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Abstract: Synchronization of a complex network with switched coupling is considered. In
particular, we establish a simple method to obtain a proper coupling strength for the network.
Via switched system theory, with this coupling strength, we achieve synchronization of the
network without requiring synchronizability of all possible configurations. First, we convert the
network into a switched system with the reduced number of subsystems which are static complex
networks whose configurations are non isomorphic via partitioning all possible configurations
generated from the switched coupling. Then, we obtain a finite number of coupling strength
candidates from the subsystems. By applying the average dwell time approach, synchronization
of the network is indeed achieved with the coupling strength chosen among the candidates.

1. INTRODUCTION

A complex network is a large scale system which con-
sists of nodes and links represented by a graph with a
complex structure (connection topology). The nodes are
the elements of the system and the links represent the
interactions among them. Examples include the world wide
web (WWW), food and metabolic pathways, power grid
and the Internet (Wang and Chen, 2002). In spite of its
complex structure and large number of nodes, one emerg-
ing property from complex networks is synchronization, i.e.
coherence of the nodes in the networks. Synchronization
can be easily observed from fireflies flashing in unison,
heart cells beating in rhythm to generators’ rotating with
the same frequency in a power network.

One of the major interests in the study on synchroniza-
tion of a complex network is obtaining a proper coupling
strength which characterizes how strongly the nodes are
connected and interact in the network. So, it has been
theoretically and numerically explored by (Pecora and
Carroll, 1998; Wang and Chen, 2002; Newman, 2003; Fan
and Wang, 2005). These results provide various synchro-
nization criteria including a lower bound for the coupling
strength in a complex network at which synchronization
will occur.

Recently, complex networks with switched coupling which
involves link switchings, have demanded attention due to
applications of complex networks to telecommunication
networks and power systems, etc. The above networks
switch links over time in order to control communication
and generated electricity flows subject to circumstance
changes. However, there were a few works done and the
investigation on synchronization of such networks was
mostly focused on fast switching topology (Belykh et al.,
2004; Stilwell et al., 2006) for a given coupling strength.
As a control point of view, the fast switching property may
not be always desirable for control design. In addition, how

to choose a proper coupling strength for networks with
switching topology will be a challenging task comparing
to static networks.

In this paper, we tackle the synchronization problem of
a complex network with switched coupling and provide a
criterion on how to determine its coupling strength via
switched system theory. To do so, we firstly convert the
network into a switched system whose subsystems are
static networks with non isomorphic connection configu-
rations obtained by partitioning of all possible connection
configurations from the switching topology of the network.
Secondly, we obtain the finite number of coupling strength
candidates from each subsystem and choose one among
them. Finally, with this coupling strength, we achieve
stability of the switched system via the average dwell time
approach (Zhai et al., 2001) which implies synchroniza-
tion of the original network. By doing this, we achieve
synchronization of the network without requiring a fast
switching strategy and synchronizability of all possible
network configurations.

The organization of this paper is as follows: In Section 2,
we formulate our model and address necessary assump-
tions, and in Section 3, we analyze the synchronization
problem of a complex network with switched coupling in
terms of the stability problem of a switched system. In
Section 4, we show an example of a complex network
consisting of four Chua’s chaotic oscillators. Finally, in
Section 5, we discuss the results of the paper and provide
possible future research areas.

2. PROBLEM FORMULATION

Consider a dynamical network consisting of N identical
linearly and diffusively coupled nodes, with each node
being an n-dimensional dynamical system. The state equa-
tions of the network are given by
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ẋi = f(xi) + c

N
∑

j=1

aij(t)Γxj , i = 1, · · · , N, (1)

where xi = (xi1, · · · , xin) ∈ Rn is the state of the node
i, f ∈ C1[Rn, Rn], c > 0 is the coupling strength, and
Γ = diag(r1, · · · , rn) is the inner coupling matrix with
ri = 1 for a particular i and rj = 0 for i 6= j, which means
that two coupled nodes are linked through their ith state
variables. Here, aij(t) is given by

aij(t) =

{

1 if the nodes i and j are connected at t,
0 otherwise,

(2)

and

aii(t) = −
N
∑

j=1,i6=j

aij(t) for all t. (3)

For the network (1), we are particularly interested in
synchronization which is stated in the following definition:

Definition 1. The network (1) is said to be synchronized
if

x1(t) = x2(t) = · · · = xN (t) = s(t) as t → ∞ (4)
where s(t) ∈ Rn is the solution of an isolated node,
namely, ṡ(t) = f(s(t)).

