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Abstract: In this paper, a new alignment algorithm that uses simultaneously both open-loop and closed-
loop scheme is designed to increase the convergence rate of the Kalman filter in the fine alignment stage. 
Generally, the initial alignment is divided into coarse and fine alignment. The fine alignment stage with the 
10-state Kalman filter refines the initial estimate of the transformation matrix given by the coarse 
alignment algorithm. This paper derives a convergence theorem of the Kalman filter for analyzing a 
problem of the 10-state Kalman filter in the fine alignment. In order to resolve the problem, the new 
alignment algorithm calculates the attitude angles with the open-loop scheme and estimates the 
accelerometer and gyro biases with the closed-loop scheme at once. The estimated bias errors are used to 
correct the sensor errors that are utilized to calculate the attitude angles in the open-loop scheme. The 
computer simulation results illustrate the efficiency of this new alignment algorithm. 

 

1. INTRODUCTION 

The strapdown inertial navigation system (SDINS) provides 
the position, velocity, and attitude of any moving vehicle 
with a known start position and is now being used more 
widely for the navigation of aeroplanes, ships, vehicles, and 
rockets, etc. Alignment is the process whereby the orientation 
of the axes of a SDINS is determined with respect to the 
reference axis system (Titterton et al., 1997). In many 
applications, It is essential to achieve an accurate alignment 
for the precision navigation over long periods of time without 
any form of adding. There are two fundamental types of 
alignment process: initial alignment and in-flight alignment. 

The initial alignment process is of vital importance to SDINS 
(Jiang, 1998). The purpose of initial alignment of the SDINS 
is to get a coordinate transformation matrix from body frame 
to navigation frame, and drive the misalignment angle to zero. 
Normally, alignment process is divided into two phases, i.e., 
coarse and fine alignment. The purpose of the coarse 
alignment is to provide a fairly good initial condition for the 
fine alignment. Generally, the coarse alignment stage would 
use the analytic alignment scheme, which utilizes the 
measurement of the gravity and earth rotation vectors to 
directly compute the transformation matrix (Britting, 1971). 
This is defined as open-loop alignment. 

The fine alignment stage refines the initial estimate of the 
transformation matrix calculated by the coarse alignment 
algorithm. To do this, the 10-state Kalman filter is generally 
used in the fine alignment for SDINS (Lee et al., 1992). The 
Kalman filter provides estimates of the attitude errors, the 
north and east velocity errors, the accelerometer biases, and 
the gyro biases. The estimated values are used to correct the 

pure navigation algorithm. This is defined as closed-loop 
alignment. However, since the observability of SDINS is 
weak, the alignment performance is degraded (Fang et al., 
1995). 

In this paper, a new alignment algorithm that uses both open-
loop and closed-loop scheme is designed to increase the 
convergence rate of the Kalman filter in the fine alignment 
stage. In order to analyze the problem of the 10-state Kalman 
filter, a convergence theorem of the Kalman filter is proposed 
and applied to the alignment model. The new alignment 
algorithm calculates the attitude angles with the open-loop 
scheme and estimates the accelerometer and gyro biases with 
the closed-loop scheme. The estimated bias errors are used to 
correct the sensor errors that are utilized to calculate the 
attitude angles in the open-loop scheme. 

This paper is organized as follows. Section 2 provides a brief 
introduction of the coarse alignment and fine alignment 
algorithms. In Section 3, a convergence theorem is derived 
and applied to the 10 state Kalman filter. In Section 4, a new 
alignment algorithm is proposed. Section 5 shows the 
simulation results. Finally, a concluding remark is provided 
in Section 6.  

2. INITIAL ALIGNMENT FOR SDINS 

The requirement of the initial alignment is related to the 
necessity for the transformation of the sensor output into a 
best estimate of the attitude, velocity and position of a 
vehicle with respect to the reference navigation frame. A 
two-stage alignment scheme appears promising in this regard, 
i.e., the coarse alignment and the fine alignment. Since 
SDINS is entirely self-contained, it can align itself by using 
the measurements of local gravity and earth rate. 
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2.1 Coarse Alignment 

The coarse alignment utilizes directly the body mounted 
sensors with accelerometers and gyros for attitude estimation. 
The accelerometer outputs are used for solving the levelling 
problem while the gyro outputs are required for azimuth 
estimation. The accelerometers and gyros will measure 
components of the specific force needed to overcome gravity 
and components of earth rate, denoted by the vector 
quantities bf  and bω  respectively. These vectors are related 
to the gravity and Earth’s rate vectors specified in the local 
geographic frame, nf  and nω  respectively, in accordance 
with the following equations: 

[0 0 Tb b n b
n n ]f C f C g= = −  (1) 

[ cos 0 sin Tb b n b
n n ie ieC C L Lω ω= = Ω −Ω ]  (2) 

where g  and  represent the magnitude of gravity and 
Earth rate, respectively, and 

ieΩ

L  is the local geographical 
latitude. 

