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Abstract: In lead-zinc sintering process, various kinds of lead-zinc concentrates and returning powder 
from ineligible sintering production are blended and then sintered in updraft sintering machine to produce 
agglomerate for imperial smelting process. It is required to determine a proper mixture ratio for these 
materials blended to assure sintering production indices such as agglomerate composition and sintering 
permeability. Considering the relations between the mixture ratio and the production indices, an intelligent 
integrated model is firstly constructed to predict agglomerate compositions, which consists of Expertise-
and-Mechanism-based model and Supervised Distributed Neural Networks. Based on the composition 
prediction model and reasoning rules for mixture ratio modification, a hierachical intelligent optimization 
strategy with expert reasoning is proposed to determine an optimal mixture ratio, which includes multi-
objective optimization for the first blending process and area optimization for the second blending process. 
Practical running results show that the qualified rates of agglomerate compositions are increased by about 
7% and the fluctuation of sintering permeability is reduced by 7.0 % through proper blending process 
according to the optimal mixture ratio, which effectively stabilizes the imperial smelting process. 

 

1. INTRODUCTION 

Imperial Smelting Process (ISP) extracts lead and zinc by 
one step from mixing lead-zinc concentrate, including 
sintering and smelting process. During the sintering process, 
various concentrates from different mines and returning 
powder from ineligible sintering production are first blended, 
and then sintered in updraft sintering machine to produce 
agglomerate for smelting processes. The agglomerate 
compositions and sintering permeability are the important 
parameters of the sintering process, whose accuracy and 
stabilization obviously affect the smelting process. The 
mixture ratio of various materials is one of effective means 
to control production indexes, so it is necessary to study how 
to determine the optimal mixture ratio.  

Conventional computation methods of optimal mixture ratio 
involve constructing mathematical models based on 
mechanism analysis or linear system identification, and 
computing the target percentages by linear programming, 
which are extensively applied to sintering process. In these 
methods the production indexes of next stage, whose inputs 
are the outputs of blending process, are seldom used to 
calculate the optimal mixture ratio. In fact whether 
reasonable or not the mixture ratio is has influence on 
production indexes and their relationships are very complex 
in practical process. So expert system (ES) and neural 
networks (NN) are introduced into optimization of blending 
process and applied to the coal blending process in an iron 
and steel plant (Wu et al., 1999; Yang et al., 2000). However 
they can’t be directly used for lead-zinc sintering blending 

process due to two considerations. Firstly, lead-zinc 
sintering process is a complex physical and chemical process 
where solid, liquid and gas states co-exist. It is difficult to 
accurately predict agglomerate compositions with single 
mechanism analysis model or NN. Secondly, there are two 
sub-processes in sintering blending process. The mixture 
ratio in the second sub-process not only affects agglomerate 
compositions, but also concerns tsintering permeability 
associated with some manipulative variables, such as bed 
temperature and vehicle velocity. So it is necessary to 
determine an optimal area, not an optimal point. For the 
modelling of complex industrial process, the combination 
modelling is verified to be superior to single modelling (Cho 
et al., 1997) and has been successfully applied to predicting 
state parameters in sintering process (Wang et al, 2002; Chen 
and Gui, 2003). So an integrated model of agglomerate 
composition prediction is constructed, which consists of 
Expertise-and-Mechanism-based (EM) model and 
Supervised Distributed Neural Networks (SDNN), taking 
advantages of mechanism modelling, neural networks, fuzzy 
classification and expert reasoning method. Based on the 
composition prediction models and reasoning rules for 
mixture ratio modification, a hierachical intelligent 
optimization strategy is proposed to solve blending 
optimization problem. Aiming at the characteristics of 
sintering blending process, the optimization problem is 
decomposed into the first and the second blending 
optimization stages by an expert reasoning method, where a 
multi-objective optimization problem in the first stage takes
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cost and stock as optimization objects and mixing 
concentrate composition indexes as constraints, while an 
area optimization in the second takes mixture compositions 
and agglomerate compositions as objects. Consequently, the 
optimized mixture ratios of the first and second stage 
meeting requirements of sintering process are obtained by 
intelligent coordination and reasoning, which has been 
applied to a non-ferrous smelter. The running results show 
that Pb, Zn and S composition of agglomerate are improved 
by 7.1%, 6.5% and 6.9%, respectively and the fluctuation of 
sintering permeability is reduced by 7%, which effectively 
stabilizes the imperial smelting process. 