Let A(t) = [aij(t)]N×N be the network configuration ma-
trix, or outer link matrix of (1). Note that it is symmetric
and has a zero eigenvalue by (3). This guarantees the
existence of the synchronization manifold for (1). If the
coupling strength is properly chosen, the network will syn-
chronize (Wang and Chen, 2002). Thus, finding a proper
coupling strength is important.

Note. (a) For convenience, we will address a network
given with a node dynamics by a smooth function f, a
configuration matrix G, and a coupling strength c with
N (f,G, c). Throughout the paper, f in (1) will represent
the node dynamics in all networks in later sections. (b)
The network (1) is a time-varying system in a sense
that its network configuration is varying according to the
switchings of aij(t) between 0 and 1 over time. Hence,
whenever we address (1) as a time-varying network, the
meaning is in the above sense.

Assumption. aij(t) given in (2) switches on with the
value 1 and off with the value 0 such that A(t) represents
a connected network at all time.

The above assumption guarantees that A(t) will have zero
and n − 1 non-zero real eigenvalues for all t. This is an
important assumption for the existence of the synchro-
nization manifold for the network N (f,A(t), c) (Newman,
2003).

Let ei(t) = xi(t) − s(t) be the error between the state
xi and the synchronized state s(t), i = 1, · · · , N . Let
e(t) = [e1(t), · · · , eN (t)] ∈ Rn×N . By linearizing (1)
about s(t) and using A(t), we have the error dynamics
for synchronization

ė(t) = J(t)e(t) + cΓe(t)AT (t), (5)

where J(t) = f ′(s(t)) ∈ Rn×n is the Jacobian of f(xi(t))
at s(t). If ‖e(t)‖ → 0 as t → ∞, then we achieve (4), i.e.
the time-varying network (1) reaches synchronization.

Note that in a connected network with N nodes there will
be at most N(N − 1)/2 links. Hence, the time-varying

configuration A(t) is generated by permutations of N(N −
1)/2 numbers of links over time. Thus, we can consider all
possible configurations Bk of A(t) according to the values
of aij(t) for all i, j. Let L be the number of permutations
πN(N−1)/2 of N(N − 1)/2 numbers of links. Then, the
original time-varying network is indeed a switched system
of L number of subsystems which are static networks with
configuration matrices Bk and whose error dynamics is
given by

ė(t) = J(t)e(t) + cΓe(t)BT
k , k = 1, · · · , L, (6)

with a switching signal σ(t) : R+ 7→ {1, · · · , L} (Liberzon,
2003) such that Bσ(t) = Bk, where L = πN(N−1)/2,
Bk ∈ F(A(t)), and F(A(t)) is the family of all possible
configurations of A(t). Hence, the synchronization problem
of (1) is indeed a stability problem of (6). Thus, we would
like to obtain a proper coupling strength as mentioned
before and stability conditions for the switched system.

3. STABILITY ANALYSIS

In this section, we will firstly reduce the number of subsys-
tems of interest by partitioning F(A(t)) into equivalence
classes to obtain coupling strength candidates for c in (6).
Then we analyze the stability of the switched system of
the reduced number of subsystems. This reduction is due
to the identical node dynamics.

3.1 Equivalence Classes of F(A(t)) and Coupling Strength
Candidates

For each xi, in (1) the node dynamics given by f is identi-
cal. Hence, although F(A(t)) has L number of configura-
tions of A(t), there must be isomorphic configurations. The
topologically isomorphic configurations will have the same
eigenvalues; they will generate the same stability results
since the node dynamics is identical for each node. Thus,
we only need to focus on non isomorphic configurations for
stability analysis. In this section, we will partition F(A(t))
into equivalence classes by an equivalence relation which is
closely related to the coupling strength and the topology
of each Bk in (6).

For isomorphic equivalence classes we have the following
proposition:

Proposition 2. The family of all possible configurations
F(A(t)) is partitioned into equivalence classes by topo-
logical isomorphism as follows:

[Bk]={B′
k|Bk and B′

k are topologically same, B′
k∈F(A(t))},

(7)

for k = 1, · · · ,M. Then, F(A(t)) =
⋃M

k=1[Bk].

