC
converter can be obtained as follows:




˙̃x1
˙̃x2
˙̃x3


=




Ψ
d̄2
1TS

2πLmCS x̄1
(4Vm + 2πx̄2) 0

0 −
d̄2
1TS

2CP

(
1

Lm

+
V 2

m

2Lx̄2
2

)
0

−1 0 0




[
x̃1

x̃2

x̃3

]

+




d̄1TS

πLmCS x̄1
Θ −

d̄1TS

πLmCS x̄2
1

θx̃1

d̄1TS

CP

(
V 2

m

2Lx̄2
−

2Vm

πLm

−
x̄2

Lm

−

(
1

Lm

+
V 2

m

2Lx̄2
2

)
x̃2

)

0




d̃1,

(7)

where θ = 0.5πV 2
m +4Vmx̄2+πx̄2

2, Θ = θ+(4Vm +2πx̄2)x̃2

and Ψ = − 1
CS

( 1
R

+
d̄2
1TS

2πLmx̄2
1
Θ). Then, we must deal with

the nonlinear characteristics of the converter.

3.3 Establish T–S Fuzzy Modelling System

According to the modelling approach, the dynamic system
(7) with nonlinear terms can be exactly represented by T–
S fuzzy model as the following rules:

Plant Rule i : IF x̃1(t) is F1i and x̃2(t) is F2i THEN

˙̃x(t) = Aix̃(t) + Bid̃1(t), i = 1, 2, 3, 4,

where x̃(t) = [x̃1(t) x̃2(t) x̃3(t)]
>

; F1i, F2i(i=1, 2, 3, 4) are
fuzzy sets. Moreover, let φ1 = 0.5πV 2

m + 4Vmx̄2 + πx̄2
2 +

(4Vm + 2πx̄2)L, Φ1 = 1
R

+
d̄2
1TS

2πLmx̄2
1
φ1; and φ2 = 0.5πV 2

m +

4Vmx̄2 + πx̄2
2 − (4Vm + 2πx̄2)L, Φ2 = 1

R
+

d̄2
1TS

2πLmx̄2
1
φ2. We

can obtain the linear subsystems’ matrices as follows:

A1 =A2 =




−
1

CS

Φ1
d̄2
1TS

2πLmCS x̄1
(4Vm + 2πx̄2) 0

0 −
d̄2
1TS

2CP

(
1

Lm

+
V 2

m

2Lx̄2
2

)
0

−1 0 0




,

A3 =A4 =




−
1

CS

Φ2
d̄2
1TS

2πLmCS x̄1
(4Vm + 2πx̄2) 0

0 −
d̄2
1TS

2CP

(
1

Lm

+
V 2

m

2Lx̄2
2

)
0

−1 0 0




,
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B1 =




d̄1TS

πLmCS x̄1
φ1 −

d̄1TS

πLmCS x̄2
1

(θK)

d̄1TS

CP

(
V 2

m

2Lx̄2
−

2Vm

πLm

−
x̄2

Lm

−

(
1

Lm

+
V 2

m

2Lx̄2
2

)
L

)

0




,

B2 =




d̄1TS

πLmCS x̄1
φ1 +

d̄1TS

πLmCS x̄2
1

(θK)

d̄1TS

CP

(
V 2

m

2Lx̄2
−

2Vm

πLm

−
x̄2

Lm

−

(
1

Lm

+
V 2

m

2Lx̄2
2

)
L

)

0




,

B3 =




d̄1TS

πLmCS x̄1
φ2 −

d̄1TS

πLmCS x̄2
1

(θK)

d̄1TS

CP

(
V 2

m

2Lx̄2
−

2Vm

πLm

−
x̄2

Lm

+

(
1

Lm

+
V 2

m

2Lx̄2
2

)
L

)

0




,

B4 =




d̄1TS

πLmCS x̄1
φ2 +

d̄1TS

πLmCS x̄2
1

(θK)

d̄1TS

CP

(
V 2

m

2Lx̄2
−

2Vm

πLm

−
x̄2

Lm

+

(
1

Lm

+
V 2

m

2Lx̄2
2

)
L

)

0




,

where K and L are constant values denoting the interval
that x̃1 and x̃2 lies within, i.e., x̃1 ∈ {−K,K} and x̃2 ∈
{−L,L}. The grades of membership of x̃(t) in the fuzzy
set Fji (j = 1, 2) are defined as: MF11

(x̃1) = MF12
(x̃1) =

1
2 (1+ x̃1

K ); MF13
(x̃1) = MF14

(x̃1) = 1
2 (1− x̃1

K ); MF21
(x̃2) =

MF23
(x̃2) = 1

2 (1+ x̃2

L ); MF22
(x̃2) = MF24

(x̃2) = 1
2 (1− x̃2

L ).