The rest of the paper is organized as follows: Section 2 
describes production process. Section 3 constructs two 
composition prediction models for blending process and an 
integrated model for agglomerate composition prediction. 
Section 4 proposes an intelligent optimization strategy based 
on composition prediction and reasoning rule for mixture 
ratio modification to compute the optimal mixture ratio in 
two blending sub-processes. Section 5 describes an 
industrial application and the corresponding results are given. 
Section 6 summarizes the paper and some conclusions. 

2. PROCESS DESCRIPTION 

The lead-zinc sintering process is shown in Fig.1.  
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Fig. 1. The lead-zinc sintering process 

Different kinds of lead-zinc ores are first blended and dried 
to become mixing dry concentrate. Then the mixing 
concentrate and returning powder are blended and 
granulated. The mixture is oxidized and desulfurated in 
updraft sintering machine to produce agglomerates and SO2 
is sent to prepare sulfuric acid. After crashed and sieved, 
eligible agglomerates are put in smelting furnace, while 
ineligible agglomerates after cooled and sieved are returned 
in the form of returning powder. In sum, the lead-zinc 

sintering process includes blending and sintering. The 
former prepares materials for the latter, and the latter 
provides materials for smelting process. 

In sintering process, agglomerate compositions have to meet 
requirements of smelting process in a good working order. 
Under certain sintering conditions (temperature, time, etc.), 
agglomerate compositions are mainly determined by 
compositions of the mixture fed in sintering machine, which 
means the compositions and mixture ratio of returning 
powder and different ores are the most important factors 
influencing the agglomerate compositions. Compositions of 
each kind of ores can be first ascertained, so the key is to 
determine individual percentage of each kind of ores and 
returning powder. The ratio of returning powder not only 
affects the agglomerate compositions, but also is one of key 
manipulative variables for controlling sintering permeability. 
So for returning powder ratio, only optimal area need to be 
determined in the blending process and its optimal value will 
be given by optimal control of sintering process. 

3. COMPOSITION PREDICTION MODEL 

Composition prediction models are constructed to describe 
the composition relationships among different kinds of 
materials, sintered mixture and agglomerate. Based on the 
models, the mixture ratio in the blending process can be 
computed from the required composition of agglomerate and 
the composition of each material to be blended. 

In lead-zinc sintering blending process, the composition 
prediction models consist of the first blending relation model, 
the second blending relation model and agglomerate 
composition prediction model, which are used to predict Pb, 
Zn and S compositions. The predictions of Fe, CaO and SiO2 
composition are not discussed in the paper for they generally 
satisfy industrial requirements.  

3.1 Composition Prediction Models in Blending Process 

There are only physical changes during the blending process 
from individual material to sintering mixture, the first 
blending relation model and the second blending relation 
model are linearly described with (1) and (2), respectively.  
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Where w(E) denotes prediction composition; N the number 
of Lead-zinc ores; mi the mixture ratio of the i-th kind of ore; 
h1 and h2 the removing and adding water ratios, respectively; 
b the mixture ratio of mixing concentrate in the second 
blending, whose value belongs to [0,1]；subscript i the i-th 
kind of ore, C the mixing concentrate, M the sintering 
mixture, and R the returning powder.  

3.2 Composition Prediction Model of Agglomerate 
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The main chemical reactions in the sintering process include 
desulfuration of zinc and lead concentrates, and oxidization 
of iron. By the material equilibrium of these reactions, the 
composition models of lead and zinc can be described in (3). 

( ) ( ) ( ) ( ) ( )1
1
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w Pb w Pb
w Pb R w Pb

R
−

= − − Δ
−

     (3a) 
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−

= − − Δ
−
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where w(Pb) and w(Zn) are lead and zinc composition, 
respectively; subscript S agglomerate, M sintering mixture, 
and L the loss in reaction; Δw(Pb) andΔw(Zn) induced 
from data statistic the composition difference between 
agglomerate and returned powder; RS caking ratio and RL the 
loss ratio. In general, Δw(Pb), Δw(Zn) and RL have no 
change and are taken as constants. w(Pb)L, w(Zn)L and RS are 
set based on statistical data and the following empirical rules. 

R001：if w(Pb)M increases then w(Pb)L and RS increases. 
R002：if w(Zn)M increases then w(Zn)L increases. 
R003：if vehicle velocity V increases then w(Pb)L and RS 
decreases. …… 
The above EM model reflects process situations to some 
extent. It is particularly sensitive and robust in abnormal and 
abrupt-changing cases. But the prediction model is not 
precise enough due to some hypothesis, statistical and 
empirical estimate. On the other hand, NN is capable of 
arbitrary approximating non-linearity (Chen and Billings, 1992) 
and is used for industrial process modelling (Yang et al., 
2003). But it strongly relies on measurement data and lacks 
of physical foundation. Moreover NN sometimes outputs 
incompatible results with practical rules. Taking advantages 
of the two models, an integrated model shown in Fig.2 is 
proposed to realize reliable and accurate prediction of 
agglomerate compositions including composition prediction 
unit, expert coordinating unit and expert learning unit.  