Hence, we have

ė(t) = J(t)e(t) + cΓe(t)BT
k , (8)

for only k = 1, · · · ,M with a switching signal σ(t) : R+ 7→
{1, · · · ,M} as in (6), where typically M << L, and Bk is
the representative of [Bk]. Let

B = {B1, · · · , BM} (9)

be a core configuration set in F(A(t)). Thus, B is a set
of the reduced number of subsystems of (8) to consider.
For synchronization of the network N (f,Bk, c) for Bk
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from (8), we need to determine the coupling strength c
as mentioned in Sec. 1. In fact, this is closely related to
the second largest eigenvalue of Bk.

Note that for each k, Bk is a real symmetric matrix
and has zero eigenvalue. Thus, there is a unitary matrix
Uk ∈ RN×N such that BT

k Uk = UkΛk where Λk =
diag(λ1k, · · · , λNk), 0 = λ1k > λ2k ≥ · · · ≥ λNk, and
λ1k, · · · , λNk are eigenvalues of Bk, k = 1, · · · ,M. Using
nonsingular transformation e(t)Uk = hk(t), the system (8)
becomes

ḣk(t) = J(t)hk(t) + cΓhk(t)Λk, for k = 1, · · · ,M, (10)

i.e., we have for each k = 1, · · · ,M,

ḣik(t) = (J(t) + cλikΓ)hik(t), for i = 1, · · · , N. (11)

Note that for i = 1 we have the variational equation for
the synchronization manifold (λ1k = 0), and for all other i
hik is transverse to the synchronization manifold. We want
these variations damp out. The choice of a proper coupling
strength for (11) plays a key role as stated in the following
lemma:

Lemma 3. (Wang and Chen, 2002) Suppose there exist a
symmetric positive definite matrix Rik > 0 and a constant
d̄ < 0 such that

[J(t) + dikΓ]T Rik + Rik[J(t) + dikΓ] ≤ −Qik, (12)

for a symmetric positive definite matrix Qik > 0 and for
all dik ≤ d̄. If

cλ2k ≤ d̄, (13)

then, (11) is exponentially stable for i = 2, · · · , N, and
for each k = 1, · · · ,M. Consequently, (6) is exponentially
stable, i.e. the network N (f,Bk, c) synchronizes in the
sense of (4) for each k = 1, · · · ,M.

Note that the condition in (13) is equivalent to

c ≥

∣

∣

∣

∣

d̄

λ2k

∣

∣

∣

∣

. (14)

Remark. If the coupling strength c is at least |d̄/λ2k|,
k = 1, · · · ,M, then the N−1 decoupled systems in (11) are
exponentially stable. Hence (6) achieves stability for each
k, i.e. (4) is accomplished for each k. For each Bk ∈ B, we
can obtain the lower bounds for c via Lemma 3.

Definition 4. Let ρ be an equivalence relation given by

ρ : A ≡ B if λ2(A) = λ2(B), (15)

where A, B ∈ RN×N , λ2(A) and λ2(B) are the second
largest eigenvalues of A and B, respectively. If A ≡ B by
ρ, then, N (f,A, cA) and N (f,B, cB) are said to have the
same synchronizability, where cA and cB are the coupling
strengths.

Remark.

(i) From Definition 4, for k 6= l ∈ {1, · · · ,M}, Bk and
Bl are topologically different in B, but they can have
the same lower bounds, i.e., the same synchronizability
if λ2(Bk) = λ2(Bl). Hence, we have at most M candidates
of lower bounds for c, say,

c1 ≥ · · · ≥ cM , (16)

where ck = |d̄/λ2k|, c1 = max1≤k≤M |d̄/λ2k|, and cM =
min1≤k≤M |d̄/λ2k|.

(ii) For example, in the K4 configuration matrix, which is a
complete graph with four nodes and three links per node,

there are totally 38 configurations according to the link
switching in (2). By the topological isomorphic relation in
Proposition 2 there are six equivalence classes and hence,
we have B = {B1, · · · , B6}. Morever, by the equivalence
relation ρ in (4), we have four equivalence classes in B.
Thus, we need to consider six different subsystems and
four lower bounds candidates for c.

As a convention, we assume that each network N (f,Bk, c)
chooses the lower bound ck in (16) for c. Now, we have
a switched system in the form (8) with M number of
subsystems with at most M coupling strength candidates
in (16). In the following section, we will establish a
stability condition for this system which will guarantee
synchronization of N (f,A(t), c).

