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Abstract: Neural Network Model Predictive Control (NN-MPC) combines reliable prediction of neural 

network with excellent performance of model predictive control using nonlinear Levenberg-Marquardt 

optimization. It is shown that this structure is prone to steady-state error when external disturbances enter 

or actual system varies from its model. In this paper, these model uncertainties are taken into account 

using a disturbance model with iterative learning which adaptively change the learning rate to treat 

gradual effect of the model mismatch differently from the drastic changes of external disturbance. Then, a 

high-pass filter on error signal is designed to distinguish disturbances from model mismatches. Practical 

implementation results as well as simulation results demonstrate good performance of the proposed 

control method. 

 

1. INTRODUCTION 

Model Predictive Control (MPC) is one the most successful 

approaches both in academia and the industries. An important 

reason for this success is the concept of prediction in control.  

Conventional MPC is based on a linear model of a system 

(Camacho et al., 2007). However, most actual systems are 

indeed nonlinear when they work in a wide range of 

operating points. There are some approaches in which 

predictive concept is mixed with nonlinear controllers. Two 

reasons limit conventional MPC to be linear.: Linear system 

identification and Linear optimization of MPC cost function. 

The first aspect that limits linear MPC is linear identification 

in which extracted mathematical model is linear. A good 

substitute for linear identification is neural network 

identification (Nelles, 2001) which is proved to identify a 

general nonlinear system (Akesson et al., 2005).  

The other important factor which justifies the use of a 

nonlinear model is that analytical solution of linear MPC 

does not exist in nonlinear case and the optimizer has to 

numerically minimize the MPC cost function. Different 

numerical approaches have been proposed for Nonlinear 

MPC. Soloway et al. (1996) suggests Newton-Raphson to 

solve the nonlinear optimization and Gil et al. (2000) used 

gradient descent. Also, Leskens et al. (2005) used sequential 

quadratic programming while Levenberg-Marquardt (LM) is 

faster solution than others (Nogaard et al., 2003).  

Adaptive concept of the controller requires the neural 

network identifier to learn in real-time. There are several 

approaches to train the neural network in real time 

identification. In Ng (1997) Learning by Recursive Least 

Square (LRLS) method is discussed to adaptively train neural 

network. Basically, this method uses linear Recursive Least 

Square (RLS) concept to train weights of the neural network 

in each sampling period. Because the number of data at each 

iteration is not rich, this method usually requires a long time 

to be initiated or to catch any variations in the identified 

system. Number of data which are required to train a neural 

network increases exponentially by the number of training 

parameters. 

In another approach, Moragado et al. (2005) used Back-

Propagation-Through-Time with sliding window (Haykin, 

1999). In this paper, this latter method is chosen to train the 

network efficiently while keeping the identification up-to-

date and being able to keep track of variation of the system. 

However, since network training requires rather huge amount 

of computations, this training is done in batch. In other 

words, the real computational aspect results in some periods 

where the network does not train. As a consequence, taking 

account that the controller is model-based, model mismatch 

or disturbance may cause low frequency or steady-state 

errors. In this paper, a model-based problem is resolved by 

adding a new disturbance model to identify disturbances 

iteratively. 

In the nonlinear case, Akesson et al. (2005) suggests to 

directly subtract approximated prediction error from neural 

network output to obtain offset-free identifier. Another way is 

to apply an outer loop integrator controller (Wang et al., 

1998). Both approaches are fairly simple but affect normal 

operation of control system greatly. Alternatively, Kuure-

Kinsey et al. (2006) used Kalman filter to avoid steady-state 

offset. It is also possible to put a pre-filter in reference signal 

to change it suitably (Gil et al., 2000). This feedforward pre-

filter is itself a model-based system and depends on the 

operating point of the system. 

In this paper, a new disturbance identifier is developed to 

efficiently estimate the external disturbances and model 

mismatches to eliminate the steady-state error of constrained 

nonlinear model predictive control. Neural network training 

is done using the gradient descent method for data of a sliding 

window. Disturbance model is trained by a gradient descent 

method with adaptive weighting that distinguished external 

disturbances and model mismatches. 
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2. NEURAL NETWORK IDENTIFICATION 

The neural network (NN) model of the system predicts output 

of the system to use in the cost function of model predictive 

control. It relates an implicit relationship between control 

input (u) and system output (y). Using this NN model, future 

outputs of objective function are represented by future control 

signals.  