 

Fig. 2. The integrated model for predicting agglomerate’s 
composition  

The composition prediction unit is composed of SDNN and 
EM model in series and parallel, where the output of EM 
model is taken as the input of SDNN. Expert coordinating 
unit aims to coordinate the output of SDNN and EM model, 

and to decide when and by which learning mechanism 
SDNN model goes into learning status. Expert learning unit 
supervises and appraises the work of expert coordinating 
unit in real-time, and effectively enriches and modifies 
expert coordinating rule and the two models of composition 
prediction unit. SDNN consists of four inputs, one output 
and a distributed model, Where four inputs are V, w(Pb)M, 
w(Zn)M and w(S)M., output is w(Pb)S or w(Zn)S, and the 
distributed model includes series of sub-NNs, built based on 
different subset decided by supervised clustering method. 
The output of SDNN is sum of the outputs of sub-NNs with 
different weights obtained by fuzzy classifier. 

For simplification, f XSDNN EM+ ( )  is used to represent the 
integrated model. The integrated model of w(Pb)S is 

( ) ( ) ( ) ( )( ), , , ,SDNN EMS M M M
w Pb f w Pb w Zn w S V T+=    (4) 

Where V is vehicle velocity of sintering machine, T is bed 
temperature. The prediction of w(Zn)S is similar to (4). 
Under the circumstance of a certain V and T, Pb and Zn 
composition of agglomerate are closely related to Pb, Zn and 
S composition of sintering mixture.  

4. HIERACHICAL INTELLIGENT OPTIMIZATION FOR 
BLENDING PROCESS 

4.1 Optimization Strategy 

Optimization computation of the blending process aims at 
determining the optimal mixture ratio to produce suitable 
agglomerate, reduce material cost and stock and improve the 
benefits. Firstly the first and the second blending processes 
are relatively independent. Secondly the mixture ratio of the 
second blending only needs to acquire a reasonable zone in 
the blending process. Finally cost and stock take the 
returning powders into no account. So in lead-zinc sintering 
process, its blending optimization (see Fig.3) includes multi-
objective optimization of the first blending and area 
optimization of the second blending.  
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Fig. 3. Optimization strategy for the blending process 
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The optimization for the first blending takes cost and stock 
as optimization objects and subjects to mixing concentrate 
composition indexes as constraints. Given the definite 
compositions of mixed concentrate and returning powders, 
the optimization for the second blending takes the mixture 
compositions as objects. Intelligent coordination unit gets 
information from the first and the second subsystems and 
respectively provides composition indexes of the mixing 
concentrate and the mixture for the two subsystems. By 
intelligent coordination, the optimized mixture ratios make 
agglomerate compositions and other sintering technical 
indexes meet requirements. 

The optimization system uses a reasoning strategy based on 
composition prediction models and rule models, and 
combines forward chaining and model-based reasoning to 
compute the target mixture ratio from the productive indexes 
and the compositions of each material. Finally using the 
computed values and the total flow rate of the blending 
process, the system calculates the target flow rate of each 
material and sends it to Distributed Control System (DCS) to 
ensure that the actual flow rates track the target flow rates.  

4.2 Rule Models 

Based on a great deal of statistical data and empirical 
knowledge of experts and veteran operators, production rule 
model is used to describe intelligent coordinating and expert 
reasoning process in the optimization system. 

According to the proposed optimization strategy, there are 
four kinds of rule models. The first one RM1 is used as 
inducing the composition indexes of sintering mixture, for 
example, the rule R101-R102. 

R101 ： if w(Pb)S>w(Pb)S
g

max and w(S)M is larger then 
decrease w(Pb)M. 
R102 ： if w(Zn)S>w(Zn)S

g
max and w(S)M is smaller then 

decrease w(Zn)M and increase w(S)M. …… 
The second RM2 determines the mixture ratio of the first 
blending, for example, the rule R201-R202. 

R201 ： if w(Zn)C<w(Zn)C
g

min and w(Zn)i>w(Zn)C
g

max then 
increase mi. 
R202：if w(S)C>w(S)C

g
max and w(S)i< w(S)C

g
min then increase 

mi. …… 
The third RM3 determines the optimization zone of the 
second blending, for example the rule R301-R302. 