3.2 Synchronization via Switching Principle

In the switched system (8), the coupling strength is not yet
determined. If we choose c = c1, the largest lower bound,
then each subsystem will be asymptotically stable, i.e.
N (f,Bk, c1) synchronizes for all k = 1, · · · ,M. However,
it does not imply that the switched system (8) will be
stable depending on the switching nature (Liberzon, 2003;
Kim et al., 2006). Hence, we need a switching scheme
to stabilize the switched system with a proper coupling
strength. Moreover, the choice c = c1 may not be necessary
for some N (f,Bk, c) whose coupling strength can be lower
than c1 to achieve synchronization.

To compromise between the choice of a coupling strength
and the stability of the switched system, we propose the
following procedure, which is our main focus in this paper:

(P1) Choose a lower bound, say co for c among {c1, · · · , cM}
and let c = co.

(P2) Partition the core configuration set B = {B1, · · · , BM}
into two classes, namely, U = {B1, · · · , Br} whose
networks’ coupling strength candidates are greater
than co, and S = {Br+1, · · · , BM} whose networks’
coupling strength candidates are less than or equal to
co. Note that co = cr+1.

(P3) Let the networks N (f,Bk, co)
M
k=r+1 be active rela-

tively longer in a sense of dwell time than the net-
works N (f,Bk, co)

r
k=1.

Note that for every Bk ∈ S, N (f,Bk, co) is synchronizable
for sure by Lemma 3. However, for Bk ∈ U , N (f,Bk, co)
may or may not be synchronizable since Lemma 3 only
provides a sufficient condition for synchronizability.

Then, by Lemma 3, and via (P1) and (P2), the synchro-
nization problem in N (f,Bk, co) for Bk ∈ S or U turns to
the stability problem of (8) given by:

ė(t) = J(t)e(t) + coΓe(t)BT
k

{

Bk ∈ U , k = 1, · · · , r,

Bk ∈ S, Hurwitz stable, k = r + 1, · · · ,M.
(17)

Applying (P3) to (17) means that the Hurwitz stable
subsystems are active relatively longer than the rest of
subsystems whose Bk belong to U . We will show stability
of (17) via (P3). (P3) is chosen according to the average
dwell time approach in (Zhai et al., 2001). For stability
analysis we need the following definition:
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Definition 5. (Liberzon, 2003) For any T2 > T1 ≥ 0, let
N(T1, T2) denote the number of switchings over (T1, T2).
If N(T1, T2) ≤ No + (T2 − T1)/Ta holds for Ta, No ≥ 0,
then Ta is called average dwell time.

To analyze the stability of (17) more easily we con-
sider e(t) = [eT

1 (t), · · · , eT
N (t)]T ∈ RnN×1 where ei(t) =

[ei1(t), · · · , ein(t)]T ∈ Rn×1, i = 1, · · · , N. Then, (17) can
be written as

ė(t) = J̃(t)e(t) + coB̃kΓ̃e(t)

= (J̃(t) + coB̃kΓ̃)e(t), k = 1, · · · ,M,
(18)

where

J̃(t) = diag(J(t), · · · , J(t)), Γ̃ = diag(Γ, · · · ,Γ) ∈ RnN×nN ,
(19)

and
B̃k = [diag(aij)n×n] ∈ RnN×nN (20)

Note that B̃k is symmetric and has zero row sum. Let
J̃(t) + coB̃kΓ̃ be Hk(co) ∈ RnN×nN . Let S̃ be a set of

Hk(co) for k = r + 1, · · · ,M, and Ũ be a set of Hk(co) for
k = 1, · · · , r. Then, (18) is written as:

ė(t) = Hk(co)e(t)
{

Hk(co) ∈ Ũ , k = 1, · · · , r,

Hk(co) ∈ S̃, Hurwitz stable, k = r + 1, · · · ,M.

(21)
Then, there exist ηk > 0 such that Hk(co) − ηkI (k ≤ r)
and Hk(co) + ηkI (k > r) are Hurwitz stable. Hence,
there exist symmetric positive definite matrices Pk, k =
1, · · · ,M, such that
{

(Hk(co) − ηkI)T Pk + Pk(Hk(co) − ηkI) < 0 k ≤ r,

(Hk(co) + ηkI)T Pk + Pk(Hk(co) + ηkI) < 0 k > r.