Neural network model of the system is a Multilayer 

Perceptron (MLP) with one output neuron because the system 

is assumed single-input single output. Delayed control signals 

and control outputs enter the network in predictor structure 

(Nelles, 2001): 
( ))()(ˆ kxFky =   (1) 

Where, F is the neural network function and  
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Where, d  is input delay of the system, an  and bn  are 

number of delayed outputs and inputs of the network. Output 

of the network is the one step-ahead prediction of the system. 

It can predict )1(ˆ +ty  but to predict )2(ˆ +ty  to )(ˆ 2Nty + , the 

neural network feed predicted output as its input. 

3. CONSTRAINED OPTIMIZATION OF THE MPC COST 

FUNCTION 

The model described in previous section predicts future 

outputs of the system. To have a model predictive control, 

cost function (3) should be minimized: 
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The first term in (3) is future error and the second term is 

variation of control signal. r  is the reference or tracking 

signals. u  is the control signal and u∆ is the difference of  the 

control signal. kλ  is the weight factor of k-th future control 

signal which determines importance of control signal in 

minimization.  Larger values of λ  will cause smoother 

control signals. 1N  , 2N  and uN  are the minimum output 

horizon, maximum output horizon and control horizon 

respectively. Larger control horizon normally improves 

performance at the cost of more computational burden. 

Minimization obtains best control signals over control 

horizon but within these best control signals only first one 

applies to the system and others are just deleted. This process 

repeats each iteration. 

 
Fig. 1 –Block Diagram of Neural Network Model Predictive Control 

As mentioned, the cost function (3) depends on the predicted 

outputs which can be presented as a function of the previous 

output signals and the future control signals. To minimize the 

cost function (3) different methods were described in section 

1. In linear MPC, analytical solution exists (Camacho, 2007) 

and its stability is proven. However, in nonlinear case, 

minimization is a numerical problem with different 

approaches and very limited stability analysis. One good 

example of stability analysis of NN-MPC is Huang (2003) 

where the local linear model of the plant is considered. To 

solve the minimization problem, one of the most efficient 

approaches is Levenberg-Marquardt for both high precision 

and low computational process time. In the next section, 

constraint on control signals is considered in the cost function 

(3). 

 

3.1 Constraint on control signal 

The cost function (3) is minimized by changing future control 

signals. In  all control applications there are inequity 

constraint on control signals. For example, control signals 

such as thrust of an aircraft or opening of a valve is inevitably 

limited between certain physical bounds. Some linear MPC's 

such as MAC and DMC intrinsically considers the constraints 

in contrast to GPC (Camacho, 2007). In nonlinear MPC 

where minimization is done iteratively, a term is usually 

added to the cost function to consider constraints. This term 

is constant in working area and increases when control signal 

(constrained state) approaches the bounds. This increase must 

be rapid but continuous (Soloway et al., 1996) because its 

second derivative must exist for L-M method. 

In this paper, the term is an exponential function with a 

sharpness variable S: 
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Where, f  is the constraint function that is defined to increase 

near limits (Fig. 2). Variable S  is the sharpness of the 

function f. minu  and maxu  are lower and upper bounds of 

control signal, respectively. Also, u is the average of lower 

and upper bounds. Fig.2 illustrates the effect of sharpness 

variable on shape of the function f. It can be seen that when 

sharpness increases, the cost function approaches the ideal 

cost function. From now on in this paper, sharpness is 

assumed to be 100 in all cases. 
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Fig.2 – Constraint function with different sharpness values 

The obtained cost function will be added to the main cost 

function of MPC (3) to form a cost function with constraint.  

Equation (4) is just for one control signal while there are 

uN control signals in the cost function (3). Total constraint 

term is will is: 
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To find minimum of Eq. 6 using numerical approaches like 

L-M, it is necessary to calculate Gradient and Hessian of the 

cost function (5). 

Using neural network model of the system, it is 

straightforward to calculate Gradient and Hessian of the cost 

function (Nogaard et al., 2003). 

Search direction is now obtained using Levenberg-Marquardt 

(L-M) search direction as follows 

kkkk fUU µ+=+1  (6) 

Where, kU  is the control signal vector, kµ is the step size, kf  

is the search direction and all of them are in k-th iteration. L-

M method suggests (7) to find new search direction. 
( ) [ ])()]([ tUGfItUH kkkk −=+ λ  (7) 

Where, H is the Hessian and G is the Gradient of the cost 

function, I is the identity matrix and kλ  is the Levenberg-

Marquardt parameter. When kλ  is small, this method is a 

quadratic approximation and when it is large and Hessian is 

negligible, L-M method works like simple gradient method. 