R301：if bPb-opt∩bZn-opt∩bS-opt∩bexp=0 then bopt=bexp. 
R302：if bopt∩bS-opt≠0 then bopt=bopt∩bS-opt.…… 
And the fourth RM4 is used as coordinating the composition 
indexes of mixed concentrate, for example, the rule R401-R402. 

R401：if w(Pb)M
c
min > w(Pb)M

g
max and w(Pb)C

g
max-w(Pb)C

g
min 

>α1 then decrease w(Pb)C
g

min. 
R402： if w(S)M

c
max < w(S)M

g
min and w(S)C

g
max-w(S)C

g
min>α2 

then increase w(S)C
g
max.…… 

Here, w(Pb)S
g
max and w(Pb)S

g
min denote maximum and 

minimum index of agglomerate Pb composition, 

respectively; w(Pb)C
g
max and w(Pb)M

g
max are the maximum 

Pb composition index of the mixed concentrate and the 
mixture, respectively; w(Pb)M

c
max is the maximum Pb 

composition index of the mixture determined by 
optimization computation; bPb-opt denotes the optimal area of 
the second blending process meeting requirement of the 
mixture Pb composition; bexp is the empirical area 
determined by sintering permeability; bopt is the optimal area 
determined by subsystem. α1 andα2 are the range threshold 
of mixing concentrate Pb and S composition, respectively.  

4.3 Multi-objective Optimization for the First Blending 

The optimization model of the first blending process is  
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Where Ci is the cost of the i-th kind of ore, Si is its stock. 

By introducing stock influence factor into the cost, the 
multi-objective of (5) is transformed into the single objective 
of (6)  

1

min
N

i i i
i

J C K m
=

= ∑                             (6) 

where Ki is stock influence factor, consisting of three 
elements {1-β，β，1+β}.If Si is higher, then Ki is 1-β; 
if Si is normal, Ki isβ; and if Si is smaller, Ki is 1+β. 

For the above optimization model, the mixture ratio of the 
first blending is determined through the following steps. 

Step 1, Select suitable empirical values from the knowledge 
base as the initial values of mi (i=1,2,…,N). 

Step 2, Known mi, compute w(E)C according to (1). 

Step 3, If w(E)C meets the composition indexes w(E)C
g
max 

and w(E)C
g
min provided by IC unit, then take next step, 

otherwise adjust mi by the rule models RM2. For example, 
when w(Pb)C>w(Pb)C

g
max, and w(Pb)i> w(Pb)C

g
max，then let 

( ) ( )( )max

g
i i C C

i

Jm m w Pb w Pb
m

γ ∂
= + −

∂
           (7) 

and return to step 2. Where γ is an empirical value 
determining the convergence rate of iterative computation. 

Step 4, Check whether mi is in the empirical range. If so, 
stop the computation and output the optimal mi. If not, reset 
the initial mi and return to step 2. If suitable mi can’t be 
obtained in the given iteration times, stop the computation 
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and report that useful mi doesn’t exist and output the 
empirical mi determined by the man-machine interface.  

4.4 Area Optimization for the Second Blending 

Different from the first blending, the optimization process of 
the second blending takes the mixture compositions as the 
objects to determine its satisfactory zone.  

Known w(Pb)R and w(Pb)C, take w(Pb)M
g

max and w(Pb)M
g
min 

to (2), and then obtain the mixture ratio zone of the second 
blending, bPb-opt=[bPb-min，bPb-max], meeting the requirements 
of the mixture Pb composition index.  

( ) ( ) ( )
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2 max
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         (8) 

The bZn-opt and bS-opt are obtained by the same method. The 
optimization zone bopt is the intersection of all zones, namely 

expopt Pb opt Zn opt S optb b b b b− − −= ∩ ∩ ∩             (9) 

If (9) is void, bopt will be determined to the rule model RM3.  

4.5 Intelligent Coordinating Unit of Optimization System 

The IC unit of optimization system works as following steps. 

Step 1, According to the agglomerate composition indexes，
determine w(E)M

g
max and w(E)M

g
min by expert reasoning 

based on the prediction model (4) and rule model RM1, 
where E represents Pb or Zn, w(S)M

g
max and w(S)M

g
min are 

given by production. 

Step 2, Set the initial optimal interval [bmin,bmax] of the 
second blending process, determine w(E)C

g
max and w(E)C

g
min 

according to the mixture composition indexes and the 
mixture composition prediction models (2). For example, the 
Pb composition index in mixed concentrate has 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 minmax
max

min

2 maxmin
min

max

1 1

1 1

g
g M R
C

g
g M R
C

h w Pb b w Pb
w Pb

b

h w Pb b w Pb
w Pb

b

+ − −
=

+ − −
=

 (10) 

Step 3, Provide the mixed concentrate composition indexes 
and the mixture composition indexes for the optimization 
subsystems of the first blending and the second blending.  