(22)

Let the total activation times for Hurwitz stable subsys-
tems and the rest of subsystems whose Hk(co) are in Ũ be
T+(t) and T−(t) on [to, t), respectively. Let






η+ = max
1≤k≤r

ηk, Hk(co) − ηkI is Hurwitz stable,

η− = min
r+1≤k≤M

ηk, Hk(co) + ηkI is Hurwitz stable.

(23)
Choose η∗ ∈ (η, η−) for any η ∈ (0, η−). Then, (P3) is
formally addressed as follows:

(P3) : Determine a subsystem k so that

T−(t)

T+(t)
≥

η+ + η∗

η− − η∗
(24)

holds for any t > to. Then, we have the following theorem
on stability of (21):

Theorem 6. Under (P3) there exists T ∗
a > 0 such that

the switched system (21) is exponentially stable for any
average dwell time Ta ≥ T ∗

a , where Ta satisfies the
condition in Definition 5. Consequently, the time-varying
network N (f,A(t), co) in (1) synchronizes in the sense of
(4), where co is the coupling strength determined by (P1).

Proof. The proof is essentially similar to that in (Zhai
et al., 2001). Hence, many of the details are omitted.

Let Vk(t) = eT (t)Pke(t) with Pk from (22). Then, we have

V̇k ≤

{

2ηkVk, k ≤ r,

−2ηkVk, k > r.
(25)

Let V (t) = eT (t)Pσ(t)e(t), where σ : R 7→ {1, · · · ,M} is a
switching signal. Then, for t ∈ [tl, tl+1) we have

V (t) ≤

{

e2η+(t−tl)V (tl) for some k ≤ r,

e−2η−(t−tl)V (tl) for some k > r.
(26)

Note that there exists µ > 0 such that Vk(e(t)) ≤
µVl(e(t)) for all e(t) and all (k 6= l). Noting that V (tl) ≤
µV (t−l ) holds on switching incident tl, from (26), by using
induction we obtain

V (t) ≤ µN(to,t)e2η+T+(t)−2η−T−(t)V (to) (27)

Then, we have

‖e(t)‖ ≤

√

α2

α1
eη+T+(t)−η−T−(t)+ ln µ

2
N(to,t)‖e(to)‖

≤

√

α2

α1
e

ln µ

2
N(to,t)−η∗(t−to)‖e(to)‖,

(28)

where α1 =min1≤k≤Mλmin(Pk), α2 =min1≤k≤Mλmax(Pk),
and µ = supk,l∈[1,M ] λmax(Pk)/λmin(Pl). Here, λmax(Pk)

(λmin(Pk)) means the maximum (minimum) eigenvalue
of Pk. When µ = 1, the exponential stability is trivial.
When µ > 1, we apply the average dwell time condition in
Definition 5. Hence, we have

‖e(t)‖ ≤

√

α2

α1
eα−η(t−to) (29)

since we can choose No = 2α
ln µ and T ∗

a = ln µ
2(η∗−η) for any

α > 0. 2

Remark.

(i) Although Theorem 6 provides the stability of (21)
over the core configuration set B in F(A(t)), this implies
the stability of (21) over F(A(t)) due to the isomorphic
configurations in F(A(t)) and the identical node dynamics
in the network N (f,A(t), c). Thus, synchronization of
N (f,A(t), c) can be checkable just via the stability of (21)
over B using the average dwell time condition.

(ii) Theorem 6 provides a criterion on synchronization for
the time-varying network N (f,A(t), c) in (1) when it has
a moderate coupling strength such as co. In other words,
if N (f,A(t), c) changes its configuration according to the
average dwell time condition in Theorem 6 induced from
(P3) in (24), then the necessary coupling strength for syn-
chronization does not need to be large enough to stabilize
(synchronize) all configurations Bk, k = 1, · · · ,M.

Proposition 7. The parameters for (P3) in (24) can
be obtained from the reduced matrices Fk,N−1(co) =

diag(J(t)+coλ2kΓ, · · · , J(t)+coλNkΓ) ∈ Rn(N−1)×n(N−1)

for k = 1, · · · ,M, where λ2k, · · · , λNk are the eigenvalues
of Bk in (8).