Inserting the transformation matrix  into (1) yields the 
following equations 
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⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= −⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

⎥
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where φ  and θ  represent roll and pitch angle, respectively. 

From (3), the roll and pitch angles are calculated by 
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Eqs. (4) and (5) show that the roll and pitch angles are 
decided by using only accelerometer outputs. 

To calculating yaw angle, the transformation matrix   is 
divided into the matrix  containing roll and pitch angle and 

 containing yaw angle. Hence,  and  are given by 

b
nC

1C

2C 1C 2C

  1

cos 0 sin
sin sin cos sin cos
cos sin sin cos cos

C
θ θ

φ θ φ φ θ
φ θ φ φ

−⎡ ⎤
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2

cos sin 0
sin cos 0
0 0

C
ψ ψ
ψ ψ

⎡ ⎤
⎢= −⎢
⎢ ⎥⎣ ⎦

 (7) 

Inserting (6) and (7) into (2) and rearranging yields the 
following equation 

cos sin sin cos sin cos
cos sin sin

sin sin cos cos cos

x y z N

y z N

Dx y z

ω θ ω φ θ ω φ θ ω ψ
ω φ ω φ ω ψ

ωω θ ω φ θ ω φ θ

⎡ ⎤+ + ⎡ ⎤
⎢ ⎥ ⎢ ⎥− = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− + + ⎣ ⎦⎢ ⎥⎣ ⎦

(8) 

From (8), the yaw angle is calculated by 

1 sin cos
tan

cos sin sin cos sin
z y

x y z

ω φ ω φ
ψ

ω θ ω φ θ ω φ θ
− ⎛ ⎞−

= ⎜⎜ ⎟+ +⎝ ⎠
⎟  (9) 

From (4), (5) and (9), it is known that the initial attitudes are 
roughly calculated with an open-loop scheme. 

2.2  Fine Alignment 

In the fine alignment stage, a Kalman filter is used to 
estimate the small misalignment angles between reference 
frame and true frame. Here we have modified Bar-Itzhack 
and Berman’s inertial navigation system error model. The 
SDINS stationary error model augmented with sensor errors 
can be written 

5 5 5 5 5 1
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[ ]Tf N E N E Dx v v ψ ψ ψ=  

T
a x y x y zx ε ε ε⎡ ⎤= ∇ ∇⎣ ⎦  

where the subscript N, E, and D denote the north, east, and 
down component, respectively. 

The measured signals during the stationary alignment are the 
horizontal velocity errors. Therefore the observation model 
can be written 
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( ) ( ) ( ) ~ (0, )Hx t v t v t N R≡ +  (11) 

In order to estimate the state vectors of error model by 
Kalman filter, the observability analysis of error model must 
be performed. Due to  

9 7
T

i iRank H HA HA⎡ ⎤ =⎣ ⎦"  

the system is not completely observable. Therefore, only 7 
states are observable (the estimation value of state is 
convergent by Kalman filter); the other 3 states are not 
observable. 

3. Convergence Analysis 

For the fast initial alignment, the convergence rate of the 
Kalman filter in the fine alignment is important. In this 
Section, a convergence theorem is proposed to analyze the 
problem of the 10-state Kalman filter in Section 2. 

3.1 Convergence Theorem 

Theorem 1. The system model and measurement model are 
given by 

,    x Fx z Hx= =�  (12) 

where, [ 1 2 3
T]x x x x=  and their initial values are all zero.  
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If 2
2( ) (a b 2

3 )σ σ⋅ >> ⋅ , the estimated state 3x̂  of the Kalman 
filter is converged into zero  □ 

Proof. From the discrete Kalman filter, the propagation 
equations of the state and the covariance are given by 

0 0 0

0
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 (14) 

The Kalman gain is calculated as follows 
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2
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3
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/
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⎡ ⎤
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 (15) 

where 2 2 2 2
1 2S a bσ σ σ= + ⋅ + ⋅ . 