At first iterations, L-M works as a gradient method and as it 

gets near the optimal point it gradually switches to Newton-

based methods. When L-M parameter gets smaller, L-M finds 

a locally linear solution but precisely and quickly. After each 

iteration of the search, Hessian is checked to be positive 

definite (convex optimization). If Hessian is not positive 

definite, kλ  is increased until this happens. To investigate 

positive definiteness of Hessian Cholesky factorization is 

used (Nogaard et al., 2003). 

4. DISTURBANCE MODELLING 

The controller which is described in the previous section does 

not train for a while. Between two training stages, control 

system is model-based and external disturbances or model 

mismatches cause steady state error. In addition, training of 

the identifier network is a time-consuming process and 

cannot run at each iteration. Still a good controller should 

detect and reject disturbances in the same iteration as they 

come. 

 
Fig 3. Model mismatch effect in simulation of NNMPC 

This is a serious problem in model-based control systems. If 

the neural network model differs from actual system, 

controller output does not converge to the desired reference. 

Fig. 3 shows the effect of misleading prediction on control 

performance of the NN-MPC in simulation.  

As illustrated in Fig. 3, there is a steady state error between 

output signal and the reference signal.  

 

4.1 Structure of Disturbance Model 

The disturbance model should take the advantages of RLS. It 

should have simple structure with few adaptive parameters 

and fast learning algorithm working parallel to the main 

neural network identifier. In spite of the main neural network, 

disturbance model should be updated in each sampling time. 

Proposed disturbance model adds to the main neural network 

to modify the predicted output (1) to 

)())(()(ˆ kdkxFky M+=  (8) 

Where, the output of the disturbance model. is 
btewkd dM += )(ˆ)(  (9) 

Where, )(ˆ te  is difference between the main neural network 

output and the actual system output. b  and dw  are 

disturbance model weightings which adapt in every sampling 

period with a modified gradient descent method. Gradient 

descent proposes the following adaptation rule: 

)(ˆ)()1( kekbkb η+=+  (10) 

Where, η  is the learning rate. Equation (10) is equivalent to: 
eb ˆη=∆  (11) 

which can be rewritten as: 

eb ˆ
1

η
∆

=  (12) 

Equation (12) is just like an integrator with particular effects 

of an integrator controller such as long settling time or large 

overshoot. To improve the performance, it is proposed to 

apply a Proportional-Integral learning rule: 

ekeb p ˆˆ
1

+
∆

= η  (13) 

Where, η  and pk  are the integral and proportional 

coefficients, respectively. Equation (13) can be simplified as: 
ekeb p ˆˆ ∆+=∆ η  (14) 

Summarizing the rules to adapt the disturbance model 

parameters, we obtain: 
( )11 ˆˆˆ −− −++= kkpkktk eekebb η  

)(ˆ)()1( 2 tekwkw dd η+=+  
(15) 

Equation (15) adapts much faster than (10). 

Disturbance modelling deals with two kinds of problems. 

First, it compensates external unknown disturbances. Second, 

it reduces the effect of gradual model mismatches. Both cause 

prediction error but they are caused by different sources and 

should be treated differently. For external disturbances, 

learning rates should be larger.  

In this paper we distinguish disturbances from model 

mismatch and apply different weightings. This is called 

adaptive weightings of disturbance modeling. Disturbance 

needs faster adaptation to catch up with rapid changes of the 

system. When there is no disturbance, adaptation should be 

slowed down because higher adaptation may decrease model 

predictive transient performance.  

To distinguish the disturbance it is possible to use approach 

similar to what (Hägglund et al., 2000) proposed and to use a 

high-pass filter on error signal with pole near time constant of 

the system. The error is defined to be the difference between 

the main neural network output and the actual system output. 

Disturbance model has no effect to this error. The main 

advantage of defining error without interference of 

disturbance model is that this error is able to detect 

disturbances simultaneous with set-point changes. 

Additionally, it detects non step-shaped disturbances. A 

potential problem in this approach might happen after a long 

time when the error between neural network and actual output 
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accumulates. To avoid long time problems, difference of the 

error is considered. It is equivalent to put a high-pass filter 

with large pole over the error signal. Therefore, the digital 

high-pass filter is: 
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Where, 
T

hp
1

=ω  and T is time constant of the system. In 

digital filter (16) when hpω  is large, the zero is actually 

negligible and the high-pass filter is a difference function 

asymptotically. When output of this filter exceeds its 

threshold, there is a disturbance. 

After disturbance detection, training of disturbance model is 

accentuated (adaptive learning rate for disturbance model). 