Step 4, According to (1) and mi obtained by the first 
blending optimization subsystem, compute the mixing 
concentrate composition for the second blending subsystem. 

Step 5, According to (2) and bopt, compute the range of the 
mixture composition [w(E)M

c
min, w(E)M

c
max]. If the mixture 

composition does not satisfy the indexes, modify the mixing 
concentrate composition indexes by the rule RM4, and then 

return to step 3. Otherwise determine whether mi and bopt are 
reasonable. If so, sent them to DCS and control them. If not, 
alarm and determine them by empirical value.  

5.  INDUSTRIAL APPLICATIONS 

The blending optimization system developed according to 
the above optimization strategy has been applied to the lead-
zinc blending process of a nonferrous metal smeltery since 
2005. 

The integrated models predicting agglomerate compositions 
are constructed based on the data culled from production 
data in 2003 and 2004. By training SDNN consists of three 
sub-BP networks and each BP networks has an input layer 
with 4 neurons, a hidden layer with 15 neurons and an 
output layer with one neuron. The integrated models are 
modified continuously by the learning mechanism based on 
the renewal of production data to adapt to changes in the 
environment and operating conditions 

The optimization strategy based on composition prediction 
model and rule model are implemented on an industrial 
computer with a special program package written in Visual 
C++. The optimization system obtains the data of material 
composition (refreshed per 2 hours) from the server in the 
information management centre through industrial Ethernet, 
and computes the optimization mixture ratio and the 
corresponding target flow rates of each individual material 
to be blended based on sintering production indexes. Then 
each target flow rate is transmitted to YokongawaμXL 

Distributed Control System (YDCS), and the tracking 
control of the target flow rates is implemented by YDCS. 

The practical running results from 2005-9-19 0:00 to 2005-
9-27 6:00 are shown in Fig 4. The agglomerate compositions 
can be obtained per 2 hours. So there are 100 groups of 
agglomerate compositions in Fig. 4. Where, the composition 
indexes of agglomerate and the production empirical values 
are in (11), which are used to computing the mixture ratio.  

( ) ( ) ( )17.5% 21%,41% 45%, 1%
S S S

w Pb w Zn w S≤ ≤ ≤ ≤ ≤ (11a) 

( )5% 7%
M

w S≤ ≤                     (11b) 
The mean measurement values of w(Pb)S, w(Zn)S and w(S)S 
are 19.02%, 42.25% and 0.695%, and the mean prediction 
values of w(Pb)S and w(Zn)S are 19.27% and 42.84%, 
respectively. The results show that the measurement values 
of agglomerate satisfied the requirements of (11a).  
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Fig. 4. Measurement and prediction values of agglomerate 
composition 

The statistical data of related performance index for more 
than a year are list in Table 1 since the optimization system 
was put into service. Clearly, the production indexes have 
been greatly improved from Table 1.Where QP, QZ and QS is 
the qualified rate of Pb, Zn and S, respectively. ∆P denotes 
fluctuation of synthetic permeability in the sintering process. 

Table 1.  The statistics data comparisons of 
performance index 

 QP QZ QS ∆P 
Former  90.3% 88.2% 91.6% 10.3% 
Current  97.4% 94.7% 98.5% 3.3% 

Improved +7.1% +6.5% +6.9% -7% 
 

6. CONCLUSIONS 

In this paper an integrated model is constructed to predict 
compositions of agglomerate in lead-zinc sintering process 
based on mechanism analysis, measured data and empirical 
knowledge, which consists of EM model and SDNN model. 
A hierachical intelligent optimization strategy with expert 
reasoning is proposed to compute the optimal mixture ratio 
of sintering blending process so as to assure that the 
agglomerate compositions satisfy the production indexes. 
The blending optimization is implemented through multi-
objective optimization for the first blending, area 
optimization for the second blending, and intelligent 
coordination between them. The corresponding iterative 

algorithms are presented, which use forward chaining and 
model-based reasoning based on composition prediction 
model and rule model. The optimal blending system using 
the proposed optimization strategy has been applied to 
industrial production since 2005, the qualified rates of 
agglomerate Pb, Zn and S composition are improved by 
7.1%、6.5% and 6.9%, respectively and the fluctuation of 
sintering permeability is reduced by 7%, which stabilizes the 
agglomerate compositions and the permeability. The 
practical application shows its effectiveness. 
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