From equations (13), (14) and (15), the time update equation 
for the covariance and state are given by 
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When 2
2( ) (a b 2

3)σ σ⋅ >> ⋅ , the equations (15), (16) and (17) 
could be approximated as follows: 
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 ■ 

3.2 Analysis of Fine Alignment 

In order to analyze the convergence of the fine alignment, it 
is assumed that the body frame coincides with the navigation 
frame. And, the earth rate components,  and NΩ DΩ , are 
very small value. Hence, it is possible to approximate to zero. 
When In

bC =  and the earth rate components are zero, the 
system model F  and T  of (10) are represented by i

0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

g
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⎡ ⎤
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⎢ ⎥
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

x

 (21) 

From (21), the north velocity error and related state equations 
could be rewritten by 

N EV gδ φ≈ ⋅ + ∇�  (22) 

0Eφ ≈�  (23) 
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0x∇ =�  (24) 

The above equations have the same form of the equation (12). 
Therefore, it is possible to apply the theorem 1 to analyze the 
relationship between attitude error and gyro bias in (22).  

The velocity error equation could be rearranged into the 
attitude error equation as follows 

 ( )1 2 x
E N D EV V

g g
φ δ δ

∇
= − Ω −�  (25) 

From the theorem 1, the accelerometer bias x∇  of (25) is 
converged into zero by the Kalman filter. And the velocity 
error terms of the above equation are known as the filter 
measurement of the fine alignment. This means that the 
velocity errors are always observable. Therefore, the Kalman 
filter could estimate the attitude error Eφ  as 

(1ˆ 2 )E N D EV
g

φ δ δ= − Ω� V  (26) 

From (25) and (26), the estimation error of the east attitude is 
given by 

x
E g

δφ
∇

= −  (27) 

Similarly, the east velocity error and related state equations 
could be rewritten by 

E NV gδ φ≈ − ⋅ + ∇�
y  (28) 

0Nφ ≈�  (29) 

0y∇ =�  (30) 

From the theorem 1, the accelerometer bias  is converged 
into zero. The velocity error equation could be rearranged 
into the attitude error equation as follows 

y∇

 ( )1 2 y
N E D NV V

g g
φ δ δ

∇
= − Ω +�  (31) 

The Kalman filter could estimate the attitude error Nφ   as 

 (1ˆ 2N E DV
g

φ δ δ= − + Ω� )NV  (32) 

From (31) and (32), the estimation error of the north attitude 
is given by  

 y
N g

δφ
∇

=  (33) 

From (26) and (32), the north and east attitude errors are 
estimable since the x and y accelerometer biases are 
converged into zero by the Kalman filter. However, the 

Kalman filter needs some times to make the accelerometer 
biases converging into zero. 

4. NEW ALIGNMENT ALGORITHM 

In order to overcome the flaw of fine alignment with the 10-
state in Section 3, the new alignment algorithm that uses 
simultaneously both open-loop and closed-loop scheme is 
proposed in this section. The new alignment algorithm 
calculates the attitude angles with the open-loop scheme and 
estimates the accelerometer and gyro biases with the closed-
loop scheme. 

The open-loop algorithm was given by (4), (5), and (9). 

For the closed-loop scheme, the sensor biases for the system 
equation of the Kalman filter are modelled as random 
constants 
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�
�
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�
�
�

  (34) 

where w∇  and wε  represent random white noises. 

In the new alignment scheme, the accelerometer and gyro 
outputs are directly used to the filter measurements since the 
filter states of (34) are only sensor errors. From the 
accelerometer outputs (3), the accelerometer measurements 
are represented as 

sin

sin cos

cos cos
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z f g

z f g
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φ θ
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⎢ ⎥ ⎢ ⎥
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� �
� � �
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 (35) 

The equation (35) could be calculated by utilizing the 
perturbation method as follows: 

cos
cos cos sin sin

sin cos cos sin

x

y

z

f x

f y

zf

z g
z g g

g gz

θ δθ
φ θ δφ φ θ δθ

φ θ δφ φ θ δθ

⎡ ⎤ ⎡ ⎤∇ − ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ = ∇ + ⋅ ⋅ − ⋅ ⋅⎢ ⎥
⎢ ⎥ ⎢ ⎥∇ − ⋅ ⋅ − ⋅ ⋅⎢ ⎥ ⎣ ⎦⎣ ⎦

 (36) 

The gyro outputs are given by 

c c s
(s s c c s ) s c
(c s c s s ) c c

x N D

y N D

z N D

ω θ ψ θ
ω φ θ ψ φ ψ φ θ
ω φ θ ψ φ ψ φ θ

Ω ⋅ ⋅ − Ω ⋅⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= Ω ⋅ ⋅ − ⋅ + Ω ⋅ ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Ω ⋅ ⋅ + ⋅ + Ω ⋅ ⋅⎣ ⎦ ⎣ ⎦

  (37) 

where s sinφ φ= , c cosφ φ= , s sinθ θ= , c cosθ θ= , 
s sinψ ψ= , and c cosψ ψ= . 