This fast learning should remain until disturbance is rejected 

completely. As proposed in (Hägglund et al., 2000) the 

disturbance rejection should work for at least one time 

constant of the system.  

In summary, detecting external disturbances by a high-pass 

filter has two advantageous features over conventional 

disturbance detection. First, this approach detects 

disturbances of any shape (it does not limit identified 

disturbances to step-shaped). Second, disturbance can be 

detected even if it occurs exactly when set point changes. 

5. SIMULATION RESULTS 

In this section disturbance rejection of the proposed model 

predictive controller verified through computer simulation.  

In Fig. 4, an external step-shaped disturbance enters at 

t=2000 second in linear MPC. When disturbance occurs, 

output starts fluctuating and control signal is not smooth. 

However, after around 500 seconds, the linear MPC damps 

the effect of the disturbance and the overall performance 

become reasonable. 

For nonlinear MPC, three cases were considered in the 

simulation. In the first case, NN-MPC works without any 

disturbance model or disturbance rejection scheme. External 

disturbance in this case causes a bias in output from the 

desired value (Fig. 5). 
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Fig. 4 – Performance of the linear MPC when an unknown unmodeled 

disturbance enters 

In the second nonlinear simulation, disturbance rejection is 

done by a disturbance model with constant learning 

parameters which is slow in rejection of step-shaped external 

disturbances (Fig. 6). 

In the final simulation for nonlinear MPC, disturbance model 

distinguishes external disturbances from model mismatches 

and adaptively changes learning parameters to reject external 

disturbances. As shown in Fig. 7, this approach is the fastest 

one in disturbance rejection. 
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Fig. 5 – Performance of NNMPC when an unknown unmodeled disturbance 

enters without any disturbance rejection scheme 
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Fig. 6 – Performance of NNMPC when an unknown unmodeled disturbance 

enters with constant disturbance rejection 
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Fig. 7 – Performance of NNMPC when an unknown unmodeled disturbance 

enters with adaptive disturbance rejection 

It is important to notice that the entered disturbance has made 

a drastic change in system parameters, which can be 

comprehended by noticing the control signal in Fig. 7. 

6. CASE STUDY – NONLINEAR WATER LEVEL PLANT 

To verify applicability, the proposed method is applied to 

control a nonlinear water level plant. In this section, first 

physical modelling of the system is introduced and then some 

practical and implementation problems are pointed out. 

Finally, practical results of the proposed method are 

compared with linear MPC both with and without 

disturbances in different operating points. 

 

6.1 Physical Modelling 

The proposed method was implemented on a lab-scale water 

tank system RT512 made by GUNT company.  Fig.  8 and 

Fig. 9 show the plant and its P&ID respectively. 

It is desired to control the water level in tank (1). Hand valve 

(8) determines flow of outlet water from the bottom of the 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3530



 

 

 

main tank. A big reservoir tank (2) gathers outlet water and a 

pump (3) circulates the water. Flow of the pumped water is 

controlled by a control valve (5). This water pours to the 

main tank. A Level sensor (5) measures the level of water in 

the main tank. Controller (6) should observe this 

measurement and apply appropriate command to the control 

valve. 

 
Fig.8 – Water Level Plant, Process Control Lab. – Electrical Engineering 

Department, K. N. Toosi University of Technology 

 

 

1  Level Tank 

2  Reservoir  

3  Pump 

4  Inlet Cock 

5  Control Valve 

6  Pressure Transducer 

7  External Controller 

8  Current/Pressure  

    Transducer 

9  Outlet Cock 

10 Bypass 

11 Hose connection for 

     cascade operation 

Fig. 9 – P&ID of Water Level Plant 

In actual implementation it is important to note that choosing 

the sampling time and the corresponding horizons is a trade-

off between performance and computational burden. Another 

point is that identification data should be persistent excited 

(P.E.) that normally does not satisfy in tight control when all 

of the signals are constant. 

 

5.2 Practical Results 

The proposed approach is implemented on the nonlinear level 

plant and compared to a typical conventional MPC in an 

identical situation. Prediction horizon, sampling time, 

reference trajectory and disturbance size are the same. 

The first experiment examines features of linear MPC. As 

shown in Fig. 10, MPC method tracks desired trajectory 

without steady state error. However, external disturbance 

(changing hand valve from 45 to 55 at t = 1800 sec.) requires 

a long time to be compensated (Fig. 11). This disturbance 

even shifted the system output to saturation.  