Proof. Consider (10). Let hk(t) = [hT
1k(t), · · · , hT

Nk(t)]T ∈
RnN×1 where hik(t) ∈ Rn×1, i = 1, · · · , N, k = 1, · · · ,M.
Then, we have

ḣk = Fk(co)hk(t), (30)

where Fk(co) = diag(J(t), J(t) + coλ2kΓ, · · · , J(t) +

coλNkΓ) ∈ RnN×nN . Note that ḣ1k = J(t)h1k is the vari-
ational equation for the synchronization manifold. Thus,
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{hk(t) : ḣk = Fk(co)hk(t)} = {(0, ·, ·, · · · , ·) ∈ RnN×1}.
(31)

Since each hik → 0 as t → ∞, i = 2, · · · , N by the choice
of c = co, {(0, · · · , 0)} ∈ RnN×1 is the invariant set. Thus,
we can conclude (30) is exponentially stable. By (31), the
fact that {(0, · · · , 0)} ∈ RnN×1 is invariant, and h1k = 0
for all t, the decay rate of the system (30) is indeed de-
termined by the reduced matrix Fk,N−1(co) = diag(J(t)+

coλ2kΓ, · · · , J(t)+coλNkΓ) ∈ Rn(N−1)×n(N−1). Therefore,
we can find desired parameters for (P3) by finding ηk,
k = 1, · · · ,M from
{

(Fk,N−1(co) − ηkI)T Pk+Pk(Fk,N−1(co) − ηkI)< 0, k≤r,

(Fk,N−1(co) + ηkI)T Pk+Pk(Fk,N−1(co) + ηkI)< 0, k>r,

(32)
where Pk ∈ Rn(N−1)×n(N−1), positive definite. Since (30)
and (18) are equivalent for each k, the choice of ηk is valid
for (18). 2

Remark. By Proposition 7 we can find the parameters for
(P3) more easily than using (22).

4. ILLUSTRATIVE EXAMPLE

Consider a complex network with N = 4 in the form
of (1) with a Chua’s oscillator (Chua et al., 1993) as a
dynamic node, K4 as a base network configuration, and
Γ = diag(1, 0, 0) as an inner coupling matrix given by

ẋi = g(xi) + c

4
∑

j=1

aij(t)Γxj , (33)

where xi = (xi1, xi2, xi3) ∈ R3,

g(xi) =

(

α(−xi1 + xi2 + f(xi1))
xi1 + xi2 + xi3

−βxi2 − γxi3,

)

, (34)

and

f(xi1) =

{

−bxi1 − a + b xi1 > 1,
−axi1 |xi1| ≤ 1,
−bxi1 + a − b xi1 < −1, i = 1, · · · , 4

(35)
in which α = 10, β = 15, γ = 0.0385, a = −1.27,
and b = −0.68. With these parameters each node is
a chaotic attractor. As mentioned before, K4 has 38
configurations according to the switching links in (2). In
other words, the time-varying network (33) will change
its configuration matrix among 38 possible configurations.
However, by Proposition 2 we have only six non isomorphic
configurations to consider given by

(B1, B2, B3)

=









−2 0 1 1
0 −1 0 1
1 0 −2 1
1 1 1 −3



 ,





−1 0 1 0
0 −1 1 0
1 1 −3 1
0 0 1 −1



 ,





−2 1 1 0
1 −1 0 0
1 0 −2 1
0 0 1 −1







,

(B4, B5, B6)

=









−3 1 1 1
1 −2 0 1
1 0 −2 1
1 1 1 −3



 ,





−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2



 ,





−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3







 .

Note that λ2(B6) = −4, λ2(B5) = λ2(B4) = −2, λ2(B3) =
λ2(B2) = −1, and λ2(B1) = −0.5858. Hence, we have four
coupling strength candidates as {2.66, 5.32, 10.61, 18.14}
by Lemma 3. Then, we choose co = 5.32 for c. Note

that in this example, the Jacobian J(t) is a constant
matrix. Hence, we can say that the networks N (g,Bk, co),
k = 1, · · · , 3 are not synchronized but the other three are
by checking eigenvalues of J(t) + coλ2kΓ, k = 1, · · · , 6. By
Proposition 7, we obtain ηk and then η+ = 0.3, η− = 0.05,
η = 0.01, and η∗ = 0.035. Also, µ = 141.7473 from Pk

in (32) in Proposition 7. Thus, the average dwell time
bound is T ∗

a = 99.0898. Taking Ta = 100 > T ∗
a , by

Theorem 6, we obtain the exponential stability of the
switched system consisting of N (g,Bk, co), k = 1, · · · , 6.
Therefore, the original time-varying network (33) achieves
synchronization in the sense of (4). This is confirmed in
Figure 1. In the following figures, we plot the aggregated
error defined by

z(t) =

4
∑

j=2

(x11 − xj1) +

4
∑

j=2

(x12 − xj2) +

4
∑

j=2

(x13 − xj3).