Consequently, the fuzzy plant model for the error signal
x̃(t) is inferred as follows:

˙̃x(t) =

4∑

i=1

µi(x̃(t))(Aix̃(t) + Bid̃1(t)), (8)

where the µi(x̃) are normalized weighting functions de-

pended on x̃1 and x̃2. Note that
∑4

i=1 µi(x̃(t)) = 1 for all
t, and the µi(x̃) ≥ 0 can be defined as follows:

µ1(x̃) = MF11
(x̃1)MF21

(x̃2); µ2(x̃) = MF12
(x̃1)MF22

(x̃2);

µ3(x̃) = MF13
(x̃1)MF23

(x̃2); µ4(x̃) = MF14
(x̃1)MF24

(x̃2).

To design d̃1(t), the concept of parallel distributed com-
pensation (PDC) is applied. The ith rule of the control
input is described as follows:

Control Rule i : IF x̃1(t) is F1i and x̃2(t) is F2i THEN

d̃1(t) = −Kix̃(t), i = 1, 2, 3, 4.

The fuzzy controller in the consequent part is inferred as
follows:

d̃1(t) = −

4∑

i=1

µi(x̃)Kix̃(t). (9)

By substituting (9) into (8), the closed-loop system can be
represented as

˙̃x(t) =

4∑

i=1

4∑

j=1

µiµj(Ai − BiKj)x̃(t)

=

4∑

i=1

4∑

j=1

µiµjGij x̃(t). (10)

3.4 Stability Analysis and Controller Gains

Feedback gains Ki and system stability are simultane-
ously presented. Choose the Lyapunov function V (x̃(t)) =
x̃>(t)Px̃(t) > 0, where P is a symmetric positive definite
matrix. Taking time derivative of V (x̃) along with (10), it
yields

V̇ (x̃(t)) =
4∑

i=1

4∑

j=1

µiµj x̃
>(t)(G>

ijP + PGij)x̃(t).

If P satisfies G>
ijP + PGij < 0 or a little bit of stronger

condition:

G>
ijP + PGij + DPD < 0, (11)

where D is a diagonal positive definite matrix, then we

can obtain V (x̃(t)) ≤ V (0)e−
λmin(DP D)

αλmax(P )
t, where λmin(M)

and λmax(M) denote the minimal and maximal eigen-

value of matrix M , respectively. Therefore, ‖x̃‖
2

≤
V (0)

λmin(P )e
−

λmin(DP D)

αλmax(P )
t is concluded.

As to the inequality, after pre multiplying and post multi-
plying X = P−1, we can obtain

(A − BKi)X + X(A> − K>
i B>) + (DX)>X−1DX < 0.

Letting Mi = KiX and applying Schur’s complement, (11)
can be equivalently written as the following LMIs:[

AiX + XA>
i − BiMj − M>

j B>
i XD>

DX −X

]
< 0. (12)

Therefore, if there exist a common symmetric positive
definite matrix X = P−1 such that the LMIs in (12)
are feasible, then the system (8) can be exponentially
stabilized via the PDC fuzzy controller (9) with Ki =
MiX

−1. The Ki and X can be together obtained by
solving (12) via Matlab’s LMI toolbox.

3.5 Accomplishment of Integral T–S Fuzzy Controller

Because the plant has two state variables with one output
term, the control input of the system (3) will be taken as

d1 = d̃1 + d̄1

=−

4∑

i=1

µi(x̃)

(
[Ki1 Ki2 ]

[
x1 −x̄1

x2− x̄2

]
+Ki3(xe−x̄e)

)
+ d̄1.