The gyro measurements are represented as  
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 (38) 

The equation (38) could be calculated by utilizing the 
perturbation method as follows 

1 2

3 4 5
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z

z h h
z h h h

h h hz

ω

ω

ω

δθ δψ ε
δφ δθ δψ ε
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⎥
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where 1 s c cN Dh θ ψ θ= Ω ⋅ ⋅ + Ω ⋅ , 2 c sNh θ ψ= Ω ⋅ ⋅ , 

3 ( c s c c c s sN D Nh )φ θ ψ φ θ φ ψ= − Ω ⋅ ⋅ + Ω ⋅ ⋅ + Ω ⋅ ⋅ , 

4 s c s s sN Dh φ θ ψ φ θ= −Ω ⋅ ⋅ ⋅ + Ω ⋅ ⋅ , 

5 s s s c cN Nh φ θ ψ φ ψ= Ω ⋅ ⋅ ⋅ + Ω ⋅ ⋅ ,  

6 s c c s c c sN D Nh φ θ ψ φ θ φ ψ= Ω ⋅ ⋅ ⋅ + Ω ⋅ ⋅ − Ω ⋅ ⋅ , 

7 c c c c sN Dh φ θ ψ φ θ= −Ω ⋅ ⋅ ⋅ + Ω ⋅ ⋅ , 

8 c s s s cN Nh φ θ ψ φ ψ= Ω ⋅ ⋅ ⋅ − Ω ⋅ ⋅ . 

The measurement equations must be constituted with system 
states that are accelerometer biases and gyro biases. However, 
the attitude error terms are contained in the measurement 
equations, (36) and (39). The following attitude error 
equations are used to get rid of these error terms (Park et al., 
1998). 
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z y

g
φ φ

δφ
θ

∇ − ∇
=  (40) 

 
cos sin ( sin cos )x y z

g
θ θ φ φ

δθ
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 9 10 11x y
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Ω
 (42) 

where 9 c sh θ ψ= ⋅ ,  10 s s s c ch φ θ ψ φ ψ= ⋅ ⋅ + ⋅  

11 c c s s ch φ θ ψ φ ψ= ⋅ ⋅ − ⋅ . 

For the Kalman filter, inserting (40), (41) and (42) into (36) 
and (39) yields the following measurement matrix H . 
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+
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21
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h h h h h h

h h h h h h
H

h h h h h h

⎡ ⎤⋅ ⋅ ⋅
⎢ ⎥

Ω Ω Ω⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅⎢ ⎥=

Ω Ω Ω⎢ ⎥
⎢ ⎥⋅ ⋅ ⋅⎢ ⎥
⎢ ⎥Ω Ω Ω⎣ ⎦

. 

5.  SIMULATIONS 

To evaluate the proposed alignment algorithm, simulations 
are performed by using the medium grade IMU that has the 
accelerometer bias with 100 [μg] and the gyro bias with 0.1 
[deg/hr].  

Fig. 1 and 2 show the simulation results of the 10-state 
Kalman filter. From the Fig. 1, the roll and pitch angles are 
fluctuated with time since the estimation of the attitude errors 
in the 10-state Kalman filter are affected by the characteristic 
of the accelerometer convergence. 
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Fig. 1. Roll and pitch angle of the 10-state Kalman filter 
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Fig. 2. X and Y Acc. biases of the 10-state Kalman filter 
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In this paper, a new alignment algorithm is proposed to 
increase the convergence rate of the Kalman filter in the fine 
alignment stage. The proposed algorithm uses simultaneously 
both open-loop and closed-loop scheme, which calculates the 
attitude angles with the open-loop scheme and estimates the 
accelerometer and gyro biases with the closed-loop scheme. 
The convergence theorem of the Kalman filter is derived and 
applied to analyze the problem of the 10-state Kalman filter 
in the fine alignment. The simulation results show that the 
proposed algorithm has superior performance in comparison 
with the 10-state Kalman filter. 
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Fig. 3 and 4 show the simulation results of the new alignment 
algorithm. From the Fig. 3, the roll and pitch angles are 
converged with very fast rate because the proposed algorithm 
estimates the x and y accelerometer biases independently 
with the attitude error components. The Fig. 4 shows that the 
estimated accelerometer biases have some stable value 
compared with the Fig. 2. 
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