If (33) is synchronized via the average dwell time condition
in Theorem 6, then z(t) → 0. As we can see in Figure 1,
the aggregated error converges to zero which confirms
synchronization of the network in (33) with c = co = 5.3.
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Fig. 1. Numerical simulation of the aggregated error z vs. time

t from the switched system consisting of N (g, Bk, co), k =

1, · · · , 6 with the coupling strength co = 5.3.

As shown in Figure 2, when co = 3 is close to 2.66,
the network still synchronizes since N (g,B6, 3) is syn-
chronizable whereas the rest is not. Thus, the average
dwell time approach can still be applicable and hence
the network (33) achieves synchronization. However, when
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Fig. 2. Numerical simulation of the aggregated error z vs. time

t from the switched system consisting of N (g, Bk, co), k =

1, · · · , 6 with the coupling strength co = 3.

co < 2.66, the network does not synchronizes since all
networks N (g,Bk, co) are not synchronizable. As shown in
Figure 3, the aggregated error blows out. Moreover, even
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Fig. 3. Numerical simulation of the aggregated error z vs. time

t from the switched system consisting of N (g, Bk, co), k =

1, · · · , 6 with the coupling strength co = 2. The error blows

out at t = 158.
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Fig. 4. Numerical simulation of the aggregated error z vs. time

t from the switched system consisting of N (g, Bk, co), k =

1, · · · , 6 with the coupling strength co = 5.3, T− = 1.5 and

T+ = 33.75. (P3) in (24) is violated and so is the average dwell

time condition. The error becomes unbounded from t = 240.

when c = co = 5.3, if the average dwell time condition is
violated, then the network does not synchronize as shown
in Figure 4. Thus, we conclude as follows: (a) the time-
varying network (33) can be synchronized even when not
all connection configurations are synchronizable, (b) the
coupling strength can be chosen greater than or equal
to 2.66 for the network (33) to synchronize, and (c) the
second largest eigenvalues of each configuration based on
Lemma 3 may not always give a sufficient condition for
synchronizability of a time-varying network.

5. CONCLUSION

In this paper, we achieved synchronization of a complex
network with switched coupling via a switched system
approach. The significance of the results is as follows:

(i) We formulated a complex network with switched cou-
pling in terms of a switched system with a reduced
number of subsystems via partitioning the family of
all possible configurations generated from the switch-
ing topology in (2) by topological isomorphism. In
fact, each subsystem is a static complex network
with a non isomorphic configuration matrix. Then,
we obtained the finite number of coupling strength
candidates from each subsystem.

(ii) We applied the average dwell time approach (Zhai
et al., 2001) for stability analysis to the obtained
switched system from (i) by choosing one among

the candidates for the coupling strength. Then, we
achieved synchronization without requiring synchro-
nizability of all possible network configurations. This
gives a new criterion on how to choose the coupling
strength for a time-varying complex network.

Due to the switching nature of a network with switched
coupling, the second largest eigenvalues of all frozen con-
figurations, namely for any fixed t, may not give a suffi-
cient condition for synchronization. From Figure 1 and 2,
synchronization is indeed achieved even when some config-
urations are not synchronizable with the chosen coupling
strength. Also, as shown in Figure 4, although the coupling
strength is chosen as c = co = 5.3 based on Lemma 3,
synchronization was not achieved due to the violation of
the average dwell time condition. Hence, our proposal in
Sec. 3.2 leads to a relatively simple but systematic method
to obtain a desired coupling strength and synchronization.

These results might be useful in areas such as ad hoc net-
works, sensor networks and power systems. One important
thing to mention is that each choice of a coupling strength
co requires a revised switching scheme. Hence, for future
work, we may need to consider an optimal strategy on
how to choose a coupling strength among the candidates.
Moreover, we would like to include disconnected network
configurations. In this case, the appearance of such config-
urations could be considered as weighted impulses over
time. Hence, we can regard such networks as switched
impulsive systems.
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