The controller gains (Ki1,Ki2,Ki3) can be obtained once
there exists an X > 0 such that (12) is feasible. When
applied to the AHPFC converter, we notice that after
transient response the variation of µi(x̃) is often kept
within a small region. Thus, it is natural to let

x̄e =

(
4∑

i=1

µi(x̃)Ki3

)−1(
d̄1−

4∑

i=1

µi(x̃) [Ki1 Ki2 ]

[
x̄1

x̄2

])
,
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Table 1. Parameters of AHPFC converter

Parameters Value and Unit

Peak voltage, Vm 156 V

Storage inductance, L 167.7 µH

Exciting inductance, Lm 990 µH

Storage capacitance, CP 470 µF

Output capacitance, CS 10000 µF

Maximum load resistance, Rfull 12 Ω

Minimum load resistance, Rlight 18 Ω

Switching period, TS 10 µsec

Haversine’s period, TL
1

120
sec

Turns ratio of transformer, n 12 turn

and regard it as the equilibrium point of xe. The flexibility
of designing x̄e as above equation is related to the ro-
bustness of integral-type control. Consequently, the control
input can be represented as

d1(t) = −

4∑

i=1

µi(x̃)(Kix(t)), (13)

where Ki = [Ki1 Ki2 Ki3] and x = [x1 x2 x3]
>.

4. NUMERICAL SIMULATION

In this section, the proposed integral T–S fuzzy regulation
is verified by numerical simulations successfully.

According to Table 1 and equation (6), the DC operating
points of the states and control input can be obtained as
x̄1 = vCS

= 12 V, x̄2 = vCP
= 222.9208 V, d̄1 = 0.2116.

To keep the inductor’s current under DCM and consider
the capacitor’s ripple affection, we appropriately choose
−K = −1, K = 1, −L = −1 and L = 1 for application
to the isolated AHPFC converter in this design. Based on
LMIs (12) and let decay rate D = diag{20.93, 1.18, 9.09},
the control gains are obtained below:

K11 = K21 = K31 = K41 = 0.451869,

K12 = K22 = K32 = K42 = 0.000647,

K13 = K23 = K33 = K43 =−40.24111. (14)

Thanks to this nice property, the control law (13) is further
reduced to d1(t) = −K1x1−K2x2−K3x3, which is a linear
one.

To verify the performance of the isolated AHPFC con-
verter with the integral T–S fuzzy controller, the variations
of the load are tested. The results simulated by Matlab
are shown in Fig. 4, where including the state (x1, x2),
the integral error state (xe) and control input (duty ratio)
responses of the converter, which is subjected to the load
R changed from 18 Ω to 12 Ω at 0.1 s and then changed
from 12 Ω to 18 Ω at 0.2 s.

5. CONTROL CIRCUITS AND EXPERIMENT

According to (13) and getting LMI-based gains (14),
we can implement the integral T–S fuzzy controller of
the isolated AHPFC converter by using electrical circuits
that contain operational amplifiers, resistors and variable
resistors. The control input is realized in Figs. 5 ∼ 6. Fig. 5
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Fig. 4. (a) Output voltage vCS
, (b) capacitor’s voltage vCP

,
(c) integral error state xe, and (d) control input of the
converter, for the R changed: 18 Ω → 12 Ω → 18 Ω.

shows the integral error circuit of the designed controller,
where the Vref is set to be 12 V and the vo(t) denotes the
practical output voltage. In Fig. 6, the x1(t), x2(t) and
x3(t) are the system’s three states that are multiplied by
relative feedback gains to form the linear control part of
the controller. Note that the membership functions circuit
and the nonlinear control part of the controller have been
omitted.

The experimental results are shown in Fig. 7. Fig. 7(a)
and (b) respectively show the output voltage transient
responses in AC mode for the converter, which is subjected
to the load variations changed from 18 Ω to 12 Ω at 0.1 s
and back to 18 Ω at 0.2 s.

As well as the simulation results, the oscillograms exhibit
the perfect robustness to the variations of the load and the
output always maintain at 12 V. Specially, these have nice
performances such as short settling time, small overshoot,
zero steady state error and fast transient response.

6. CONCLUSION

In this paper, the integral T–S fuzzy controller has pre-
vented the bulk capacitor from crossing high voltage stress
while the load is at a light level for the AC-DC isolated
AHPFC converter. The proposed control strategy can ex-
actly model the converters and deal with its heavy nonlin-
ear characters. The local feedback gains are obtained by
solving a set of LMIs. The perfect large-signal stability and
transient variations have been simulated by Matlab. The
experimental results reveal the satisfactory output voltage
responses and the excellent input current shape for power
factor correction. Compared to the PI controller, the pro-
posed method can cope with the inherently nonlinear char-
acter for the converters in a nonlinear method. Besides,
the stability analysis of the traditional fuzzy approach has
been improved by the suggested control scheme.
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Fig. 5. Integral error circuit of the controller.
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Fig. 6. Linear control circuit of the controller.
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Fig. 7. Output voltage responses in AC mode, when the R
changed: (a) 18 Ω → 12 Ω; (b) 12 Ω → 18 Ω.
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