The second experiment shows the performance of the 

nonlinear MPC. Without disturbance modelling, there is a 

steady state error as demonstrated in Fig. 12. This error 

becomes larger when an external disturbance enters at t = 

3500 sec. As a result of the disturbance in the model-based 

system, output moved to a biased point far from the desired 

trajectory. 
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Fig. 10 – Tracking result in practical experiment, linear MPC 
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Fig. 11 – Disturbance rejection, linear MPC  
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Fig. 12 – Tracking result in practical experiment, Model-Based NN-MPC 

without disturbance modelling  

The final experiment is on nonlinear MPC with disturbance 

model and adaptive learning parameters (Fig. 13). There is no 

steady state error in tracking of the desired reference. 
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Fig. 13 – Tracking result in practical experiment, NN-MPC with disturbance 

modelling and adaptive learning parameters 
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Comparing linear and nonlinear MPC (Fig. 11 and Fig. 13, 

respectively), it is obvious that disturbance rejection occurs 

faster in the nonlinear case. 

6. CONCLUSIONS 

In this paper, a neural network is used for system 

identification. Sliding window with time-to-time learning 

algorithm is done. Model uncertainties and mismatches as 

well as external disturbances were identified using an online 

easy-to-learn, small disturbance network. This network 

adapts to disturbances more quickly than to model 

mismatches. To distinguish disturbances from model 

mismatches, a high-pass filer of error signal is considered. 

Both computer simulation and practical implementation on a 

lab-scale nonlinear water level plant demonstrate better 

performance of the proposed adaptive disturbance modeling 

in comparison to NN-MPC with and without constant 

disturbance modeling and also linear MPC. 

REFERENCES 

Akesson B. M. , Toivonen H. T. ,  Waller J. B. and  Nystrom 

R. H. (2005) 'Neural network approximation of a 

nonlinear model predictive controller applied to a pH 

neutralization process' Journal of Computers & Chemical 

Engineering, Volume 29, Issue 2, pp. 323-335 

Camacho E. F. and Bordons C. (2007) Model Predictive 

Control, Springer 

Moragado Dias F. , Antunesa A., Vieirab J.,  and Manuel 

Mota A. (2005) 'On-line Training of Neural Networks: A 

Sliding Window Approach for the Levenberg-Marquardt 

Algorithm' Artificial Intelligence and Knowledge 

Engineering Applications: A Bioinspired Approach, 

Springer, pp. 577-585 

Gil P. , Henriques J. ,  Dourado  A and Duarte-Ramos H. 

(2000)  'Extended Neural Model Predictive Control of 

Non-linear Systems', Proceeding of . IASTED - 

ASC2000, pp. 94-100  

Hägglund T. and Astrom J. K. (2000) 'Supervision of 

Adaptive Control Algorithms' Automatica, Volume 36, 

Number 8, pp. 1171-1180 

Haykin S. (1999) Neural Networks: A Comprehensive 

Foundation, Prentice-Hall  

Jalali J. and Ghale A. P. (2005) 'Self-Tuning Regulators for 

Water Level Plant', Bachelor's Thesis   in Electrical 

Engineering-control, K. N. Toosi University of 

Technology 

Kuure-Kinsey M. , Cutright  R. and Bequette B. W. (2006) 

'Computationally Efficient Neural Predictive Control 

based on a Feedforward Architecture' Industrial and 

Engineering Chemistry Research , Volume 45 , pp.  

8575-8582 

Leskens M. , Kessel J. L. F. van, Hof P. M. J. van den and 

Bosgra O. H. (2005) 'Nonlinear Model Predictive 

Control with Moving Horizon State and Disturbance 

Estimation – with Application to MSW Combustion' 

Proceedings of 16th IFAC World Congress, pp. 1-6 

Nelles O. (2001) Nonlinear System Identification: From 

Classical Approaches to Neural Network and Fuzzy 

Models, Springer 

Ng G. W. (1997) Application of Neural Network to Adaptive 

Control of Nonlinear Systems, John Wiley 

Nogaard M. , Ravn O. , Poulsen N. K. and Hansen L. K. 

(2003) Neural Networks for Modelling and Control of 

Dynamic Systems, Springer-Verlag 

Soloway D. and Haley P. J. (1996) 'Neural Generalized 

Predictive Control; A Newton-Raphson Implementation' 

Proceeding of IEEE International Symposium on 

Intelligent Control, pp.277–282 

Wang  H and Wu J. (1998) 'Eliminating the DC component in 

steady state tracking error for unknown nonlinear 

systems: a combination of fuzzy logic and a PI outer 

loop' Proceedings of the American Control Conference, 

Volume 3, pp. 1415-1416 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3532


